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ABSTRACT 
Micro-generation schemes are increasingly being 
proposed for and incorporated in new-build housing 
developments. Community composition dependant 
demand prediction for such schemes is poorly 
understood and modelled. 

Using a previously developed higher-order Markov-
chain occupancy model, differentiated for different 
household types, an occupancy-driven electricity 
demand model has been developed from high 
resolution appliance-level data to realistically 
distribute demand cycles for individual households. 
The model incorporates a novel event-based method 
for linking the time-of-day probability of appliance 
cycles relative to occupancy, which allows accurate 
replication of expected demand patterns and 
improves computational efficiency compared to 
existing models. Additional socio-economic and 
behavioural factors are also included to better capture 
demand diversity. 

INTRODUCTION 
The ability to predict time-dependant energy demand 
is important for all scales of energy system 
development. For the national grid, detailed demand 
prediction allows the need for supplementary 
generation to be scheduled. At this scale, however, 
the influence of individual households or groups of 
distinct household types is negligible. However, 
when considering community-scale energy systems 
such as micro grids, the numbers of end users is far 
smaller (typically <<1000), with a corresponding 
increase in the influence of different household 
behaviours. 

Limited research has been done on the relationship 
between the size and composition of a community, 
and its demand characteristics. Integration of 
renewable-based schemes, with intermittent or 
variable supply and the need for wider grid back-up, 
requires a greater understanding of demand patterns 
to ensure the optimum mix of supply, storage, and 
grid import and export is specified. The UK 
government has identified this lack of understanding 
of demand as a key barrier to growth in low-carbon 

community energy and demand management projects 
(DECC, 2014). 

 

Occupancy Influence on Demand 

A significant number of factors have been shown to 
influence household energy demand characteristics. 
Yohanis (2008), and Haldi and Robinson (2011) have 
shown that these include, but are not limited to, 
house size, household size, bedroom number, 
occupant age, income, children, and tenure. 

Yao and Steemers (2005), and Torriti (2012), 
amongst others, have shown that the distinct 
occupancy patterns associated with different types of 
households strongly influence demand 
characteristics. This is unsurprising as a large 
proportion of energy use requires an active occupant 
to initiate demand. Limited work exists that analyses 
occupancy data per occupant, household and day 
type (e.g. weekday, weekend) to allow the 
occupancy-driven contribution to household energy 
demand to be accurately modelled. 

The UK 2010-2011 Household Electricity Survey 
(HES) measured electricity demand in 251 
households at the appliance level (DECC, 2012). 
Initial reporting of the results has shown that there 
are distinct demand variations between identified 
household types such as single non-pensioner; single 
pensioner; pensioner couple; family and multi-adult 
households. 
 

 
Figure 1: Average weekday electrical demand 

normalised for active occupancy probability 
 



Figure 1 shows the average weekday electrical 
demand divided by the average occupancy 
probability for different smaller household types and 
age ranges. The relatively flat profiles demonstrate 
that there is a strong link between occupancy and 
demand at this level of household differentiation, but 
also that other factors need to be included that 
account for the residual variation. 

REVIEW 

Occupancy-driven Demand Models 

Bottom-up energy models using occupancy as the 
foundation represent a key subset of existing models. 
A demand model review by Grandjean et al (2012) 
found those using Time-use Survey (TUS) based 
occupancy models to be most effective. Key existing 
models of this type are Richardson et al (2010), 
Widen and Wackelgard (2009), and Wilke (2013). 

Each of these existing models has limitations:  

• The ‘Richardson’ model uses a first-order, 
Markov-based occupancy model and 
differentiates households based only on occupant 
number, ignoring other characteristics. Appliance 
cycles are linked to broad TUS activities, without 
any diversity except for a general ownership 
probability. 

• The ‘Widen’ model treats each occupant 
independently ignoring family inter-relationships. 
It incorporates a Markov-based occupancy model 
that differentiates ‘active’ occupancy into 7 major 
TUS-derived activities, increasing the data 
requirement. Appliance use is allocated 
probabilistically based on identified TUS activity. 

• The ‘Wilke’ model uses a different event-based 
occupancy-modelling approach. This was shown 
to be less accurate than an equivalent Markov 
approach (Flett and Kelly, 2014). The demand 
model uses time-dependent power functions 
linked to TUS activities to determine average 
profiles rather than a bottom-up approach and is 
less relevant for modelling demand variability.   

Time-Use Survey Activities and Demand 

The majority of existing bottom-up residential 
demand models use TUS activities to define when 
appliances are likely to be used. 

TUS activities do not typically have a direct 
relationship with a specific appliance use. ‘Food 
Prep’, ‘Laundry’ and ‘Wash and Dress’, for example, 
are broad TUS activity definitions that do not 
necessarily relate to energy use. Integrating TUS 
activities within an energy model therefore requires 
that the relationship between activity and appliance 
use is defined. 

Figure 2 shows the relative average power per main 
cooking appliance divided by the proportion of 

households with the ‘Food Prep’ TUS activity from 
the UK 2000 TUS survey (ONS, 2003). Only 1-
person households were analysed to remove any 
multiple occupancy influences. The results clearly 
show little correlation between the TUS activity and 
energy use, suggesting that for individual cooking 
appliances, ‘Food Prep’ is a poor usage predictor. 
There is also some evidence that for short cycle 
appliances (e.g. kettle), the 10-minute resolution TUS 
activity basis may not reliably capture use (e.g. the 
peak average kettle power for all households with the 
‘Food Prep’ activity exceeds a typical unit power 
suggesting some kettle use during periods with other 
stated activities.)  
 

 
Figure 2: Average relative cooking appliance power 

normalised for TUS ‘Food Prep’ activity probability 
 

Similar results can be shown for the majority of other 
relevant TUS activity-appliance combinations. The 
exception being TV use. 

A further concern with current models utilising TUS 
activities is that all are first-order (i.e. only current 
activity is considered for activity transition prediction 
and not an extended sequence). Potentially resulting 
in unrealistic repetitions of common activities. 

The availability of detailed appliance level data from 
the Household Electricity Survey (HES) gives a 
means of identifying appliance cycle frequencies and 
time of day usage probability without the need for 
TUS activities as an intermediate step. HES data is 
also available over a minimum of one month. This 
allows better assessment of the demand variation 
over time as TUS diaries are limited to only 24 hours. 
The main limitation of the HES dataset is that 
occupancy data is not included. 

Previously Developed Occupancy Model 

As shown, the activities identified in TUS diaries are 
a poor predictor of specific appliance use. An 
occupancy model has therefore been developed (Flett 
and Kelly, 2014) that focuses solely on basic 
occupancy states (i.e. sleep, active, absent). The 
primary improvement of the new model is that it is 
split into multiple occupant, household and day types 
to better capture household-specific patterns.  



Interactions between related adults (e.g. a co-habiting 
couple) have been captured by treating each pair as a 
single entity. Child occupancy is directly linked to 
parent occupancy using a simplified Markov model. 
Other occupant types (e.g. single householders, adult 
children and households comprising unrelated adults 
etc.) are modelled as individuals. Each distinct 
overall household occupancy profile is generated 
from the required combination of couple, individual 
adult and child models. Day types for each are split 
into working and non-working days, for weekdays, 
Saturdays and Sundays.  

The model also uses a higher-order Markov 
technique that takes the duration of an activity into 
account when predicting future activity. This is 
shown to improve on existing first-order and non-
Markov higher-order models with regards to 
occupancy prediction. Annual occupancy profiles for 
each household are produced based on assigned 
calendars of day types based on a realistic 
distribution of employment type, typical work weeks, 
and school term times.  

The occupancy model is used as the foundation for 
the demand model presented in this paper.  

AIM 
The overarching aim of the presented work is to 
allow prediction of the potential variations in demand 
for community-scale energy schemes as a result of 
different community compositions and the natural 
variability within communities with the same basic 
characteristics. Using the previously developed 
differentiated occupancy model (Flett and Kelly, 
2014) to capture occupancy patterns associated with 
each household type, improvements to appliance 
cycle prediction and demand diversity modelling 
were sought.  

A secondary aim was to generate a demand model 
that could provide realistic annual energy use 
distributions capturing overall, seasonal and inter-day 
diversity of use. Applied to communities this would 
allow energy-use diversity to be assessed both at high 
time resolution and over extended timescales. 

MODEL DEVELOPMENT 

The following section describes the electrical 
demand model development.  

Electrical Dataset 

Fundamental to the development of the demand 
model was access to detailed appliance-level data for 
a significant number of households. The developed 
model is based on electrical data provided by the 
Household Electrical Survey (HES) (DECC, 2012). 
Individual appliances in 251 UK households were 
monitored for 1-2 months with a 2-minute resolution, 

with 26 households also monitored for a full year at a 
10-minute resolution. 

It is assumed that this data is broadly representative 
of appliance use for the UK. As the dataset only 
includes private households it is likely that it 
represents an above average socio-economic group. 
The use of independent appliance ownership data for 
major appliances and normalising the model based on 
an income factor (described below) should, to some 
degree, mitigate this shortcoming in the dataset.  

Electrical Appliance Data Analysis 

The detail provided by the HES dataset allows both 
high-level analysis to determine the distribution of 
cycles between households, and detailed analysis of 
the timing of cycles. As stated, a limitation of the 
dataset is there is no corresponding occupancy data. 
For occupancy-related analysis, the TUS-identified 
average occupancy for the equivalent household type 
has been used. 

Where data has been differentiated by household 
type, the following groups have been used; single, 
single pensioner, pensioner couple, family and multi-
adult. If sufficient data is available (i.e. for 
commonly owned appliances (e.g. cooker, kettle)) 
occupant number has also been used for family and 
multi-adult households.  

Each appliance has been analysed for the following: 

• Average Cycles per Household Type (AC_HT): 
Average cycles per day, or daily usage 
probability and average number of cycles per 
day used, for each appliance (depending on 
whether appliance is modelled as ‘simple’ or 
‘complex’ as defined below) for each household 
type has been determined. For kettle, microwave, 
and tumble dryer use, clear seasonal demand 
variations have also been captured using a 
sinusoidal function. 

• Average Cycle Distribution (ACD): To capture 
the variable demand within each household type, 
the distribution of cycle number/probability to 
the household type average is determined. The 
distribution of the actual/average ratios is used as 
a proxy for the behavioural distribution for all 
households. For each modelled household the 
factor is allocated randomly from this overall 
distribution. 

• Cycle Time: Separate cycle start time 
distributions are captured split by total number 
of daily cycles and specific cycle number (see 
Figure 3). These are used as the basis for linking 
occupancy with appliance use potential as 
described in detail below. 

• Cycle Duration: For appliances without a typical 
cycle duration (e.g. cooker, tumble dryer) the 
range of durations in the dataset was analysed. 



To account for different base and variable cycle 
power, a nominal duration is determined by 
dividing total cycle power by a fixed average 
cycle power.  

Additional Demand Factors 

Household demand is a complex interaction of 
different factors. In addition to the household type-
based average use and appliance-level behavioural 
variation, the following are also used in the model;   
(1) basic appliance ownership, (2) relative 
occupancy, (3) income, and (4) overall energy 
behaviour. 

• Ownership: Major appliance (washing machine, 
dryer, dishwasher, microwave, PC) ownership 
probability is taken from the 2011 UK ONS 
Family Spending survey (ONS, 2012) based on 
household type and income decile. Ownership of 
other appliances is from the HES dataset 
distribution. 

• Occupancy Factor (AOF): Without integrated 
occupancy and appliance usage data an explicit 
assessment of the impact of occupancy duration 
on the daily and overall number of appliance 
cycles is difficult. Factors have been set using 
common sense assessments but would benefit 
from observational validation. For example, in 
Equation (1), for a kettle an occupancy factor of 
0.5 is used and for washing machines a lower 
value of 0.1 is used. The factor is also used to 
assess occupancy influence on the daily use 
potential for each household. 

• Income Factor (IF): The influence of income on 
appliance and energy use is complex. Ofgem 
(2010) shows that low income households can 
have high consumption and vice versa, although 
there is a broad correlation between income and 
demand.  

Data from Ofgem (2010) is used to determine 
the relative energy use per consumption decile, 
and the probability of a particular household 
residing in an energy consumption decile based 
on income decile. Each household modelled is 
probabilistically allocated an income decile 
(based on national survey data), and from this a 
consumption decile and a relative energy 
consumption factor from the Ofgem-derived data 
are determined. 

Jamasb & Meier (2010) have calculated the 
income-specific elasticity in energy demand to 
be 0.06 (log of expenditure per log of income). 
Analysis of the Ofgem data gives an equivalent 
elasticity of 0.18 if all influences, not solely 
income, are included. Therefore the income-
specific relative consumption factor is assigned 
with an exponent of 0.33 (0.06/0.18). 

• Overall Behaviour Factor (OBF): Analysis of 
the HES data corroborates that of Gill et al 
(2010) that there is little evidence of a strong 
link between relative individual appliance use 
and overall demand. The exception is a small 
percentage of very low and high consumers who 
have consistent extreme use.  

Gill et al determined that 37% of electricity use 
can be attributed to behaviour independent of 
identifiable household characteristics. An 
additional overall factor is therefore applied 
selected randomly between 0.77 and 1.23 
(equivalent to a 37% variation). Assuming a 
linear distribution is likely to be an over-
simplification, but further work is required to 
determine if there is a more complex link 
between this factor and other household 
characteristics.  

Overall Cycle Number/Probability Determination 

For each household and per owned appliance, the 
average number of cycles per day (simple appliances) 
or daily use probability (complex appliances) is 
therefore calculated from the following equation: ܿݕܥ.݃ݒܣ. = ܶܪ_ܥܣ × ܦܥܣ × ܴ݈ܱ݁ܿܿைி × .ଷଷܨܫ

×  (1)      ܨܤܱ

Electrical Cycle Model Types 

Five different appliance cycle models have been 
developed; fixed, simple, complex, lighting and TV. 
As defined below, each differs in the dataset analysis 
used, extent of occupant influence, and dependence 
on recent use.  

Fixed Cycle 

Fixed cycle appliances have an energy demand that is 
largely independent of occupancy. This primarily 
applies to cold appliances.  

Baseline power ratings for each cold appliance 
assigned is based on the HES dataset distribution of 
energy ratings and volumes. A sinusoidal time of day 
and day of year variation is applied based on dataset 
analysis to account for typical variations in door 
opening probability and household temperature. 

Simple Cycle  

For certain appliances the daily demand probability is 
assumed to be based on short-term need and 
independent of use on preceding days. This applies, 
for example, to smaller kitchen appliances (kettle, 
microwave etc.), and IT equipment.  

For each household and owned appliance, an average 
number of daily cycles is allocated using Equation 
(1). This is further modified for each day based on 
the daily occupancy relative to the household 
average. The actual number of cycles per day is then 
determined using a discrete binomial distribution 
with a mean of the daily ‘baseline’. (The binomial 



distribution produced a more accurate distribution 
than either Poisson or Normal equivalents). 

Complex Cycle  

Other appliances, such as washing machines and 
dishwashers, have usage patterns that extend over a 
number of days driven by a need that increases with 
time. Demand likelihood is linked both to the daily 
use probability and the time since last use. Previous 
modelling techniques have not attempted to model 
this dependence, which potentially results in 
unrealistic cycle patterns. 

Daily use probability is assigned for each household 
in the same manner as the daily cycle number for 
‘simple’ appliances. The number of cycles per use 
day is assigned using a separate probability model. 

Analysis of the gaps between days of use (i.e. ‘next-
day’, ‘next-day+1’ etc.) for all relevant appliances 
showed that the distribution was highly random but 
constrained by an upper limit of approximately twice 
the average (i.e. if used every 3 days on average, the 
maximum ‘gap’ is c. 6 days). A ‘gap’ probability 
model was developed based on this apparent 
randomness within defined limits. 

The model assigns an upper gap limit of twice the 
average ‘gap’ value +/- 0.5 days. The minimum and 
maximum ‘next-day’ use probability that would 
allow both the daily use probability and upper limits 
to be achieved is then calculated. A ‘next-day’ use 
probability is selected randomly between the min and 
max values and the residual probability determined. 
This process is then repeated for subsequent numbers 
of gap days (‘next-day+1’ etc.) until the cumulative 
probability reaches 1. 

The appliance cycle model uses the cycle gap 
probability distribution to determine the number of 
days to the next cycle from the preceding cycle. 

Lighting 

The HES dataset has lighting power data at the main 
distribution boards (typically by floor) and for 
individual lamps. Also included is average installed 
lighting power per room and percentages of low 
energy bulbs per-house. However, there is no room 
level per-timestep data.  

As a result, a lighting model based first on inferred 
occupant location from modelled appliance/hot water 
use and then TUS activity probability to fill gaps was 
used. This is primarily a means to model location 
sharing and transition likelihood, and therefore 
realistic lighting levels and level changes. The 
concept is similar to that used by Terry et al (2013). 
The HES data was used for lighting power per room 
and low-energy bulb proportion, and for validation. 

The range of threshold solar levels for switching 
events was determined by comparing timings from 
the HES data with average UK-wide solar levels. The 

model specifically uses 1-minute resolution solar 
data from Glasgow to determine lighting demand. 

Terry et al (2013) highlighted levels of day and night 
use in the HES data that could not be directly 
attributed to external solar levels or occupancy 
respectively. Lighting use for the 11am-1pm and 
2am-4am periods was analysed to determine 
probability of use and power used relative to a mid-
evening base level. Each modelled household was 
randomly assigned a day and night use probability 
from the distribution. 

TV 

A secondary Markov model is applied to each active 
occupancy period to determine if the occupant is 
either generally active or watching TV based on TUS 
activity reporting. 

Appliance Cycle Start Model 

For each HES-monitored appliance modelled with 
the ‘simple’ or ‘complex’ cycle model, the range of 
cycle start times was analysed based on number of 
cycles per day and for each cycle number. 

The influence of the specific number of occupants on 
appliance use was also analysed by comparing 
average power with average total occupancy from 
TUS data. Only for cooker, microwave and 
dishwasher use was the influence of occupant 
number identifiable.  

The overall cycle start distribution was then factored 
by the relevant occupancy probability (overall or 
occupant number as above) for each household type 
to eliminate occupancy influence. These final 
distributions reflect cycle start time probability if a 
particular household type is occupied. 

An example set of occupancy-normalised cycle time 
curves for a kettle 6-cycle day are shown in Figure 3. 
 

 
Figure 3: Cumulative probability distribution of 

kettle cycle times for a 6 cycle day 
 

For each modelled day, the occupancy model output 
is converted into an event matrix that tracks 
occupancy transitions and appliance availability (see 
Table 1). Potential cycle periods require both 



occupancy and appliance availability to be greater 
than zero. 

Table 1 

Occupancy/Appliance Event Matrix Example 
 

Timestep 230 305 413 556 910 989 1195 
Occupants 1 0 1 0 1 2 0 
Avail. 1 1 1 1 1 1 1 
Clt.Prob. 0.21 0.41 0.61 0.67 0.85 0.91 0.98 

The appliance-use cumulative probability (Clt.Prob.) 
at the start and end of each ‘available’ period are 
determined and a random number generated (limited 
to values within the ‘available’ periods) to determine 
the cycle time (see Figure 4). Cycle times therefore 
have a higher probability during periods with higher 
typical occupancy-normalised use. 

 
Figure 4: Cycle time prediction model example 

 

For subsequent cycles, the previously identified cycle 
period (including a ‘dead’ period pre- and post-cycle) 
is added as an unavailable period (see Table 2). The 
next cycle time is determined in the same manner 
using the relevant start time probability distribution. 

Table 2 

Cycle/Unavailable Period Added to Event Matrix 
 

Timestep 230 290 303 305 413 556 910 
Occupants 1 1 1 0 1 0 1 
Appl. Avail. 1 0 1 1 1 1 1 
 
An additional benefit of this approach is that it does 
not require a computation per timestep for each 
appliance as with existing models which significantly 
reduces the computation time and allows annual 1-
min resolution models to be feasible. 

Linked Appliance Use 

The TV model directly links TV use with other 
related appliances (DVD, Set Top Box etc.), and, 
similarly, the computer model links monitor, printer 
and router use with computer use (and for the router 
with basic occupancy). Parallel use probability was 
determined from HES dataset analysis. 

Analysis of washing machine and tumble dryer use 
shows that there is a 64% probability of tumble dryer 
cycles following washing machine cycles on the 
same day (and 30% within 2 hours). Modelled 

tumble dryer cycles are therefore linked to washing 
machine cycles based on the probability distribution.  

Similar analysis of dishwasher use in relation to 
cooking activities, and of overlapping use of different 
cooking appliances showed some correlation but not 
distinct enough to justify modelling directly. 

Shared Appliance Use 

No dataset is available that analyses the extent of 
appliance sharing. For lighting and TV use, sharing is 
significant. Particularly as they are modelled from 
individual- rather than household-driven demand, 
with typically multiple available ‘units’.  

The lighting model tracks location and where 
multiple people are in the same room the probability 
of additional lighting power being used increases. 

TV power data was compared with average 
occupancy to determine the relative probability of 
shared use based on time of day. The baseline value 
is unknown and was set at 40% to fix the model 
average power as per the input data. Further work to 
determine this factor independently would be useful 
to allow this artificial calibration to be eliminated. 

VALIDATION & RESULTS 
As a first step, the model has been compared to the 
input data in order to determine the quality of 
calibration. Future, more rigorous validation will 
require comparison with an independent dataset. 

Quality of Calibration 

The current electrical model includes all major non-
heating appliances (cold, cooker, kettle, microwave, 
toaster, washing machines, tumble dryers, 
dishwashers, audio-visual, IT, lighting). A small 
number of minor appliances, such as alarms, cordless 
phones, dehumidifiers etc., also need to be included, 
but these represent less than 10% of overall demand.  

The baseline calibration data from the HES dataset 
has been compiled to reflect only the appliances 
currently modelled. A model has been set up that 
matches the characteristics and available appliance 
data for each household in the HES dataset. The 
restricted number of ‘appliances’ and lack of data for 
a small number of owned appliances means that this 
model does not reflect total demand but is a means to 
test the methodology using a representative subset. 

The HES dataset includes basic socio-economic data. 
If required data is unavailable, it has been assigned 
based on national survey-based probabilities. 

Each run of the model uses a different generated 
occupancy profile for each household, and as the 
actual profile for each HES household is unknown, 
some small discrepancies are expected. All results 
represent the average of five separate model runs 
using different generated occupancy and cycle results 
for this fixed HES-replicating set of households. 



 
Figure 5: Per-Timestep Average Power Comparison 

for Full HES-replicating Population 
 

Figure 5 shows the overall per-timestep average for 
all 251 modelled households. There is broad 
agreement between the data and model with, in 
particular, the timing of significant demand changes 
showing good agreement. (A planned improvement 
in the modelling of night-time active occupancy, 
which is currently underestimated, should improve 
the prediction during this period.) 

Household Type Analysis 

The results have been analysed for the household 
types used by HES; single non-pensioner; single 
pensioner; pensioner couple; family; multi-adult. 

For all except the single non-pensioner (SNP) group 
there is close alignment between input data and 
model as demonstrated by the distinct pensioner 
couple profiles compared in Figure 6. The month-
duration SNP group HES data is significantly skewed 
towards summer periods, and the data and model 
match closely when the model is restricted to the 
input data periods only. For the other populations, the 
input data has a representative distribution over all 
periods.  

 
Figure 6: Per-Timestep Average Power Comparison 

for Pensioner Couple Households 
 

Diversity Modelling 

A key aim of the model is to capture demand 
diversity using the various factors identified above. 

For community analysis this allows the potential 
variation in demand to be predicted accurately.  

Results analysis (see Figure 7) shows that without the 
additional occupancy, income and overall factors the 
average power distribution remains broadly 
representative of the HES dataset distribution. This 
highlights that at this level of detail appliance 
ownership, random appliance-level cycle variation, 
occupant number, and household type are key drivers 
in overall demand diversity. However, the unfactored 
distribution is flatter than the measured distribution. 

Including additional behavioural factors as defined 
above improves the ability of the model to replicate 
the low and high end power levels, but there remains 
some discrepancy. Further analysis at the household 
level will be required to determine if the individual 
factors and how they are combined is realistic. 

 
Figure 7: Distribution of Average Power for HES 

Dataset and Full HES-replicating Population 
 

FURTHER WORK 
Figure 7 demonstrates that the model produces a 
realistic range of average electrical power demand 
levels per household and Figures 5 and 6 show that 
the overall and distinct household type overall 
demand profiles from the input data are replicated. 

The current verification work has focused on 
household type groups and overall averages. Further 
work is required to confirm that individual household 
results are also representative of those in the input 
dataset and also of those from independent datasets. 
This will indicate to what level of detail the model is 
useful, whether for high-level, long-term average 
behaviour as already demonstrated or also for more 
specific factors, such as load peaks and diversity.   

The model then needs to be validated against real 
community data to confirm the current assumption 
that the HES data is broadly representative.  

The final aim is to allow communities to be 
constructed within the model and analysed. The 
results being combined to determine baseline 
community demand profiles and potential variability 
based on the modelled influences of household type, 
composition, appliance ownership, income etc., and 



the extent to which they and random behaviours may 
vary within a particular community.  

DISCUSSION 
No demand model can wholly predict realistic energy 
use at the household- or community-level given the 
range of influencing factors. The aim should be to 
provide microgeneration developers potential 
demand ranges with probabilities to allow sensible 
design decisions to be made with regard to 
generation, storage and distribution sizes. 

The proposed model builds on a developed 
occupancy model that has significant differentiation 
based on household size and type. The demand 
model links to this model and has a similar degree of 
differentiation for energy use behaviours. New 
methods have been proposed for modelling 
individual appliances from high resolution, extended 
period demand data, linked to household occupancy. 
This allows appliance use to be realistically 
distributed at the intra-day level, over multiple days, 
and factored for seasonal influences. The model 
proposed in this paper has a range of probabilistic 
population composition, cycle and behaviour factors, 
therefore a number of runs is required to capture a 
representative range of potential households, to set a 
population baseline demand, and predict the potential 
variation from the baseline. 

CONCLUSION 

Existing bottom-up energy models have been limited 
by several factors which the work presented in this 
paper has attempted to address. These limitations are 
an inability to differentiate between different 
household types, limited intelligence in the allocation 
of appliance cycles based on time-of-day occupancy 
and use potential, and a lack of additional factoring 
to capture socio-economic and behavioural diversity. 

The use of a household differentiated occupancy and 
appliance use model that accounts for specific 
patterns of use allows the influence of different 
household groups on demand to be assessed. 

Appliance cycle starts are predicted based on 
occupancy and relative time-of-day use potential. 
This improves on models based on broad TUS 
activities which poorly predict specific appliance use. 

Finally additional factors for relative occupancy, 
income and random behaviour influence are included 
to better capture realistic diversity of overall demand, 
although further calibration of these is required. 

Limited input data and necessary averaging within 
household types means that this model is primarily 
relevant for groups of households and to assess 
relative differences based on group size and 
composition. Further analysis of household-level 
results will determine if the results can also be 
applied usefully to individual households. 
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