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Abstract 

More Electric Aircraft are currently being developed so that in the future all non-propulsive power on an aircraft 

can be provided by the electrical system. In this electrical system, it is expected that several motor loads will run in 

parallel from a single DC bus.  The paper will investigate the interactions between five motor loads connected to a 

common DC bus, paying particular attention to the effects of the line impedance on the stability of the system, and 

how this interacts with any capacitance in the input filters to the motor drive loads.  Based on the results of the tests 

carried out, guidelines to ensure the stability of a multiple load system are presented.  

 

To achieve this, a generic model for a motor load is proposed.  Five of these motor loads are then connected to a 

DC bus and the stability of this system has been tested.  The motor parameters have been scaled to represent 

models of different sizes, and they have different input filters.  The impedance of the line has been included. 

Nomenclature 

 

L:  inductance   [H] 

R:  resistance   [ȍ] 

Ȍ:  flux    [V/m]   



Ȧr: electrical speed   [rad/s] 

Ȧ:  mechanical speed  [rad/s] 

Ȧn:  bandwidth of controller  [rad/s] 

PT:  pole pairs   [-] 

J:  inertia    [kg.m
2
] 

H:  inertia constant   [MW.s/MVA] 

ȗ:  damping constant  [-] 

Te: electrical torque   [N.m]  

Tl: mechanical torque  [N.m] 

1. Introduction 

There is strong motivation to develop More Electric Aircraft (MEA), on which all non-propulsive power can be 

supplied by the electrical system [1], replacing the hydraulic, pneumatic and mechanical power systems on a 

conventional aircraft. While MEA will be more efficient, reliable and easier to maintain than a conventional aircraft 

[2-4], this is achieved by greatly increasing the complexity of their electrical power system. Conventional electrical 

systems on aircraft were single frequency [2,5] with a load of around 100kW [2]. An MEA will require up to 

1.6MW for a 300 passenger (pax) aircraft [2], with a complex electrical network consisting of a mixture of AC and 

DC, with varying voltage and frequency levels.   It is highly likely that part of such a complex network will include 

several motor loads, supplied by a single DC bus, as shown by Fig. 1.  Some of these loads, such as the 

environmental control system, will have a power rating which is a significant proportion of the generator rating.  As 

a result there is a high potential for interactions between the individual motors and design rules must be formulated 

to ensure correct system operation under all conditions.   The length of the DC distribution circuit could be up to 

60m in length [6], therefore the line impedance of the DC bus must be considered, and may have a significant 

impact on the stability of the system. 

 

This paper will describe how the model of the multiple load system was developed, validated, and subsequently 

used to investigate the stability and robustness of such a system, paying particular attention to the effects of the line 

impedance on the stability of the system, and how this interacts with any capacitance in the input filters to the 

motor drive loads.  The multiple load system which has been considered is shown in Fig.1.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Multiple motor loads on a DC bus. 

2. General Model of Motor load 

2.1  Overview of the Motor Load Model. 

A generic model of a permanent magnet synchronous motor (PMSM), drive and associated control has been 

developed. Fig. 2 shows a block diagram of this model.    
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Fig.2: Block diagram of PMSM load, comprising motor, motor drive, control and linear load. 
 

2.2 The Permanent Magnet Synchronous Motor Model 

 

The PMSM has been modelled in d-q form. Assumptions which have been made are [6,7]:  

 

• Saturation is neglected 

• The induced EMF is sinusoidal  

• Eddy currents and hysteresis loses are negligible 

• There are no field current dynamics 

• There is no cage on the rotor 

• The rotor is made from permanent magnet material or is energised with constant field current i.e. the rotor 

contribution to magnetic flux linkage is constant 

• The magnetic system is linear. 

• The system is balanced and hence may be modelled by abc to dq transforms (rather than abc to dq0 

transforms). 

• The stator windings are sinusoidaly distributed. 

• The motor airgap is uniform 

• The motor has saliency. 

• The motor is a fault tolerant machine. 

 

The machine has been modelled using the version of the d-q transformation described and derived in [6]. It should 

be mentioned that the synchronous machine described in [6] is a wound rotor machine.  The magnitude invariant 

version of the three phase to d-q transform has been used.  Equations 1 and 2 were derived to describe the d-q 

equivalent circuit of the PMSM.    
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Equation 3 was derived to express the electric torque in the model from standard power-torque-speed relationship 

[8]. 
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2.3. The Motor Drive and Control 

 

The control system developed follows a standard d-q cascaded controller methodology [9], with an inner and outer 

control loop.  The outer, or speed, control loop regulates the shaft speed of the motor and generates a reference iq 

for the inner control loop.  The inner, or current, control loop generates the control signals for the generation of 

PWM signals to control the inverter, and hence the current to the motor. The d component of the current is 

controlled to be zero. The d and q loops have been decoupled using Equations 4 and 5. 
 

d decoupling r qv ω− = Ψ        (4) 

 

( )q decoupling r d d rv L iω− = − + Ψ       (5) 

 

Feed-forward DC link voltage control has been implemented within the inverter block, which is contained within 

the current loop control.  In this feed-forward control, the per unit control voltage is compared to the triangular 

waveform with an amplitude of +/- 1, to generate the PWM waveforms to control the inverter. Variations in DC 

link voltage are thus rapidly compensated. 

 

In order to tune the control loops the bandwidth and damping of the inner and outer loops are chosen, and from 

these chosen parameters, the values of the proportional and integral gains in the PI controllers are calculated.  Fig. 

4a and Fig.4b show the speed and current control loops. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 4a: Speed control loop block diagram.             Fig. 4b: Current control loop block diagrams. 

 

The bandwidth of the control loops is limited by the switching frequency of the inverter, the speed of the transducer 

in the physical system and the DC link voltage.  Additionally the bandwidth of the inner loop should ideally be an 

order of magnitude, or more, larger than the outer loop.  This results in a set of control loops which may, in 

principle, be tuned independently.  The transfer function of the inner loop is given by Equation 6 and the transfer 

function of the outer loop is given by Equation 7.   The input filter to the inverter was neglected when the inner 

loop was modelled. Equation 8 is a standard second order equation for a closed loop transfer function [10]. By 

inspection, if the effect of the right-hand term of Equations 6 and 7 is considered negligible and therefore only the 

left-hand term of each equation is considered, then Equations 6 and 7 can be seen to be of a similar form to 

Equation 8.  Therefore the proportional and integral gains, ki and kp, for both the inner and outer loops can be 

calculated from Equations 6 and 7, for a chosen bandwidth, Ȧn, and damping, ȗ.  Table I summarises the equations 

that are used to calculate the proportional and integral gains of the controllers. 
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Table I: Formulae for calculating proportional and integral gains in the control loops. 

 
 

 

 

 

 

2.4 Validation of the Motor Load Model 

In order to validate the control, the speed and current control loops were modelled using physics-based electrical 

model simulation and comparing the response to a simplified analytical representation. A step change was applied 

with three different levels of damping, for both control loops.  Red traces are the response with a damping of 1, 

green traces are the response with a damping of 0.7 and blue are the response with damping of 0.2.     By inspection 

of Figs. 5a and 5b, it can be see that for both control loops, there is good correlation between the results obtained 

from the electro-mechanical system model (left hand plots) and the mathematical equation based model (right hand 

plots).  The switching inverter was replaced by a voltage source and the cross-coupling and decoupling equations 

were omitted in electro-mechanical model when testing the inner control loop. Including these affects the response, 

because the step in current is so small compared to the magnitude of the current flowing in the model.   
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Fig. 5a:  Validation of the speed control loop. 

 

 

 

 

 

 

 

 

 

 

Fig. 5b: Validation of the current control loop. 

3. DC bus with Multiple Loads 

3.1 Overview of the Multiple Load Model 

 

In order to study the stability of several of these motors connected to a DC bus, five motors were connected in 

parallel to a DC bus, simulating a possible section of the electrical architecture on an MEA.   A model with 5 loads 

in parallel to the DC bus is large and complex to simulate.  In order to simplify the multiple load model, the four 

smaller motors were combined to form an aggregate motor, to be run in parallel with the largest (150kW) motor, as 

shown in Fig. 6. 

 
 

 

 

 

 

 

 

 

 

Fig. 6: Multiple load model with largest load and aggregate load. 

3.2 Calculation of Model Parameters 

 

The parameters of the five motors and the aggregate motor have been calculated by scaling the parameters of the 

initial motor, used to develop the motor model, on a per-unit basis using Equation 9. It was assumed that the back 

emf of the motors was constant at 190V.  The motor inertia was scaled using Equation 10 [6]. The motor 

parameters were scaled using a base of 63kW and a base mechanical speed of 2513 rad/s.  All motors are 2 pole 

pair machines.   Table II gives the scaled motor parameters which were calculated and used in the simulations, 

including the parameters for the aggregate load. 
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The impedance of the line has been estimated by considering the line to be a standard airframe wire, current ratings 

for different AWG gauges were found for a commercial aerospace wire [11].    The connecting wire from the DC 

bus to the motor loads was considered to be a go�and-return circuit. .  The inductance for this was calculated using 

Equation 13 [12,13], where the self and mutual inductances were calculated using Equations 11 and 12 respectively 

[12,13].  The gauge of each wire was chosen based on the rated DC current supplied to each particular motor.  

Tables III and IV give details of the values calculated and used for the line impedance in the simulation models.  

The distance between the go and return wires was set to 1cm. Line resistance was modelled using values 

considered typical for an MEA. The distances between the wires supplying the individual motors were varied 

between three distances of 5m, 10m and 60m.  These lengths would not be unreasonable to consider on a typical 

300pax aircraft, which has a fuselage length of circa 63m and wing span of circa 60m [14].  
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Where:  l   - length of wire [cm] 

 ȡ - wire radius [cm] 

 d - distance between wires [cm] 

 

Table II: Scaled motor load parameters 
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Table III: Line resistances and inductances for running 150kW and aggregate load in parallel. 
 

 

 

 

 

 

 

*Two 4/0 wires were run in parallel due to high currents. 

 

Table IV: Line resistance and inductances for running 5 motor loads in parallel on 10m long lines. 
 

 

 

Load Feeder Resistance  [mȍ] Inductance  [ȝH]

Line Length: Line Length:

AWG 5m 10m 60m 5m 10m 60m

150kW Load 2/0 1.5 3 18 1 2 12

Aggregate Load 4/0* 0.5 1 6 0.38875 0.7775 4.665

Load Feeder AWG Inductance  [ȝH] Resistance  [mȍ]

1 10 4.5696 39

2 1 2.4826 5

3 2/0 2 3

4 10 4.5696 39

5 0 11.25 4

Motor Load 1 2 3 4 5 Aggregate

Motor Power [kW] 30 100 150 12 120 261.85

Electrical frequency [Hz] 1767 1800 1000 600 100 1291.74

Resistance [ȍ] 0.0147 0.0044 0.0029 0.0369 0.0037 0.00169

Inductance  [ȝH] 57.2 16.85 20.06 420.64 25.27 8.96

Flux Constant [v/rad/s] 0.01711 0.0168 0.0302 0.0503 0.0302 0.0234

Inertia [kg/m 2̂] 0.2m 0.627m 3m 0.677m 2.4m 3.2m



Additionally regulation resistance, Rreg, was included on the DC link bus connecting to the loads.  This was 

calculated to be 0.35mȍ, based on a 0.1% variation in voltage at a full load of 410kW on the +/- 270V dc link. 

 

Fig.7 shows the architecture of the input filter.  The parameters of the filter components for the different motors are 

given in the appendices. Values considered typical for the input filters and the switching frequencies of the PWM 

were chosen.   Table VI gives details of the filter parameters used. 

 

Table VI: Input Filter Parameters 

 

 

 

 

Fig. 7: Input filter architecture.    

4. Stability Studies 

4.1 Stability Tests 
 

To test the stability of the system, a load change of 5% was applied to the largest motor (150kW) after 0.6s. To 

apply the load change, the motor speed set point was adjusted to give a 5% increase in the load power drawn.  The 

load change enabled the investigation of the effects of both the input filter to the motor drive and the amount of 

impedance in the line to the motor to the overall stability of the system.  

 

It was found to be necessary to set the bandwidth of the controller to be low, 1000 rad/s for the inner loop and 100 

rad/s for the outer loop in order to successfully execute the step change.  If the bandwidth was set too high then the 

controller was found to saturate and unable to pull enough voltage from the DC link in response to the step change 

to the load.  The DC link current and voltage to each load was measured at the terminals of the motor load module. 

4.2 Results 

The DC bus voltage and current to each motor load, alongside the speed of the 150kW motor were compared for 

each of the three models for each of the three feeder lengths, using the two generator aggregate model.  Fig. 9a 

shows a comparison of the voltage, Figs. 9b and 9c show comparisons of the DC link current to the motor and Fig. 

9d shows a comparison of the motor speed of the 150kW motor. 

 

 

 

 

 

 

 

 

 

  

 

 

Load 1 2 3 4 5 Aggregate

PWM  Swtiching Frequency [kHz] 20 40 24 10 30 25

L1  [ȝH] 20 10 10 60 10 25

L2  [ȝH] 0 20 13 200 13 58.25

R [ȍ] 0.3 0 0 0 0 0.075

C1 [ȝH] 1500 680 4700 0 4700 1720

C2 [ȝH] 80 420 630 280 630 352.5
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Fig.9a: DC link bus voltage    Fig. 9b: DC link current to 150kW load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9c: Speed of 150kW PMSM. Fig. 9d: DC link current to aggregate load 

 

By inspection of Fig.9a it can be seen that as the line length increases, although ringing increases with line length, 

it is does not become large enough to adversely affect the operation of the motors when a disturbance is applied to 

one motor. 

 

However by inspection of Fig. 9b it can be seen that the response of the DC link current for the 5m and 10m line 

lengths, additionally contains the higher frequency oscillation due to the high capacitance of the input filter for the 

motor drive.  The 60m response does not contain this high frequency oscillation due to the extra damping provided 

by the higher line resistance.  Therefore results indicate that if the line resistance is below a certain threshold 

compared to the capacitance of the input filter, then unacceptable oscillations in the DC link current will result in 

the case of a disturbance occurring in the system.    

 

Another effect of the input filter capacitance can be seen in Fig. 9c.  It can be seen that although the damping for 

the speed control loop has been set to 1, the response is less damped. This is due to the response of the inner control 

loop to the sudden increase in the reference current, when the speed is subjected to a step change.  The capacitance 

in the input filter is within the inner control loop.  When the reference current to the inner control loop is subjected 

to a disturbance, the filter capacitance causes this oscillation, which is transferred to the speed because the current 

is used to calculate the load torque.  Fig. 9d shows the DC link current to the aggregate load at the time of the step 

load increase to the 150kW load indicates that in general there is little disturbance to the operation of the aggregate 

load. 

 

To validate the results from the aggregate load model, Fig. 11 shows a comparison between the 10m aggregate load 

model and 10m line five motor load model. Although the general dynamic behaviour of the DC link voltage is 

shown, there is more ripple in the 5 motor load model and the response is slightly slower due to the increased 

complexity of the 5 load model. The aggregate model is a representation of the average of the four smaller models 

and hence it would be extremely difficult to get better correlation than has been obtained.  Moreover, it is the 

dynamics and response of the system to a disturbance on the 150kW load that is being primarily investigated, and 



the dynamic response for the current, voltage and speed in both the aggregate and 5 load models are almost 

identical. 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11a: Comparison of DC link current          Fig.11b: Comparison of DC link voltage 

 
 

5. Conclusions  

 
A generic model of a motor load for an MEA has been developed and the control and model validated. Several 

motor loads have been scaled to different sizes and connected to a DC busbar and a disturbance applied.  It is clear 

from results that the system is robust enough that a disturbance on one motor does not affect the DC bus voltage for 

the other motors.   

 

The results presented in this paper have indicated that if there is significant capacitance present in the input filter 

for a motor load, then the line resistance is needed to damp the effects of this large capacitance.  As line resistance 

increases with line length, then for certain input filter parameters, a system may not be sufficiently robust to 

disturbances if the length of the lines are too short.  In addition the filter capacitance will affect the response of the 

inner control loop.  Therefore whilst it was found to be necessary to set the bandwidth of the controller to be low to 

ensure that the controller did not saturate, in order to fully investigate the upper limit of the bandwidth that can be 

applied to the inner control loop, the input filter must be taken into account in the future.  
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