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Abstract. In this study, time series analysis and pattern recognition analysis are used effectively 

for the purposes of rolling bearing fault diagnosis. The main part of the suggested methodology 

is the autoregressive (AR) modelling of the measured vibration signals. This study suggests the 

use of a linear AR model applied to the signals after they are stationarized. The obtained 

coefficients of the AR model are further used to form pattern vectors which are in turn subjected 

to pattern recognition for differentiating among different faults and different fault sizes. This 

study explores the behavior of the AR coefficients and their changes with the introduction and 

the growth of different faults. The idea is to gain more understanding about the process of AR 

modelling for roller element bearing signatures and the relation of the coefficients to the 

vibratory behavior of the bearings and their condition.  

 

1. Introduction 
Diagnosis of faults in rolling element bearings is a very essential task in industry.  There are so many 

methods are used for the purpose of fault diagnosis in rolling element bearings.  

Mainly, the methods focused on analyzing the vibration signals in its various domains time, 

frequency and time-frequency. Several papers are published on reviewing and critical evaluation of the 

methods used [1, 2]. The principles of time series analysis is also used by some researchers to model the 

vibration signal acquired from the bearing house. Linear autoregressive is a very common model used 

for the purpose of fault diagnosis in machinery diagnosis. It is simply related each data point of the 

signal to a set of past data points using some weighted values (i.e. coefficients). However one of the 

challenges of these with using such models is that existence of non-stationary part in the signal. One of 

the solutions to cover this problem is use adaptive (time variant) autoregressive in which the model 

coefficients are evolving with time [3-5]. However, this solution is not that direct use as it requires the 

assumption of a suitable initial set of model coefficients as well as the assumption of the way of 

coefficients model evolving. Another way is to transform the non-stationary signals to non-stationary to 
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a stationary using a suitable stationarization technique and then to use the autoregressive of time 

invariant coefficients. It is important before starting of the modeling process is to test if the signal is 

stationary in order to decide if transformation is required or not. One of the most common tests is 

Kwiatkowski,Phillips, Schmidt, and Shin (KPSS) test [6].  

In both cases time (variant or invariant) model, the model coefficients are very important features as 

they reflect the condition of the signal which provides the chance to use them as feature vectors of the 

signal. They can also be used to obtain the parametric spectrum of the signal.   

Several papers are published in using autoregressive modeling for the machinery fault diagnosis 

problem [7-10]. However, according to the knowledge of the authors none of these papers analyse the 

model coefficients individually and that is the part what this study aims to do. 

This study suggests the use of a linear AR model applied to the signals after achieving the local 

stationarity of the signal by testing and transformation if necessary. The obtained coefficients of the AR 

model are further used to form features vectors which are in turn subjected to pattern recognition for 

distinguishing among different faults and different fault sizes. This study also explores the behavior of 

the AR coefficients individually and their changes with the introduction and the growth of different 

faults. The goal is to gain more understanding about the relation of the of AR coefficients to the vibratory 

behavior of the bearings and their condition. The study is divided in three parts, namely: signal pre-

treatment, diagnosis method and exploration of AR coefficients. 

The paper divided in a couple of sections as follow: - section 2: signal pre-treatment. Section 3. 

Diagnosis method. Section 4. Exploration of AR coefficients. Section 5. Method verification. Section 6. 

Results and discussion. Section7. Conclusion. 

2. Signal pre-treatment  
The stage of signal pre-treatments includes a number of processes that starts by signal segmentation 

and finishes with obtaining AR model’s coefficients. 

2.1. Signal segmentation 

Signal segmentation is essential step to provide more segments for analysis purposes especially when it 

is difficult to acquire more signals experimentally. In addition, it can be useful in enhance the stationarity 

of the signal where the whole signal can be non-stationarity but some/all of its segment are locally 

stationary [11]. 

 

2.2. Stationarity test and stationarization. 

As we mentioned above that linear autoregressive model is suitable for only stationary signal (i.e signals 

that the four statistical moments are time invariant). It is necessary to investigate the stationarity of the 

signal before subjecting to modeling. This is important to decide whether the signal needs for 

stationarization transformation or not. The existence of stationarity can simply investigated by the 

Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test which proposes  a null hypothesis that the 

observed signal is stationary  around its deterministic trend [6]. In case that a segment is discovered to 

be non-stationarity, then it can be subjected to a differencing technique which transforms it to 

stationarity. Differencing can be described as  [12]:- 																																����� = �� − ���							, �ℎ
�
	� = 2,3,…�		                    													(1) 
Where �����are the components of the new stationarized segment, xi and xi-1 are adjacent signal data 

points and n is the length of the original segment.   

 

2.3.  Linear autoregressive modeling.  

A linear Autoregressive (LAR) model is that representation where the output variable is predicted based 

on linearly depending  on its own previous values. In this research, it is used to predict the stationary 

segmented signals. The mathematical structure of a linear AR model can be described as follow [13] 
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�� = �� + �	. ���	 + ��. ���� +⋯+ ��. ���� + ��																																								(2) 
       

where 

xi   is the predicted output value at time i which is linearly related to (p) past points, 

p   is the order of the model 

ai (i =0,1,2…,p) are weighting coefficients (i.e model parameters).  

εi ,the error term, is a white noise process,  which represents the difference between the actual and 

linearly predicted values. In this research, the model order is determined based on final prediction error 

(FPE). The model coefficients are estimated using the least square algorithm. The goodness of model’s 

fit to the experimental data is evaluated by the Normalized Mean Square Error (NMSE) value which 

given by the equation below: -. 

 !!∀�
##	!∃	%�&|()∗+ =
,
−.1 − /∑ 1x�3(�) − x45(�)6��78�7	 9	 �⁄

∑ x�3(�) −�78�7	 x;45 <
=> ∗ 100%			(3)	

																																								
where: - ��3						is predicted signal.	�45					is the real time measured signal	�̅45     is the mean value of real time signal. n										is the number of data points (i.e segment length)	
  

3. Diagnosis method 
In the suggested methodology, pattern recognition is used for distinguishing among different classes 

that corresponds to different bearing conditions. The methodology is suggested to detect different fault 

locations and different fault severity.  In the first stage of diagnosis signals are segmented and distributed 

into two samples training and testing sample. From training sample the four bearing signal categories 

are made (i.e H, IRF, BF, ORF).  Every segment of the training sample is tested for stationarity using 

KPSS test (see &2.2) and if required the stationarization transformation is done using equation (1).  

Next, the segments are subjected to AR modeling equation (2) and coefficients are obtained using least 

square method. These model coefficients are arranged as rows to form the four signal categories 

mentioned above ( i.e H, IRF, BF and ORF). 

Up to this step there will be four matrices corresponding to different bearing condition (i.e. H, IRF, 

BF and ORF) and another three corresponding for fault severity (S, M, L) of each fault location.   

The size of each matrix will be (N X p) dimensions. The number of rows N equals to the number of 

segments of the training sample while the number of column (p) equals to the number of AR model 

coefficients (i.e the optimum model order). In case there are different model orders (p)  corresponding 

to the different signal categories, the minimum one is considered to be the number of columns of features 

vectors matrix (HK) as in below. 

DΕ = Φ�Ε		 �Ε	� .�Ε�	 �Ε�� ..�Ε(	 .�Ε(� ..
				�Ε	�				�Ε��.					�Ε(�Γ																																																(4)	

                                                                           
 

 Now it is required to calculate the mean of the HK rows in order to be used later in Mahalanobis 

distance calculation. 

The mean vector is calculated as follows: 
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									ΙΕ = ∑ ϑΚΛΜΝ……………ΚΛΜΟΠΘΜΡΝ ( 																																																	(5)																																								
Eventually the Mahalanobis distances are calculated between the new tested features vectors (i.e 

model coefficients vectors from testing sample) and mean feature vectors as defined in Eq. (5):  ΤΕ(Υ, ΙΕ) = (Υ − ΙΕ). ς�	. (Υ − ΙΕ)W																																				(6)	
 

where  ΤΕ	is	mahalnobis	distance. Υ				a	feature	vector		from	the	testing	sample ΙΕ	mean	features	vector	of	category	λ  ς�		the	inverse	ofcategory		covarience	matrix	DΕ 
 

The prime in the end of equation (6) means the transpose. 

Then the new feature vector is classified based on the NN method. According to this method, each new 

vector is assigned to the category for which the Mahalanobis distance (see Equation (6)) has a minimum. 

That is x belongs to the category m for which   DK (x, EK) has minimum over all K. 

4. Exploration of AR coefficients behavior.  

A further exploration of the AR coefficients is also carried out for further understanding of individual 

coefficients sensitivity to the different bearing conditions. In this regard, reference regions including 

upper and lower boundaries are built from the healthy values of each coefficient. These values are taken 

from the features vector matrix of healthy class (HH). The boundaries are determined using the mean 

and standard deviations of the healthy values as in equations (7&8). For a coefficient number (i), the 

boundaries formulas will be: - 

 

 mν��ο3 = 	πϑθρ(: , �)Π 	+ ∀ ∗ 	τϑθρ(: , �)Π																																					(7) 
 mϖ�ωο3 	= 			πϑθρ(: , �)Π − ∀ ∗ 	τϑθρ(: , �)Π																																				(8) 
πϑθρ(: , �)Π is the mean value of the column (i) of the matrix θρ. 

τϑθρ(: , �)Π is the standard deviation value of column (i) of the matrix θρ. 

d  is a constant, which should be properly selected so that at least 80% of the points are within the 

boundaries.          

The boundaries are normalized by computing their percent deviation from the πϑθρ(: , �)Π  as  

 

m�� = πϑθρ(: , �)Π − m�πϑθρ(: , �)Π ∗ 100%																																																				(9) 
Where  m�     upper or lower boundary corresponding to coefficient i. m��  normalized upper or lower boundary corresponding to coefficient i. 

 

Then, to investigate the sensitivity of a parameter ai  to the change of bearing condition (i.e presence 

or growth of the fault), the values of ai from other than healthy signals are normalized as in equation 

(10) to find their percent deviation from the reference values and projected to investigate if they deviate 

from the reference boundaries (sensitive) or not (insensitive).      
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%	∀
ζΕρ� = πϑθρ(: , �)Π − πϑθΕ({, �)Ππϑθρ(: , �)Π ∗ 100%																					(10) 
Where %	∀
ζΕρ�  is the percent deviation of coefficient i of category K from the reference value. j =1:N 

is the number of segment. 

In order to reduce the effect of false alarm, coefficient ai is assigned as a fault sensitive one if the %∀
ζΕρ�values are out the previous reference region for several successive segments. When it is so, 

and new reference boundaries are built from the new sensitive ai. 

Finally, the common coefficients that are sensitive to fault presence and growth in different fault 

locations are determined. Eventually, the first three coefficients that showing higher values of deviation 

among the signal categories are selected for comparison. 

5.  Method verification. 
Bearing vibration data provided by the Case Western Reserve University (CWRU) are used for the  

purpose of validation[14]. The data considered in this research are shown in Table 1. The raw signal is 

segmented equally into 2048 points sub signals. 

The segmentation process gives 232 segments (4 categories*58 segments for each category) for 

detection of fault location and 174 segments (3 categories * 58 segments for each category) for detection 

of fault severity. These are divided equally into training and testing sample. All the segments are checked 

to be stationary before subjected to modeling.  

 

6. Results and Discussion.  

Tables 2&3 show the correct classification rates of the testing segments for detection of fault locations 

and detection of fault severity respectively.  In Table 2 all apart from those segments which recorded at 

speed of 1772 rpm are totally correctly classified. In Table 3, all the segments are perfectly classified 

for all the speeds considered in this analysis. 

The first three most fault sensitive  model coefficients are shown in Table 4.  It is clear that these 

coefficients sets are not identical. However, some remarks can be highlighted. Among all the cases, the 

coefficient number 3 (i.e a3) are existed within the first three higher sensitivity for the change of bearing 

conditions.  

This can be helpful in using it as condition monitoring index. The a4 are also present as a sensitive 

coefficient for fault location change or fault growth in the inner and outer races. However this is not 

completely true when the speed is further increased to 1797 or when the fault growth is monitored on 

the ball. 

 

Table 1. The List of data used for analysis. H-healthy, IRF-inner race fault,  BF- ball 

fault, ORF-outer race fault, S-small fault 0.007inch (fault diameter), M=Medium size 

fault 0.014’’, B-big fault 0.021’’. 

Motor speed(rpm) 

Signal Category for fault 

identification (for every motor 

speed) 

Signal Category for fault 

severity estimation (for 

every motor speed) 

1797 

1772 

1750 

1730 

Data mix set (Healthy, (IRF, 

BF,ORF)fault size 0.007’’) 

• IRF set (S, M, B )  

• BF set (S, M, B )  

• ORF set (S, M, B )  
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Table 2. Classification rate of testing samples. 

Motor 

speed  

(rpm) 

Signal Category used in classification 

No.of 

Test 

samples 

Diagnosis 

Accuracy % 

1797 

1772 

1750 

1730 

Healthy, (IRF, BF,ORF)0.007’’ 

Healthy, (IRF, BF,ORF) 0.007’’ 

Healthy, (IRF, BF,ORF) 0.007’’ 

Healthy, (IRF, BF,ORF) 0.007’’ 

116 

116 

116 

116 

100% 

97.4% 

100% 

100% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Classification rate of fault size estimation. 

Motor 

speed 

(rpm) 

Signal Category used in 

classification 

No.of 

Test 

samples 
IRFSMB BFSMB ORFSMB 

1797 

1772 

1750 

1730 

Small, Medium, Big 

Small, Medium, Big 

Small, Medium, Big 

Small, Medium, Big 

174 

174 

174 

174 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

Table 4.   Model coefficients of first three higher fault sensitivity ad d=1.5 as in 

equation (7&8). 

Motor 

speed 

(rpm) 

Sensitive coefficients set 

Data Mixed  IRFSMB  BFSMB ORFSMB 

1797 

1772 

1750 

1730 

[8 3 6] 

[4 3 9] 

[4 9 3] 

[4 3 5] 

[3 8 2] 

[4 3 5] 

[4 3 5] 

[4 3 5] 

[2 4 3] 

[3 1 2] 

[3 6 5] 

[4 3 5] 

[4 3 2] 

[3 4 2] 

[4 3 2] 

[4 3 2] 
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Figure 1 shows an example of how the coefficient a4 responses to different bearing fault location at 

1730 rpm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Conclusion. 
In this study, a methodology for fault diagnosis in rolling element bearings is introduced.  It shows a 

very good performance in detection different types and severity of faults.  The further analysis of model 

coefficients shows that there are certain coefficients which are more sensitive to the fault presence and 

growth when compared to their reference values.  However, these sets of coefficients are not unique for 

all the cases but some of them are common for different bearing conditions. This study is useful in 

extraction some indices that can be used for bearing condition monitoring. 
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