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Abstract— Only a small minority of mobile healthcare 

technologies that have been successful in pilot studies have 

subsequently been integrated into healthcare systems.  

Understanding the reasons behind this discrepancy is crucial if 

such technologies are to be adopted.  We believe that the 

mismatch is due to a breakdown in the relation between 

technical soundness of the original mobile health (mHealth) 

device design, and integration into healthcare provision 

workflows. Quantitative workflow modelling provides an 

opportunity to test this hypothesis.  In this paper we present 

our current progress in developing a clinical workflow model 

for mobile eye assessment in low-income settings.  We test the 

model for determining the appropriateness of design 

parameters of a mHealth device within this workflow, by 

assessing their impact on the entire clinical workflow 

performance. 

I. INTRODUCTION 

Mobile health (mHealth), the use of mobile technologies 
within healthcare has shown considerable promise in recent 
years.  It offers an opportunity to make a transformative 
impact on healthcare delivery, particularly when large 
populations of at-risk individuals are involved. Low-income 
settings represent an interesting example as, in such settings, 
mHealth has the potential to be integrated where current 
standards are not presently viable due to cost, required 
specialist skills or infrastructure limitations [1].  Despite their 
formidable potential and the reported success of pilot studies, 
relatively few mHealth interventions have subsequently 
reported effectiveness in multisite trials or have been 
integrated for use within healthcare systems [2, 3].  We 
hypothesize that a reason for this apparent contradiction is a 
breakdown in the transition between successful completion of 
pilot studies and integration into healthcare provision 
workflows.  We believe that, although these device designs 
deliver good results with respect to their technological 
requirements, failure in the adoption into healthcare systems 
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can be due to a mismatch with the requirements for 
integration and adoption into the clinical workflow. 

In order to test this hypothesis, it is necessary to establish 
whether or not there is a link between a device’s design and 
the effectiveness and efficacy of the clinical workflow.  In 
assembly line analysis and information technology 
infrastructure design, the sensitivity of an entire workflow to 
variation in the parameters of its component processes is 
commonly assessed using colored Petri Nets.  Using these 
techniques should similarly allow us to assess the sensitivity 
of a clinical workflow to the engineering parameters of a 
device. 

Ophthalmology has been identified as one specialty of 
medicine whose quality and capacity in low-income settings 
could be greatly improved by the adoption of mHealth 
technologies [4, 5].  We have therefore chosen to build our 
workflow model based on data from the Nakuru Eye Disease 
Cohort Study.  This is a recent study that has provided a 
wealth of information on eye health in a low-income setting.  
It involved the deployment of a temporary eye clinic, with 
mHealth devices being trialed in parallel with the reference 
standard, which consists of diagnostic equipment originally 
designed for hospital use.  Moreover, clinical workflows 
found in low-income settings generally lack the complex 
interlinking of their counterparts in high-income settings.  
Therefore this study constituted a good test case for 
workflow analysis.   

We believe that, were mHealth devices to be fully 
integrated in the practice, such an adapted mobile clinic could 
represent a model for mobile clinics deployed as part of 
country-wide population screening programs, as well as 
academic research.   

To this end, in this paper we present our current progress 
in developing a clinical workflow model for mobile eye 
health assessment in low-income settings. This is a clinical 
workflow which could be transformed by successful 
incorporation of mHealth devices [5].  We assess the 
potential use of the model for determining the 
appropriateness of design parameters for devices within this 
workflow, by assessing the parameter’s impact on the entire 
clinical workflow performance. 

II. METHODS 

A. The Nakuru Eye Disease Cohort Study 

We have used data from the Nakuru Eye Disease Cohort 

Study (NEDCS) which was a study that conducted 

assessments of several measures of ocular health of 2185 

participants aged 55 years and above in Nakuru, Kenya
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during 2013/2014 [6].  Such measures of ocular health 

included visual acuity (VA), autorefraction, visual fields, slit 

lamp assessment of the anterior and posterior segment lens 

grading and fundus photography.  Participants were 

recruited from those selected for a baseline study conducted 

in 2007/2008 [7]. The study assessed a total of one hundred 

clusters, each of up to 50 participants, and many of which 

were in remote rural areas.  This involved the deployment of 

a temporary eye clinic in close proximity to the cluster’s 

participants’ most accessible venue.  The clinic was 

equipped with a logmar acuity chart, autorefractor, visual 

fields test, slit lamp, biomicrocope, and fundus camera.  It 

also trialed two mHealth devices in parallel to these 

reference standard diagnostic devices, one for the 

measurement of VA and the other for the measurement of 

the optic nerve’s vertical cup-to-disc ratio (VCDR).  

Approximately ten clinical workers plus an ophthalmologist 

staffed the clinic, which received its power from a diesel 

generator.  Study participants were recruited for each cluster 

by an ‘advance team’ consisting of two clinical workers plus 

a local guide.  The advance team visited the cluster’s 

location the day before the clinic was due to be deployed to 

inform participants with respect to the location, time and 

benefits of attending. 

The clinic’s workflow is shown in Fig. 1. 

B. Workflow Modelling 

The workflow model based on the workflow of the 
NEDCS was programmed in CPN Tools [8], a program 
specifically designed for building workflow simulations 
using the Standard ML of New Jersey (SML/NJ) 
programming language [9].  Study participants were 
represented as records consisting of various basic details, 
such as their willingness to travel to clinic, and of two sub-
records containing various indicators of eye health, including 
those assessed by mHealth devices during the NEDCS, that is 
VA and VCDR.  Each eye health indicator appeared at least 

twice for each eye, with one representing the actual value for 
the indicator in question, whilst the second and subsequent 
appearances represented that measured by the relevant 
medical device or devices within the workflow. 

Medical devices were represented in the model by records 
containing values describing the eye health indicators they 
can measure, their minimum unit of measurement and their 
variance when returned eye health indicators are 
approximated to a value selected from a normal distribution 
with a mean equal to the actual indicator value.  Additionally 
the record contained a user learning rate defined as the 
fractional decrease in variance observed every time the 
number of measurements previously taken by the user 
doubled.  It was assumed that there were no systematic errors 
in device measurements.  Thus a given measurement was 
taken from a normal distribution with a given variance 
centred on the true value.  The variance of this distribution 
would decrease with the number of measurements the user 
had previously conducted with the device according to 
Wright’s Learning Curve Model, that is Y = aX

b
, where Y is 

the variance, a is the initial variance, X is the number of 
measurements previously taken and b is the logarithm of the 
user learning rate, represented as a decimal, over log 2 [10].  

All of the study participants are initially located within a 
population center (Fig. 1A).  The simulation program 
generates a number of participants, ncluster, selected from a 
three-parameter Weibull probability distribution (λ=77.09, 
k=11.04, shift=-46.97) where outlying values of ncluster<0 or 
ncluster>50 were rounded to 0 and 50 respectively.  Upon 
generation, each patient record was populated with values for 
their actual VCDR and willingness to travel to a clinic.  
VCDRs were independently selected from a gamma 
distribution (shape=7.643, scale=0.05189) and willingness to 
travel to clinic independently selected from a value from 0 to 
1000 according to a uniform distribution.  Each participant 
would then progress to clinic registration (Fig. 1C) if their 
willingness to travel was above a certain threshold value 
(180, 0.18 being the proportion of study participants that 

Figure 1. Flow diagram of the clinical workflow for a temporary eye health assessment clinic deployed to low-income settings 

(the Nakuru Eye Disease Cohort Study [6,7]) 



  

were contacted during the NEDCS but did not subsequently 
travel to the clinic the following day).  If their willingness to 
travel was below this threshold value then the participant’s 
workflow would terminate with the record’s final value being 
written to the log file.   

Having registered, the participants would then progress to 
a station providing auto-refraction (Fig. 1D).  As is the case 
with every device stations described in this model, only one 
participant could occupy the station at one moment in time, 
forcing other participants to queue between the registration 
desk and auto-refraction.  Next, the participants would 
progress to the waiting area where they would queue until 
either the VA station (Fig. 1F), visual fields station (Fig. 1G) 
or undilated slit-lamp examination (Fig. 1H) became vacant.  
After completing this test they would then be returned to the 
waiting area where they would queue until one of the 
remaining test became vacant.  They would repeat this 
process until they completed each of these tests after which 
they would progress to a station for the administering of 
dilating eye drops (Fig. 1I).  Once fully dilated they would 
progress to a fundus camera station, once vacant, (Fig. 1J) 
before progressing for a dilated slit-lamp examination (Fig. 
1K).  The undilated and dilated slit lamp examinations both 
involved the use of the same slit lamp and therefore only one 
of these stations could be occupied by a single participant at 
any given moment in time.  Finally the patient would proceed 
for counselling and advice on necessary follow-up or 
treatment if required (Fig. 1M), with the participant’s contact 
details being recorded for the arrangement of an appointment 
with and transportation to a specialist if follow-up or 
treatment was agreed upon.  

Each of the stations in the clinic was permanently staffed 
by a clinical worker for the duration of the clinic, with the 
exception of the slit-lamp which was operated by an 
ophthalmologist.  Clinical workers were modelled as a record 

containing the number of times they have used each device in 
the workflow.  The advance team consisted of two clinical 
workers plus a local guide. 

Whether a patient was referred for treatment or not was 
made based on their exceeding a threshold for any one of the 
eye health measures, as measured by one or more of the 
devices.  For VCDR this threshold was taken to be a value 
equal to or greater than 0.7, in combination with other
clinical features.  

C. Statistical Analysis 

All statistical analysis described within was conducting 
using Minitab 17 Statistical Software (Minitab Ltd., 
Coventry, U.K.).  The type of probability distribution to use 
for a given generated value within the model was determined 
by running Minitab’s Individual Distribution Identification 
tool on the appropriate data set from the NEDCS.  All 
analyses of variance (ANOVAs) were one-way and had a 
95% confidence interval unless otherwise stated.  Pooled 
standard deviation was used to calculate the intervals shown 
on all interval plots. 

III. RESULTS 

A.  Simulated Study Samples 

Ten simulations, each including one hundred clusters of 
up to 50 participants, were run.  The generated VCDRs of the 
right eye were written to a log file for each participant upon 
termination of their workflow.  A two-way ANOVA of the 
samples suggests that there was no significant difference 
between the observed sample of VCDRs and those samples 
which were simulated (F=0.01, p>0.9), as shown in Fig. 2b. 

B.  Comparison of mHealth Devices’ User Learning Rates  

An equal number of simulations were run for two 

different situations.  The workflow for each was identical 

with the exception of the fundus camera used.  This had a

user learning rate, with respect to measurement precision, of 

0.8 in one scenario compared to 0.95 in the other.  The 

initial variance and minimum unit of measurement were set 

at typical values of 0.05 and 0.1 respectively in each case.  

In both cases this simulated instrument represented an 

mHealth device.  Upon completion of each simulation the 

sensitivity and specificity of the devices’ measurement of 

VCDR was calculated using the generated true VCDR and 

that measured by the simulated device.  The mean sensitivity 

and specificity of the 0.80 learning rate device was found to 

be 0.743 and 0.979 respectively.  The mean sensitivity and 

specificity of the 0.95 learning rate device was found to be 

0.700 and 0.929 respectively.  One-way ANOVAs for the 

two sets of sensitivities and two sets of specificities are 

shown in Fig. 3.  These showed that the model predicts a 

statistically significantly improvement in sensitivity and 

specificity for a fundus camera with a learning rate of 0.80 

compared to a similar device with a learning rate of 0.95 (F

= 12.02, p < 0.01 for sensitivities and f = 397.4, p < 0.001

for specificities). 

C. Locating of a Device within the Workflow

 We next considered the placement of the mHealth 
device, with a user learning rate of 0.8 with respect to 

Figure 2.  (a) Histogram of the vertical cup-to-disc 

ratios recorded during the Nakuru Eye Disease Cohort 

Study.  (b) Interval plot of the mean vertical cup-to-disc 

ratios as found in the study data and in ten simulations. 



  

precision, within the described workflow.  We additionally 
specify that such as device is capable of allowing a clinical 
worker to measure the VCDR of an undilated eye.  A station 
containing such a device could be added at one of two points 
in the workflow.  Firstly, it could be inserted alongside the 
other device stations interfacing with the waiting area (E in 
Fig. 1) within the clinic.  Alternatively the device could be 
given to the advance team and the VCDR of the participant 
recorded in their home prior to the clinic.  In each case a 
single user throughout the screening programme with no 
prior experience of using the device was assumed.  Five 
simulations of each scenario indicated that the placing the 
device with the advance team consistently achieved screening 
of a greater number of participants, as those failing to attend 
the clinic could still be assessed.  As a result the mean 
sensitivity of the device for VCDR based screening was 
found to have a mean value of 0.847 compared to 0.743 if 
placed within the clinic.  The sensitivity of the entire 
workflow when the device was clinic based, where no-show 
positives were also counted as false negatives had a mean 
value of 0.648 compared to a mean sensitivity of 0.847 for 
the entire workflow when the device was based with the 
advance team.  A one-way ANOVA of these mean 
sensitivities (Fig. 4) indicated that the differences were 
statistically significant (F = 29.47 and p = 0.001 for the 
device and F = 97.47, p < 0.001 for entire workflow).  Thus it 
is clear that such a device would be best located with the 
advance team as this would involve minimal change to the 
clinical workflow whilst significantly increasing screening 
effectiveness. 

IV. CONCLUSION 

We have developed a clinical workflow model that allows 

design parameters of mHealth devices and their relevance to 

integration into healthcare systems to be assessed.  Analysis 

of this model has been shown to provide useful information 

relating to a device’s user learning rate, with respect to the 

precision, as a design parameter, and where the device ought 

to be inserted in a temporary eye disease screening clinic.  

These results suggest that such a workflow modelling 

technique may yield useful information in the design of 

mHealth devices for integration into healthcare systems. 
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Figure 3.  Interval plots for the mean sensitivity (top) and 

specificity (bottom) achieved for simulated devices measuring 

participant vertical cup-to-disk ratio.  The devices have 

identical parameters other than the user learning rate with 

respect to measurement precision. 

Figure 4. Interval plots for the mean device sensitivity (top) and 

workflow sensitivity (bottom) achieved for simulated devices 

inserted at different points in the workflow to measure participant 

vertical cup-to-disc ratio. 
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