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When Local and Global Clustering of Networks Diverge

Ernesto Estrada

Department of Mathematics & Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1HX,

UK

Abstract. The average Watts-Strogatz clustering coefficient and the network tran-

sitivity are widely used descriptors for characterizing the transitivity of relations in

real-world graphs (networks). These indices are bounded between zero and one, with

low values indicating poor transtivity and large ones indicating a high proportion of

closed triads in the graphs. Here, we prove that these two indices diverge for windmill

graphs when the number of nodes tends to infinity. We also give evidence that this di-

vergence occurs in many real-world networks, especially in citation and collaboration

graphs. We obtain analytic expressions for the eigenvalues and eigenvectors of the ad-

jacency and the Laplacian matrices of the windmill graphs. Using this information we

show the main characteristics of two dynamical processes when taking place on wind-

mill graphs: synchronization and epidemic spreading. Finally, we show that many of

the structural and dynamical properties of a real-world citation network are well re-

produced by the appropriate windmill graph, showing the potential of these graphs as

models for certain classes of real-world networks.

Key words. clustering coefficients, windmill graphs, graph spectra, real-world

networks, collaboration graphs, citation networks
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1. Introduction

The development of network theory has demanded the definition of several mathe-

matical indices that characterize certain aspects of the topology of these usually giant

graphs [1, 2, 3]. In a seminal paper published in 1998 Watts and Strogatz [4] defined an

index nowadays known as the Watts-Strogatz clustering coefficient of a given node in a

graph. This index accounts for the ratio of the number of triangles in which the corre-

sponding node takes place to the the number of potential triangles involving that node

(see further for a formal definition). The clustering coefficient is bounded between zero

and one. An index close to zero indicates that the relative number of transitive relations

involving that node is low. A clustering coefficient close to one indicates that this node

is involved in as many transitive relations as possible. When studying complex real-

world networks it is very frequent to report the average Watts-Strogatz (WS) clustering

coefficient as a characterization of how globally clustered a network is. Bollobás [5]

has remarked that: “this kind of ‘average of an average’ is often not very informative”.

An alternative way of characterizing the transtivity of a network is by taking the

total number of triangles in the graph divided by the total number of triads existing

in the graph. This index was put forward originally by Luce and Perry [6] and then

rediscovered by Newman [7] in the context of complex networks. It is commonly
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referred to as the transitivity index of a (social) network (see for instance [8]). It is

straighforward to realize that the transitivity index is also bounded between zero and

one, with small values indicating poor transitivity and values close to one indicating a

large one.

Due to the previous definitions of the WS average clustering coefficient and the

transitivity index it is very surprising that there are simple graphs for which both in-

dices diverge. In the Figure 1 we give a couple of examples for which the WS average

clustering coefficient tends asymptotically to zero while the transitivity index goes to

one when the size of the graph tends to infinity. The first graph is known as the friend-

ship (or Dutch windmill or n-fan) graph and the example was reported by the first time

by Bollobás [5]. The second example was reported firstly by Estrada in [1] and these

graphs were further named agave graphs by Estrada and Estrada-Vargas in a different

context [9]. According to these examples, for a relatively large number of nodes, the

WS average clustering coefficient tells us that the graphs are as transitive as possible,

while the transitivity index is telling us exactly the contrary.

�

�

Figure 1: Two examples of classes of graphs for which the Watts-Strogatz clustering coefficient and the

graph transitivity diverge when the number of nodes tends to infinity.

The friendship graphs are formed by glueing together κ copies of a triangle in a

common vertex. These graphs appeared as the solution of the of the Friendship The-

orem of Erdős, Rényi and Sós [10], which states that the only graphs with the prop-

erty that every two vertices have exactly one neighbour in common are the friendship

graphs. The friendship graphs are members of a larger family of graphs known as

the windmill graphs. A windmill graph W (η, κ) consists of η copies of the complete

graph Kκ [11] with every node connected to a common one (see Figure 2). We remind

that a complete graph Kκ is the graph with κ nodes and κ (κ − 1) /2 edges. Thus, the

friendship graphs are just W (η, 2).

Although the friendship graphs have received recent attention due to their spec-

tral properties [12, 13, 14, 15], the general class of windmill graphs has received little

attention apart from their study in the topic of graceful and harmonious graph label-

ing (see [16] for a review). Here, we study this family of graphs in relation to the

problem of clustering divergence,which is defined as the divergence of the average WS

and the transitivity index when the graph size tends to infinity. We study the spectra

of the adjacency and the Laplacian matrices of these graphs and using these results

we analyze the particularities of some dynamical processes taking place on them. We

conclude that windmill graphs are bad structures for seeking synchronization. In addi-

tion, an epidemic dynamics running on them shows null epidemic threshold. We then
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show that the clustering divergence phenomenon is also observed in many real-world

networks, in particular in citation and in collaboration networks (something unnoticed

so far in the literature). We show that the windmill graphs are appropriated cores for

building models capturing the clustering divergence in real-world networks as well as

for reproducing the structural and dynamical properties of these real-world graphs.

( )2,2W

( )2,3W

( )3,2W

( )3,3W

( )4,2W

( )4,3W

Figure 2: Illustration of the smallest windmill graphs W (η, κ) consisting of η copies of the complete graph

Kκ.

2. Preliminaries

A graph G = (V, E) is defined by a set of n nodes (vertices) V and a set of m edges

E = {(u, v)|u, v ∈ V} between the nodes. The degree of a vertex, denoted by ki, is the

number of edges incident to i in G. A graph with unweighted edges, no edges from

a node to itself, and no multiple edges is said to be simple. We will always consider

undirected, simple, and connected networks. The so-called Watts-Strogatz clustering

coefficient of a node i, which quantifies the degree of transitivity of local relations in a

network is defined as [4]:

Ci =
2ti

ki(ki − 1)
(1)

where ti is the the number of triangles in which the node i takes place. Taking the mean

of these values as i varies among all the nodes in G, one gets the average WS clustering

coefficient of the network G:

C =
1

n

n
∑

u=1

Cu. (2)

The so-called graph transitivity is defined as [7, 8]

C =
3t

P2

, (3)
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where t is the total number of triangles and P2 =
∑n

i=1 ki(ki − 1)/2.

Let A = (auv)n×n be the adjacency matrix of the graph. We denote by λ1 > λ2 ≥

· · · ≥ λn the eigenvalues of A and by ψ j,p the pth entry of the jth orthonormalized

eigenvector ~ψ j associated with λ j. For the whole spectrum of a given matrix M we use

the following notation: S p (M) = {λm} where λ is an eigenvalue and m its algebraic

multiplicity.

The adjacency matrix of a windmill graph W (η, κ) can be written as

A (W (η, κ)) =



















































0 ~1T ~1T · · · ~1T

~1 A (Kκ) 0 · · · 0
~1 0 A (Kκ) · · · 0
...

...
...

. . .
...

~1 0 0 · · · A (Kκ)



















































, (4)

where ~1 is an all-ones column vector of length κ and A (Kκ) is the adjacency matrix

of Kκ.

Let ∆ be a diagonal matrix of the vertex degrees of the graph. Then, the Laplacian

matrix of the graph is defined by: L = ∆ − A. In the case of the windmill graphs it can

be written as

L (W (η, κ)) =



















































ηκ −~1T −~1T · · · −~1T

−~1 L (Kκ) + Iκ 0 · · · 0

−~1 0 L (Kκ) + Iκ · · · 0
...

...
...

. . .
...

−~1 0 0 · · · L (Kκ) + Iκ



















































, (5)

where Iκ is the κ × κ identity matrix. We denote by µ1 ≥ µ2 ≥ · · · ≥ µn = 0 the

eigenvalues of L . The eigenvalue µn−1 is known as the algebraic connectivity of the

graph and the eigenvector associated to it is known as the Fiedler vector [17]. For

reviews about spectral properties of graphs the reader is directed to the classic works

[18, 19].

3. Clustering of windmill graphs

We start here by proving that the average Watts-Strogatz coefficient and the transi-

tivity index diverge when the number of nodes increases in a windmill graph.

Theorem 1: Let W (η, κ) be a windmill graph. Then, for a given value of κ the

average Watts-Strogatz and the transitivity coefficients diverge when the number of

cliques tends to infinity:

lim
η→∞

C̄ = 1 (6)

lim
η→∞

C = 0 (7)

Proof. First, we obtain an expression for the Watts-Strogatz clustering coefficient

of windmill graphs. The Watts-Strogatz clustering coefficient of the central node in

W (η, κ) is
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Ci =
κ − 1

ηκ − 1
, (8)

and the rest of the nodes have C j = 1. Thus, C̄ =
(

Ci + ηκC j

)

/n, which gives

C̄ = 1 −
κ (η + 1)

(ηκ + 1) (ηκ − 1)
. (9)

Now we consider the transitivity index of a windmill graph W (η, κ). The total

number of triangles in W (η, κ) is

t =
1

6
ηκ

(

κ2 − 1
)

. (10)

In order to obtain the number of 2-paths we use

P2 =
1

2
ki (ki − 1) +

ηκ

2
k j

(

k j − 1
)

(11)

in which ki = ηκ and k j = κ. Thus, after substitution we get

C =
κ2 − 1

κ2 + ηκ − κ − 1
. (12)

Obviously, lim
η→∞

C̄ = 1 and lim
η→∞

C = 0 for a given value of κ, which proves the result.

�

This result clearly points out to the fact that the structural information accounted

for by the average Watts-Strogatz coefficient and the transitivity index are of different

nature. Clearly, when n→ ∞ in a windmill graph, the number of nodes with clustering

coefficient equal to one grows to infinity. However, the graph as a whole remains poorly

clustered due to the fact that there are no triangles involving more than one cluster Kκ.

That is, a windmill graph is locally clustered but globally poorly clustered. This is

exactly what the two clustering coefficients reflect for these graphs. Then, it is easy

to see that the average Watts-Strogatz clustering coefficient C̄ quantifies how much, on

average, a graph is locally clustered, while C accounts for the clustering of the network

as a whole.

The situation previously described is not exclusive of windmill graphs. That is, the

existence of graphs with large averaged local clustering and very small global transitiv-

ity appears to be present also in real-world networks. For instance, we have investigated

the relation between the average Watts-Strogatz and the global transtivity coefficients

for 72 real-world networks describing complex systems in a variety of scenarios rang-

ing from social and ecological to infrastructural and biological ones. This dataset of

networks is formed by 66 real-world networks described in the Appendix of [1] and

6 ones described in [2]. For a full description of these networks the reader is referred

to these two references. In the Figure 3 (a) we illustrate the plot of the two cluster-

ing coefficients, where the points close to the top-left corner correspond to networks

with large local and small global clustering. For instance, the network of film actors in

which every one of the 449,913 nodes represents an actor and each of the 25,516,482

edges represent a pair of actors that have acted in the same film has C̄ ≈ 0.78 and

C ≈ 0.20 [2]. Similarly, the network of collaboration among scientists working in

the area of biology, which has 1,520,251 nodes and 11,803,064 edges, displays similar

characteristics with C̄ ≈ 0.60 and C ≈ 0.088 [2]. In the Figure 3 (b) we illustrate

the citation network of papers citing Milgram’s 1967 Psychology Today paper or use
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“Small World” in the title (see [1] for details). The nodes represent papers and two

nodes are connected if one paper cites the other (we consider the undirected version

of this network only). It consists of 233 papers and 994 citations. This network has

C̄ ≈ 0.556 and C ≈ 0.160. The node marked in a different color in the Figure 3 (b)

corresponds to Milgram paper and it is clear that at least two big groups of nodes exist

in the network (see further analysis).
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Figure 3: a) Scatterplot of the average Watts-Strogatz clustering coefficient C̄ and the global transitivity C

for a series of real-world networks. The red line corresponds to C̄ = C. b) Illustration of the citation graph

in the field of Small World networks, which has C̄ ≈ 0.556 and C ≈ 0.160.

4. Spectral analysis of regular windmill graphs

Due to the importance that spectral properties of graphs have on a variety of struc-

tural and dynamical properties of graphs we embark here in the analysis of the spectra

of windmill graphs. We start by analyzing the spectra of the adjacency matrix of these

graphs which is reported using the notation fixed in the previous section.

Theorem 2: The spectrum of the adjacency matrix of a windmill graph W (η, κ) is

S p (A (W (η, κ))) =





































κ − 1

2
±

√

(

κ − 1

2

)2

+ ηκ



















, (κ − 1)η−1 ,−1η(κ−1)



















. (13)

Proof : Let us consider the vector ~γ =

[

x,
1 − x

ηκ
, · · · ,

1 − x

ηκ

]T

for some

x < 1. Then,

A (W (η, κ))





















































x
1 − x

ηκ
...

1 − x

ηκ





















































=

























































1 − x

x + (κ − 1)

(

1 − x

ηκ

)

...

x + (κ − 1)

(

1 − x

ηκ

)

























































. (14)
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By equalizing the right-hand side of (2) to λ~γ we obtain

1 − x = λx, (15)

x + (κ − 1)

(

1 − x

ηκ

)

= λ

(

1 − x

ηκ

)

, (16)

which has solution if

λ2 − λ (κ − 1) − ηκ = 0. (17)

Thus,

λ =
κ − 1

2
±

√

(

κ − 1

2

)2

+ ηκ. (18)

Thus, the two values of (18) correspond to two eigenvalues of A (W (η, κ)) both with

multiplicity 1.

Let ~ϑ =
[

0 α11
· · · α1κ α21

· · · α2κ · · · αη1
· · · αηκ

]T
be a vector

such that αk j
= αk for all k, α1 + α2 + · · · + αη = 0, and αk , 0 for some k. Then, it is

easy to check that

A~ϑ = (κ − 1) ~ϑ. (19)

There are η − 1 orthogonal vectors fulfilling the conditions that ~ϑ has. Thus, κ − 1

is an eigenvalue of A (W (η, κ)) with multiplicity η − 1.

Now, let ~ν =
[

0 α11
· · · α1κ α21

· · · α2κ · · · αη1
· · · αηκ

]T
be a

vector such that
∑κ

j=1 αk j
= 0 for all k, and αk , 0 for some k. Then,

A~ν = −~ν. (20)

There are η (κ − 1)orthogonal vectors ~ν and so −1 is an eigenvalue of A (W (η, κ))

with multiplicity η (κ − 1). So far we have found (η − 1) + η (κ − 1) + 2 eigenvalues,

which is the total number of eigenvalues existing for A (W (η, κ)), i.e., n = ηκ+1, which

proves the result. �

Remarks

• The characteristic polynomial of A (W (η, κ)) is

P (λ) = (λ + 1)η(κ−1) (λ − κ + 1)η−1
(

λ2 − (κ − 1) λ − (n − 1)
)

. (21)

• The number of triangles in W (η, κ) is given by

t =
1

6

n
∑

j=1

λ3
j =

1

6
ηκ

(

κ2 − 1
)

. (22)

• The eigenvector centrality (see for instance [1, 3] for definition and uses of cen-

trality measures) of a windmill graph W (η, κ) is a vector proportional to:
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~γ =

[

x,
1 − x

ηκ
, · · · ,

1 − x

ηκ

]T

. (23)

We now turn our analysis to the spectrum of the Laplacian matrix of windmill

graphs. The Laplacian matrix, which is the discrete analogous of the Laplace-Bertrami

operator, plays a fundamental role in the analysis of dynamical processes on networks.

Theorem 3: The Laplacian spectrum of a windmill graph W (η, κ) is

S p (L (W (η, κ))) =
{

(ηκ + 1) , (κ + 1)η(κ−1) , 1η−1, 0
}

. (24)

Proof : The fact that the Laplacian matrix has a zero eigenvalue is well-known and

easy to prove—just post-multiply L by the vector ~1—and because the windmill graph

is connected the multiplicity of this eigenvalue is one. Now, let us consider the vector

~γ =
[

ηκy, −y, · · · , −y
]T

for some y > 0. Then,

L (W (η, κ))



































ηκy

−y
...

−y



































=





































(

(ηκ)2 + ηκ
)

y

−y (ηκ + 1)
...

−y (ηκ + 1)





































= (ηκ + 1)



































ηκy

−y
...

−y



































, (25)

proving that n = ηκ + 1 is an eigenvalue of L (W (η, κ))with multiplicity one.

Using similar techniques as for the Theorem 2 we have the following. Let ~ϑ =
[

0 α11
· · · α1κ α21

· · · α2κ · · · αη1
· · · αηκ

]T
be a vector such that αk j

=

αk for all k, α1 +α2 + · · ·+αη = 0, and αk , 0 for some k. Then, it is easy to check that

L~ϑ = ~ϑ. (26)

Because, there are η − 1 orthogonal ~ϑ vectors, one is an eigenvalue of L (W (η, κ))

with multiplicity η − 1.

Now, let ~ν =
[

0 α11
· · · α1κ α21

· · · α2κ · · · αη1
· · · αηκ

]T
be a

vector such that
∑κ

j=1 αk j
= 0 for all k, and αk , 0 for some k. Then,

L~ν = (κ + 1)~ν. (27)

There are η (κ − 1)orthogonal vectors ~ν and so κ + 1 is an eigenvalue of L (W (η, κ))

with multiplicity η (κ − 1), which finally proves the result. �

Remarks

• The algebraic connectivity of a windmill graph W (η, κ) is 1.

• The Fiedler vector of a windmill graph W (η, κ) is a vector proportional to:

~ϑ =
[

0 α11
· · · α1κ α21

· · · α2κ · · · αη1
· · · αηκ

]T
, (28)

such that αk j
= αk for all k, α1 + α2 + · · · + αη = 0, and αk , 0 for some k.
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5. Dynamical processes on windmill graphs

There are many different dynamical processes that can be studied on the nodes

and edges of graphs. The reader is referred to [20, 21] for a detailed account of the

topic. One of the most important dynamical processes studied on graphs is the epi-

demic dynamics. The spreading of an infectious disease on networks can be modeled

representing individuals as nodes and the contacts between them as edges. In this

context individuals are categorized in different compartments according to their health

state [22]: i.e.. susceptible (S) for individuals that can be infected by the disease, in-

fected (I) for infectious individuals that can spread the pathogen or recovered (R) for

individuals that already passed the disease and are immune to it. Some of the classical

models used in this context are the so-called SIS and SIR [22, 23]. The spreading of a

disease is driven in these models by the ratio among the probability β for a susceptible

individual to catch the disease once in contact with an infected one through a link of the

network, and the recovery rate ρ that characterizes the rate at which an infected individ-

ual recovers from the disease. Depending on its infectious power two distinct phases

are possible: an absorbing one where the spreading is not efficient enough to reach

a large fraction of the system and the disease is absorbed and an active phase where

the epidemics reaches a macroscopic fraction of the network. The transition from the

absorbing to the active phase strictly resembles a non-equilibrium second order phase

transition in statistical physics [24]. The critical value of this transition
(

β
ρ

)

c
= τ is de-

fined as the epidemic threshold, which in the case of an epidemic spreading on a graph

has been shown to be [25, 26, 27]:

τ =
1

λ1

. (29)

In the case of a windmill graph the epidemic dynamics can be an appropriate tool

to understand for instance the propagation of some ideas through the citation of papers

which become viral very quickly. In this case it is straighforward to realize that the

epidemic threshold is

τ =
2

κ − 1 +

√

(κ − 1)2 + 4ηκ

. (30)

The immediate consequence of this relation is that for a given value of κ the epi-

demic threshold vanishes as η → ∞. In other words, in a sufficiently large windmill

graph there is no resistance to the propagation of an epidemic. An idea can become

viral in the whole network almost without any resistance. Even worse, when κ is suf-

ficiently large the epidemic threshold is almost null even for very small values of η.

This situation resembles the one that has been largely studied for random networks

with power-law degree distributions. In those models, like the Barabási-Albert one, it

has been proved analytically that the epidemic threshold vanishes for very large graphs

[28]. The main cause of this effect in the so-called scale-free graphs is the existence

of an uneven degree distribution with a few hubs concentrating a large number of con-

nections. In the windmill graphs the situation is quite similar due to the existence of

a node which is connected to every one else in the network. Thus, once this node is

infected it immediately can infect the rest of the network in just one step.

As another important example of a dynamical process on graph we consider now

the synchronization process on networks [29, 30]. Network synchronization finds many

important applications in the natural and physical worlds, such as in human learning
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[31] and in wireless sensor networks [32]. In the particular case of windmill graphs

this process is appropriate to analyze how easily a group of collaborators forming such

kinf of structures reaches consensus about a given discussion topic.

A large class of dynamic networks have a bounded synchronized region specified

by

cµn−1/µ1 ∈ (α2, α3) ⊂ (0,∞), (31)

where constants α2, α3 depend only on the node dynamics, and a bigger eigenratio

µn−1/µ1 implies a better network synchronizability, which likewise means a smaller

coupling strength is needed [33]. Thus, the following sync-index is adopted:

Q =
µn−1

µ1

, (32)

which for the case of windmill graphs becomes

Q =
1

ηκ + 1
=

1

n
. (33)

As stated before, for good network synchronizability it is necessary that the sync-

index is as large as possible. Then, it is easy to see that because when n → ∞ the

eigenratio Q → 0, which means that the windmill graphs are very bad synchronizers.

In other words, although synchronization among all the nodes can be reached relatively

easy, the stability of the sync state is very low.

6. Windmill-like structure in real-world networks

In a previous section we have seen that there are real-world networks for which the

local and the global clustering coefficients diverge. Clearly, the windmill graphs can be

used as a model to describe this characteristic of the previously mentioned networks.

Windmill-like structures are plausible in certain kinds of real-world situations in which

there are many groups of tightly connected nodes, all of them tied to a central node.

This could be the case of citations and collaboration networks. In the first case, a

seminal paper could be cited by many different groups working in related but different

fields. For instance, the seminal papers of Milgram in 1967 [34], Watts and Strogatz in

1998 [4] and Barabási and Albert in 1999 [35] are frequently cited by groups working

in mathematics, physics, social sciences, computer sciences and neurosciences (among

others). These groups frequently cite each other’s papers within their fields, but hardly

cite other papers in areas beyond their close specialty. A similar situation happens with

collaboration networks as well as in other real-world scenarios. Let us just mention a

couple of examples from the Stanford Large Network Dataset Collection (SNAP) [36]:

the networks representing autonomous system (AS) peering information inferred from

“Oregon route-views”, “Looking glass data”, and “Routing registry”, all combined, of

March 21th, 2001 (dataset Oregon-2) has C̄ ≈ 0.501 and C≈ 0.0385. The second

example is the Enron email communication network which has C̄ ≈ 0.497 and C≈

0.0302 (see [2] for details about the previously mentioned networks).

Taking into account the previous considerations we embarked now in a comparison

of a real-world network with the windmill graph by considering a series of topologi-

cal parameters. We consider here both clustering coefficients C̄ and C, the maximum

degree kmax, the size of the largest clique (clique number) Cl, the number of cliques of

size Cl in the graph NCl, the Perron-Frobenius eigenvalue of the adjacency matrix λ1

and the eigenratio Q. We also study four models frequently used to describe properties
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of networks. They are the uniform random graphs of Erdős-Rényi (ER) GER(n,m) [37],

the Barabási-Albert (BA) GBA(n,mc) [35], the Watts-Strogatz small-world model (WS)

GWS (n,mc) [4], and the random geometric graph (RRG) GRRG(n, r) [38]. The main

characteristics of these four models are described in [1].

In Table (1) we illustrate the results for the graph parameters and models described

before. It is clear that there are several windmill graphs W (η, κ) which may be used to

describe the real-world network under consideration. We selected the windmill graph

having the number of edges closer to the one of the real-world network. That is, the

number of edges in a windmill graph is

m =
ηκ

2
(κ + 1) . (34)

The graph which better reproduces the number of edges in the real-world network

corresponds to the windmill graph W (33, 7), which has 924 edges out of 994 that the

citation graph has. As can be seen in Table (1) this graph reproduces very well many of

the topological properties of the Small World citation network. It shows a large Watts-

Strogatz clustering coefficient and small global transitivity as the real-world network.

The highest degree in both the windmill graph and the real-world network are very large

in comparison with the number of nodes in these graphs. However, the most interesting

results come from the analysis of the clique number and the spectral properties of these

graphs. First, the windmill graph is formed by 33 cliques of size 7. That is, teh lasrgest

clique in this graph is of size 8. The largest clique in the real-world network is of size 7

and there are 39 of them. We should notice that these cliques in the real-world network

have overlapping, i.e., there are nodes in more than one clique, which does not occur

in the windmill graph. The Perron-Frobenius eigenvalue of the adjacency matrix of the

windmill graph is 18.49, which is very close to that of the citation network. Finally,

the eigenratio of the windmill, which is just n−1, is identical to that of the real-world

network. An inspection of the four other models used for comparison show that none

of them captures the topological specificity of the real-world network.

SmallW W (33, 7) ER BA WS RGG

n 233 232 233 233 233 233

m 994 924 994 870 932 986

C̄ 0.556 0.996 0.038 0.127 0.565 0.617

C 0.160 0.176 0.037 0.065 0.559 0.592

C̄/C 3.475 5.659 1.027 1.954 1.011 1.042

l̄ 2.371 1.966 2.759 2.637 4.353 6.710

D 4 2 5 4 8 16

kmax 147 231 17 84 10 18

Cl 7 8 3 4 5 9

λ1 20.96 18.49 9.57 13.842 8.070 12.736

Q 0.0043 0.0043 0.0682 0.0230 0.0154 0.0029

Table 1: Topological properties of the real-world network representing a citation network in the topic

of “Small World Networks” and four different models. The models included are the windmill graph

W (33, 7) , Erdős-Rényi (ER) GER(233, 994), Barabási-Albert (BA) GBA(233, 4), Watts-Strogatz (WS)

GBA(233, 8, 0.05) and random geometric graph (RRG) GRRG(233, 0.115).
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7. Conclusions

The main result of this work is to show that the average WS clustering coefficient

and the network transitivity can diverge for certain classes of graphs. The windmill

graphs are examples of graphs in which this phenomenon occurs due to the fact that

there are many cliques connected to a single node in which no pair of nodes from dif-

ferent cliques are connected. It is important to realize that this clustering divergence

also occurs in real-world networks. In particular, it seems to be very frequent in ci-

tation and collaboration networks. In citation networks, for instance, there could be

a central paper which is highly cited by many other papers. These other papers form

clusters, mainly inside a particular discipline, whose authors cite each other. However,

the papers in one cluster (discipline) hardly cite a paper in another discipline. Then,

it is expected that as these networks grow, the divergence between the clustering co-

efficients become more marked, resembling more and more the situation taken place

in windmill graphs. We have characterized here the spectra of the adjacency and the

Laplacian matrices of windmill graphs, which are fundamental for understanding their

structure and dynamical properties. We have also shown that many of the structural

and dynamical properties of a citation network displaying clustering divergence are re-

produced by the appropriate windmill graph. Thus these graphs may represent the core

for developing theoretical models of certain kinds of real-life networks.
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