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In this paper, we present a new development of inspection games in a mean field setting. In our
dynamic version of an inspection game, there is one inspector and a large number N interacting
inspectees with a finite state space. By applying the mean field game methodology, we present
a solution as an ǫ-equilibrium to this type of inspection games, where ǫ goes to 0 as N tends to
infinity. In order to facilitate numerical analysis of this new type inspection game, we conduct
an approximation analysis, that is we approximate the optimal Lipschitz continuous switching
strategies by smooth switching strategies. We show that any approximating smooth switching
strategy is also an ǫ-equilibrium solution to the inspection game with a large and finite number N
of inspectees with ǫ being of order 1/N .
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1 Introduction

An inspection game is a non-cooperative game whose players are often called an inspector and an
inspectee. It models a situation where the inspectee, which may be an individual, an organisation,
a state or a country, is obliged to follow certain regulations but has an incentive to violate them.
The inspector tries to minimise the impact of such violations by means of inspections that uncover
them.

A simple example of an inspection game can be described by the following 2x2 normal form
game in Table 1, where the inspectee is the row player and the inspector is the column player,
and the left (resp. right) entry of each cell corresponds to the payoffs for the individual (resp.
inspector). Typically an inspection game has a mixed equilibrium.

Inspect Not Inspect

Violate −1, 1 2,−2

Comply 0,−1 0, 0

Table 1: The simplest two-player inspection game

Inspection games were introduced by Dresher (1962) and Kuhn(1963), the underlying motivation
was the cold war between the US and the Soviet Union and the desire to monitor the various arms
control agreements that were signed by the two superpowers. Analytically, these settings led quite
naturally to two-person game formulations with various assumptions about the strategy sets that
were feasible to each of the two parties.

Inspection games have been investigated quite extensively during the last five decades. They
have a wide variety of applications to name a few such as arms control by Avenhaus et al. (1996),
auditing of accounts by Borch (1990), tax inspection by Greenberg (1984) and Alm and McKee
(2004), environmental protection by Avenhaus (1994), quality control in supply chains by Reyniers
and Tapiero (1995), Tapiero and Kogan (2007), Hsieh and Liu (2010), stock keeping by Fandel
and Trockel (2008) and communication infrastructures by Gianini et al. (2013), Chung, Hollinger
and Isler (2011). The research on inspection games contributes to the construction of an effective
inspection policy for the inspector when an illegal action is executed strategically.

In the literature, attentions are mainly on two-person zero-sum games, with some drifts to
two-person non-zero-sums models. As far as we know, there are very few models with multiple
inspectees. In the arms control inspection context, Kilgour and Averhaus (1994) considered a model
with two or more inspectees, where the inspectees are independent and the inspector’s inspection
is a binary variable, namely inspector decides whether to inspect or not. Later Avenhaus and
Kilgour (2004) studied another model with two inspectees, where the inspector has a fixed level
and continuously divisible inspection resources. They answered the question on how the inspector
distributes efficiently its limited inspection resources over several independent inspectees.

In a recent work on distributed information systems, Gianini et al. (2013) study a simultaneous
one-shot inspection game with uncoordinated m inspectors and n non-interacting inspectees. In
their model, an inspector has limited resources but the probability of detection is not a function of
the resourcee. They show that due to the lack of coupling among inspectees, adding or removing
inspectees does not change the best mixed strategy of one inspectee.

Kolokoltsov, Passi and Yang (2013) develop a dynamic inspection game model with one in-
spector and a large number of interacting inspectees in an evolutionary setting. In that model,
each inspectee is under evolutionary pressure and periodically updates their strategies after binary
interactions. Specifically, at the beginning of each period, an exogenous and fixed fraction of the
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population can update their behaviour upon meeting another randomly chosen individual in the
population. If two inspectees meet and have the same strategy, then that strategy is retained by
the updating individual. If however, the two individuals have different strategies, the updating
individual may revise his behaviour on the basis of the payoffs enjoyed by the two in the previous
period. Solutions in terms of mixed strategies to this type of games are presented therein.

In this paper, we present a new development of inspection games in a mean field setting. In
this new model of inspection games, there is one inspector and a large number of interacting
inspectees. Different from the settings by Kilgour and Avenhaus (1994), Avenhaus and Kilgour
(2004) and Gianini et al. (2013) where the multiple inspectees are independent, our new model
considers interacting inspectees in the sense that one inspectee’s payoff does depend on one another’s
strategy. Also different from the evolutionary setting by Kolokoltsov, Passi and Yang (2013) where
the binary interactions are considered and inspectees have no payoff functions, in our new model
each inspectee aims to maximise her own total expected payoff which depends on the aggregate
behaviour of the population. We aim to approximate the Nash solution to this new type of dynamic
inspection games by using the recently developed theory of mean field games.

The mean field game theory is a new branch of game theory and it has become a powerful
tool to study complex games with a large number of players. The initial work done by Lasry and
Lions (2006a, 2006b, 2007) and Huang, Malhamé and Caines (2006, 2007) consider continuous-
time continuous-state games. In this paper in the context of inspection games, we study a mean
field game in a finite state space setting. The finite state space setting is also considered within the
context of socio-economic sciences by Gomes, Mohr and Souza (2010, 2013), Gomes, Velho, Wolfram
(2014a, 2014b), wherein the authors study one hyperbolic equation and focus on the analysis of
shock-formation phenomenon of the system in the setting of two-state mean field games. Though
those above mentioned papers consider a similar framework as the one in this paper, different
approaches are applied. In this paper, we apply a modified version of the standard mean field
games method, namely we study a system of coupled two differential equations with one being
forward and the other one backward. Our model contributes to the study of mean field games on
a finite state space with a major player.

The paper is organised as follows. Section 2 describes in detail the model of an inspection
game with one inspector and a large number N inspectees. In Section 3, we set up a mean field
inspection game with a continuum of inspectees and derive the system of coupled equations (3.12)-
(3.13). Main results of this paper are shown in Section 4. First, in Theorem 4.1, we show that for
a short time game, there exists a unique solution to the mean field inspection game, namely, the
single inspector has a unique best response to the continuum of inspectees and any representative
inspectee has a unique best response to the inspector and the aggregate behaviour of the continuum;
whereas, for a long time game, we show the existence of a solution to the mean field inspection
game. Then in Theorem 4.2, we show that the probability distributions of finite N -inspectees on
their state space converges to the one of a continuum limit as N → ∞. Finally, in Theorem 4.3
we conclude that an optimal Lipschitz continuous switching strategy, which is derived from the
mean field inspection game, is an ǫ-equilibrium to an inspection game with a finite number N of
inspectees, with ǫ = ǫ(N) → 0 as N → ∞. In Section 5 we conduct an approximation analysis in
order to adapt our theoretical results for numerical analysis and to discuss the rate of convergence.
We approximate optimal Lipschitz continuous switching strategies q∗ by a sequence of smooth
switching strategies q∗η, η > 0. We show that any approximating smooth switching strategies q∗η is
also an ǫ-equilibrium solution to the finite N inspection game, with ǫ = ǫ(N, η) → 0 as N → ∞
and η → 0. Further, using smooth switching strategies q∗η as an ǫ-equilibrium solution, we show
that ǫ = ǫ(N, η) is of order 1/N .
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2 An inspection game with N interacting inspectees

We consider a dynamic inspection game in a continuous time setting with a finite time horizon
T > 0. In this game, there is one inspector and N (a fixed integer) inspectees (refereed to as
the population). Roughly speaking, every inspectee chooses her crime levels they would commit to
maximise her payoff function. The controlled dynamics of crime levels for each inspectee is modelled
as a controlled continuous-time Markov Chain. The inspector decides the amount of investment
for inspection so as to maximise her payoff, based on the observation of the crime distribution.
To study this game, normally one looks for a profile of best responses for all inspectees and the
inspector.

Formally, first we discuss the N inspectees. Let Ld = {l1, . . . , ld}, d ∈ N, be the state space of
any inspectee. States li ∈ Ld, i = 1, . . . , d, are interpreted as crime levels; in other words, li can be
understood as illegal profits one can gain by committing crimes.

Denote by Σd the set of probability distributions on Ld, i.e.

Σd = {x = (x1, . . . , xd) ∈ [0, 1]d :

d∑

j=1

xj = 1} (2.1)

and by C([0, T ],Σd) the set of continuous curves {x(t) ∈ Σd, t ∈ [0, T ]}, equipped with the norm

‖x(·)‖∞ = sup
t∈[0,T ]

‖x(t)‖ (2.2)

where ‖ · ‖ denotes the Euclidean norm in Rd.
The dynamics of every inspectee is modelled by a continuous-time Markov chain on Ld. Every

inspectee chooses a switching strategy between the crime levels to maximise her own objective
function. Specifically, the dynamics of the crime levels of the inspectee a ∈ {1, . . . , N} is modelled
by a continuous-time Markov chain M (a) = {M (a)(t), t ∈ [0, T ]} on the state space Ld. For a given
curve {x(t), t ∈ [0, T ]} ∈ C([0, T ],Σd), the stochastic dynamic M (a) is specified by the switching
matrix

Qa(t, x(t)) =




qa(t, l1, x(t))
...

qa(t, li, x(t))
...

qa(t, ld, x(t))




=




qa11(t, x(t)) . . . qa1d(t, x(t))
...

...
qai1(t, x(t)) . . . qaid(t, x(t))

...
...

qad1(t, x(t)) . . . qadd(t, x(t))




(2.3)

which is chosen by the ath inspectee. At any time t ∈ [0, T ], x ∈ Σd and j 6= i, the entry qaij(t, x)
is in [0, Q] and presents the infinitesimal transition rate from state li to state lj , bounded by a

constant Q > 0. Moreover for any i,
∑d

j=1 q
a
ij(t, x) = 0, namely qaii(t, x) is chosen in such a way

that qaii(t, x) = −
∑

j 6=i q
a
ij(t, x).

We are interested in symmetric inspectees, meaning that any inspectees who are at the same
time at the same crime level will choose the same switching rate. In other words, the choice of a
switching strategy does not depend on the identity of each inspetee. Thus we can omit the identity
index and for any (t, li, x) ∈ [0, T ] × Ld × Σd denote

q(t, li, x) := q(a)(t, li, x) and qij(t, x) = qaij(t, x).

Next we discuss the dynamics of the population which is denoted by

XN =
{(
XN

1 (t), . . . ,XN
d (t)

)
, t ∈ [0, T ]

}
.
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The dynamics XN is a Markov process and describes the evolution of crime distributions, that is
for any i = 1, . . . , d

XN
i (t) =

♯{a ∈ {1, . . . , N} :M (a)(t) = li}

N

specifies the proportion of inspectees at the crime level li at time t ∈ [0, T ]. The superscript N in
XN is used to distinguish between the dynamics in the finite population of size N and the one in
the limit (to be introduced in Section 3). The state space of the population is denoted by

SNd =



y =

(n1
N
, . . . ,

nd
N

)
:

d∑

j=1

nj = N



 ,

which is a subset of the closed simplex Σd defined in (2.1).
The Markov process XN on the state space SNd is generated by the time-inhomogenous operator

LN
t : C(SNd ) → C(SNd ) defined by

LN
t f(y) =

d∑

i,j=1
i 6=j

(y · ei)qij(t, y)N
[
f
(
y −

ei
N

+
ej
N

)
− f(y)

]
, (2.4)

where ei, i ∈ {1, . . . , d}, denotes the standard basis in Rd, namely the ith entry is 1 and all the
other entries are 0; (y · ei) = ni/N for any y = (n1/N, . . . , nd/N).

An intuitive probabilistic interpretation of the stochastic processXN = {(XN
1 (t), . . . ,XN

d (t)), t ∈
[0, T ]} is as follows. At the initial stage of this game t = 0, the N inspectees are distributed arbi-
trarily among the d states {l1, . . . , ld}. The initial state of the population is described by the vector
XN (0) = (n1(0)/N, . . . , nd(0)/N). Here nj(0), j ∈ {1, . . . , d}, specifies the number of inspectees
at the crime level lj at t = 0. As the dynamic of each inspectee is modelled as a Markov chain
with a switching matrix in the form of (2.3), every inspectee has a random waiting time at their
current crime level before she switches to another crime level. Denote by τ1 the shortest waiting
time among N inspectees. Then at the time τ1, it is the first time when an inspectee changes her
crime level, say from li to lj . Consequently, from the initial state XN (0), the Markov process XN

obtains the new state:

XN (τ1) = XN (0) −
ei
N

+
ej
N

=

(
n1(0)

N
, . . . ,

ni(0) − 1

N
, . . . ,

nj(0) + 1

N
, . . . ,

nd(0)

N

)
.

Then the process XN evolves in the manner as described above from the new state XN (τ1).
It is important to note that the curve {x(t), t ∈ [0, T ]} in (2.3) is the realisation of the

crime distribution evolution {(XN
1 (t), . . . ,XN

d (t)), t ∈ [0, T ]} in the population of N inspectees
or {(X1(t), . . . ,Xd(t)), t ∈ [0, T ]} in the continuum of inspectees (see in the following Eq. (3.13) ).
This is the exact place to see how inspectees interact with each other: the state dynamics of ath in-
sepcteeM (a) is influenced by all other inspectees strategies through the crime distribution; in other
words, any inspectee’s state dynamics is influenced by the aggregated behavior of all inspectees.
This is what we mean by the mean field interaction setting.

In this model, we do not require that every inspectee has perfect information on the crime levels
of all other inspectees, but we assume that everyone has the access to the exact information about
the aggregate behaviour of the population, namely the crime distribution.

Next, we introduce the single inspector. The inspector has limited available resources for
inspection, denoted by F > 0. At any time t ∈ [0, T ], she needs to decide an amount of resource
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α(t) ∈ [0, F ] to be invested in inspection in order to maximise her total expected payoff function.
It is assumed that the inspection resource is uniformly distributed among the population and the
inspector will charge a fine σlj , σ > 0, if she uncovers a crime at the level lj ∈ Ld.

Due to the limited resources, a complete surveillance of all inspectees’ actions is practically not
possible. Therefore, inspection takes place in form of a randomisation. We introduce a detection
function, which relates the detection probability to inspection resources and is given by P : [0, F ] →
[0, 1]. It is assumed that the detection function P is nondecreasing and concave in inspection
resources α, i.e.

P ′(α) > 0 and P ′′(α) < 0, for α ∈ [0, F ]. (2.5)

One way to understand the value P (α) for an α ∈ [0, F ] is that, every inspectee is inspected and
an illegal behaviour can be uncovered with the probability P (α). Another interpretation of P (α)
is that, with the inspection resources α invested, a proportion P (α) of the population is inspected
with perfect inspection, in other words, every inspectee has a probability P (α) to be inspected and
an illegal behaviour will be detected with probability 1.

Now, we are ready to introduce the payoff functions for inspectees and the single inspector. At
each time s ∈ [0, T ] with a crime distribution XN (s) of the population, if the inspector invests α(s)

for inspection, the ath inspectee with her crime levelM
(a)
N (s) faces a probability P (α(s)) with which

her illegal behaviour will be detected and the inspectee has to pay a fine σM
(a)
N (s); on the other

hand, she escapes with a probability 1−P (α(s)) and gains an illegal profit M
(a)
N (s). Moreover, the

inspectees pays a cost for the change of strategies, which is quadratic in the transition rates i.e.,∑
lj 6=M

(a)
N

(s)
q2
M

(a)
N

(s) lj
(s,XN (s)). Therefore, at each time s with a crime distribution XN (s) of the

population, the ath inspectee with a crime level M
(a)
N (s) has a running payoff

(1− P (α(s)))M
(a)
N (s)− P (α(s))σM

(a)
N (s)−

∑

lj 6=M
(a)
N

(s)

q2
M

(a)
N

(s) lj
(s,XN (s))

and a terminal payoff JT (M
(a)
N (T ),XN (T )), where JT : Ld × Σd → R. Therefore, for a given

XN ∈ C([0, T ],Σd), the ath inspectee aims to mamixise her payoff function

J (a)(t, li, qi;X
N ) = Eli

[ ∫ T

t

[
(1− P (α(s)))M

(a)
N (s)− P (α(s))σM

(a)
N (s)

−
∑

lj 6=M (a)(s)

q2
M

(a)
N

(s) lj
(s,XN (s))

]
ds+ JT (M

(a)
N (T ),XN (T ))

]
(2.6)

over switching strategies qi = {(qi1(t), . . . , qid(t)), t ∈ [0, T ]} with qij(t) ∈ [0, Q] for any t ∈ [0, T ]

and j = 1, . . . , d,
∑d

j=1 qij(t) = 0, and qii(t) is such that qii(t) = −
∑

j 6=i qij(t).

In the meanwhile, the inspector can observe the crime distribution XN (s) of the population.
At any time s ∈ [0, T ], the inspector pays an amount of investment resources for inspection α(s)
and gets a payoff from any individual inspectee at the crime level li:

ΦN
i (s) := ηN

(
P (α(s))σli − (1− P (α(s)))li

)
, (2.7)

where ηN > 0 is given and prescribes the weight that the inspector assigns to any single inspectee in
the finite N population. The inspector aims to maximise her expected payoff at each time instance
s ∈ [0, T ], that is she wants to maximise

E

(
−α(s) +

d∑

i=1

NXN
i (s)ΦN

i (s)

)
(2.8)
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over α(s) ∈ [0, F ]. Plug (2.7) into (2.8) and define L := NηN . Then the inspector aims to maximise
her payoff function

UN (α(s),XN (s)) = E

(
−α(s) + L

d∑

i=1

XN
i (s)

(
P (α(s))σli − (1− P (α(s)))li

))
. (2.9)

over her inspection investment α(s).
By differentiating the function UN with respect to the first variable and together with Condition

(2.5), the function UN in Eq. (2.9) has a unique maximiser α∗
N : Σd → [0, F ]:

α∗
N (s) = α∗

N (XN (s)) : = arg max
α∈[0,F ]

UN (α,XN (s))

= min



(P ′)−1


 1

L
(
1 + σ)E

[∑d
i=1 liX

N
i (s)

]


 , F



 (2.10)

where (P ′)−1 denotes the inverse function of P ′.
Note that the index N is used in the notations of objects in the setting of finite N inspectees

to distinguish them from their counterparties in the mean field inspection game, see Section 3.

Remark 2.1. The parameter ηN is small, compared to the large number N of inspectees. The
parameter L = NηN in (2.9) can be interpreted as the approximate total fine from the whole
population of the inspectees. In Section 3, we will consider a limiting model by sending the number
of inspectees to infinity, i.e. N → ∞. In the limiting model, the value of the parameter L is kept
the same as in the finite population problem and ηN → 0 as N → ∞. In other words, in the
inspector’s viewpoint, when the number of inspectees becomes very large, her total expected payoff
is always bounded, and any individual inspectee’s contribution ΦN in (2.7) to the inspector’s payoff
becomes negligible.

We are interested in finding Nash equilibria of this type of inspection games. This means to
find the best-response investment strategy α∗

N (t) at any t ∈ [0, T ] and a family {Q∗(1), . . . ,Q∗(N)},
where Q∗(a), a ∈ {1, . . . , N}, denotes the best switching strategy of the ath inspectee as the best
response. When N is very large, the complexity of this problem gets immense.

In this paper, we will apply the mean field games methodology to solve this type of games and
provide an ǫ-equiliblium. Roughly speaking, we will take the number N of inspectees to infinity
and set up the (limiting) mean field model with a continuum of inspectees. We call this game with
a single inspector and a continuum of inspectees a mean field inspection game. Then we prove that
any solution to the mean field inspection game presents an ǫ-equilibrium to the original model with
N inspectees.

3 The mean field inspection game

In this section, we study a mean field inspection game with a continuum of inspectees and one
inspector. First, let’s discuss the dynamics of the continuum limit as N → ∞. The state space of
the continuum is naturally specified by Σd in (2.1). Observe that, for f ∈ C1(Σd),

lim
N→∞
y→x

N
[
f(y −

ei
N

+
ej
N

)− f(y)
]
=

∂f

∂xj
(x)−

∂f

∂xi
(x)

7



so that the limiting generator At : C
1(Σd) → C(Σd) of L

N
t in (2.4) as N → ∞ is of the form

Atf(x) : = lim
N→∞
y→x

LN
t f(y)

=

d∑

i,j=1
i 6=j

xqij(t, x)

(
∂f

∂xj
(x)−

∂f

∂xi
(x)

)

=

d∑

j=1
i 6=j

(xiqij(t, x) − xjqji(t, x))
∂f

∂xj
(x). (3.1)

The limiting operator At in (3.1) generates a controlled crime distribution evolution of the contin-
uum of inspectees on the state space Σd, which is denoted by X = {X(t) = (X1(t), . . . ,Xd(t)) :
t ∈ [0, T ]}, where Xi(t) describes the fraction of inspectees at the crime level li. Then the limiting
distribution evolution X is governed by the kinetic equation

dXi(t)

dt
=

d∑

j=1

Xj(t)qji(t,X(t)), i = 1, . . . , d. (3.2)

It is worth noting that in contrast to XN generated by LN
t in (2.4), the limiting evolution X is

deterministic, since it is modelled as the solution to the ordinary differential equation (3.2).
Now in the mean field inspection game, at any time t ∈ [0, T ] with a crime distribution X(t) =

(X1(t), . . . ,Xd(t)), the inspector aims to maximise her payoff U(α(t),X(t)) over her inspection
investment α(t), where

U : [0, F ] × Σd → R, U(α, x) := −α+ L
(
(1 + σ)P (α) − 1

) d∑

i=1

lixi. (3.3)

By the condition (2.5), for any X(t) ∈ Σd, the function U in (3.3) has a unique maximiser α∗(t)
given by:

α∗(t) = α∗(X(t)) : = arg max
α∈[0,F ]

U(α,X(t))

= min

{
(P ′)−1

(
1

L
(
1 + σ)

∑d
i=1 liXi(t)

)
, F

}
(3.4)

where (P ′)−1 denotes the inverse function of P ′.
Let {M(t), t ∈ [0, T ]} denote the controlled state dynamics of a representative inspectee of the

continuum of inspectees. Starting at any time t ∈ [0, T ] and a state li ∈ Ld, a representative
inspectee of the continuum aims to maximise the payoff

Eli

[ ∫ T

t

[
(1−P (α∗(X(s)))M(s) − P (α∗(X(s)))σM(s)

−
∑

lj 6=M(s)

q2M(s)lj
(s,X(s))

]
ds+ JT (M(T ),X(T ))

]
(3.5)
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where the function α∗ is defined in (3.4) and the terminal cost function JT : Ld ×Σd → R. Denote
the running cost function in the payoff (3.5) by h : Ld × Σd ×Rd → R

h(li, x, qi) = (1− P (α∗(x)))li − P (α∗(x))σli −
∑

j 6=i

q2ij (3.6)

= li − li(1 + σ)P (α∗(x)) −
∑

j 6=i

q2ij

where qi = (qi1, . . . , qid). The value function for a representative inspectee V : [0, T ] × Ld ×
C([0, T ],Σd) → R is defined as

V (t, li;X) = sup
q(·,·,·)

Et,li

[ ∫ T

t

h
(
M(s),X(s), q(s,M(s),X(s))

)
ds+ JT (M(T ),X(T ))

]
(3.7)

over measurable functions q : [t, T ] × Ld × Σd → Rd. For any t ∈ [0, T ] and X ∈ C([0, T ],Σd),
denote the norm of a value function V on Ld by

‖V (t, ·;X)‖ := sup
li∈Ld

|V (t, li;X)|. (3.8)

By the dynamic programming principle, for any given distribution evolution X ∈ C([0, T ],Σd),
the value function V in (3.7) satisfies Hamilton-Jacobi-Bellman (HJB) equation

dV

dt
(t, li) +H(li, V (t, ·),X(t)) = 0 (3.9)

with a terminal function V (T, ·) = JT (·,X(T )), where the function H : Ld ×Rd × Σd → R

H(li, φ, x) = sup
qi∈Rd


li − li(1 + σ)P (α∗(x))−

∑

j 6=i

q2ij +
∑

j 6=i

(φj − φi)qij


 (3.10)

with the function α∗ defined in (3.4), where φ = (φ1, . . . , φd) and qi = (qi1, . . . , qid) ∈ Rd. The first
order condition shows that the unique maximiser in (3.10) is

q∗(t, li, x;φ) = (q∗i1(t, x;φ), . . . , q
∗
id(t, x;φ)) (3.11)

where for j 6= i

q∗ij(t, x;φ) =





0 if φj − φi < 0
1
2(φj − φi) if 0 ≤ φj − φi ≤ 2Q

Q if φj − φi > 2Q

and by definition q∗ii(t, x;φ) = −
∑

j 6=i q
∗
ij(t, x;φ).

Notice that the individual optimal switching function q∗ in (3.11) does not explicitly depend
on the aggregate behaviour of the population X. However, in the model, the variable φ will be the
value of the value function in (3.7) at each time instance, which depends on X.

To summarise, the function α∗ in (3.4) gives the best response for any inspector to the prevailing
crime distribution X(t) ∈ Σd at any time t ∈ [0, T ]. The running cost function h in (3.6) for a
representative inspectee depends on the best response function of the inspector α∗. The value
function V in (3.7) for the representative inspectee is the solution of the HJB equation (3.9). The
resulting best response of a representative inspectee is the optimal switching function q∗ in (3.11).
Rationally, the representative inspectee applies the resulting optimal control policy q∗ to control
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her state dynamics of crime levels. The resulting crime distribution evolution, as the aggregate
behaviour of the continuum of inspectees, is described by the solution X = {X(t), [0, T ]} to (3.2)
with the optimal switching q∗ in (3.11). The solution X should be consistent with the one observed
by the inspector as the prevailing crime distribution. Hence we get the following system of coupled
equations





dV (t, li)

dt
+H(li, V (t, ·),X(t)) = 0, i = 1, . . . , d

V (T, ·) = JT (·,X(T ))
(3.12)





dXi(t)

dt
=

d∑

j=1

Xj(t)q
∗
ji(t,X(t);V (t, ·)), i = 1, . . . , d

X(0) = x(0)

(3.13)

where the Hamiltonian H is defined in (3.10) and the optimal transition function q∗ is defined in
(3.11). The main feature of this coupled system of equations is that Eq. (3.12) is a backward
ordinary differential equation, yet (3.13) is a forward ordinary differential equation. This model
can be viewed as a modified version of standard mean field games equations in discrete-state space
setting with a deterministic major player.

4 Main results

First, we discuss the existence and uniqueness of a solution to the coupled system (3.12)-(3.13).
In Theorem 4.1, we show that for a short time game, there exists a unique solution to the mean
field inspection game, namely, the single inspector has a unique best response to the continuum of
inspectees and any representative inspectee has a unique best response to the inspector and the
aggregate behaviour of the continuum; whereas, for a long time game, we show the existence of a
solution to the mean field inspection game. Then in Theorem 4.2, we show that the probability
distributions of finite N -inspectees on their state space converges to the one of a limiting system
as N → ∞. Finally, in Theorem 4.3, we conclude that a solution to the mean field inspection game
is an ǫ-equilibrium to an inspection game with a finite number N of inspectees.

Theorem 4.1. (i) For a small T , the coupled system of equations (3.12)-(3.13) has a unique
solution (X,V );

(ii) for an arbitrary finite T , there exists a solution to the coupled system of equations (3.12)-
(3.13).

Proof. The proof to Theorem 4.1 consists of three steps and can be found in Appendix A
Next, we prove that the pair of resulting best responses α∗(X(t)) and q∗(t, li,X(t);V (t, ·;X))

presents an ǫ-equilibrium of an inspection game with one inspector and N inspectees, where (X,V )
is a solution to equations (3.12)-(3.13) and α∗ and q∗ are defined respectively in (3.4) and (3.11).

To this end, we will tag one insepctee and impose that she applies a switching strategy q̃(t, li, x)
which is Lipschitz continuous in the variable x and different from q∗(t, li, x). Let M̃ tag,q̃

N (t) (resp.

M̃ tag,q∗

N (t)) denote the state dynamics of the tagged inspectee with switching strategy q̃ (resp. with
q∗) in the finite N inspectees setting with a given initial data mN (0) ∈ Ld. Let M̃ tag,q̃(t) (resp.
M̃ tag,q∗(t)) denote the state dynamics of the tagged inspectee with switching strategy q̃ (resp. with
q∗) in the continuum limit with a given initial data m(0) ∈ Ld. Meanwhile all other inspectees
apply the same strategy q∗.
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The controlled Markov process {
(
XN

[q∗,q̃](t), M̃
tag,q̃
N (t)

)
, t ∈ [0, T ]} of N interacting inspectees is

generated by the operators L̂N
t [q∗, q̃] acting on [C(SNd × Ld)]

d (the set of continuous and bounded
vector-valued functions f on SNd × Ld):

L̂N
t [q∗, q̃]f(y, lk) =

d∑

i,j=1
i 6=k

(y · ei)q
∗
ij(t, y)N

[
f(y − ei

N
+

ej
N
, lk)− f(y, lk)

]

+
d∑

j=1

(y · ek −
1
N
)q∗kj(t, y)N

[
f(y − ek

N
+

ej
N
, lk)− f(y, lk)

]

+

d∑

j=1

1
N
q̃kj(t, y)N

[
f(y − ek

N
+

ej
N
, lj)− f(y, lk)

]
(4.1)

where y = (n1/N, . . . , nd/N).
One can under the operators in (4.1) in the following way. Consider that the tagged inspectee is

at the crime level lk ∈ Ld and there are nk inspectees who are at the crime level lk. The first term
in (4.1) prescribes the interactions between inspectees who are any crime levels li ∈ Ld \ lk, and
apply the strategy q∗; the second term in (4.1) prescribes the interactions between inspectees who
are at the crime level lk, except the tagged inspectee, and apply the strategy q∗; the third term in
(4.1) prescribes the behaviour of the tagged inspectee who are at lk and applies the strategy q̃.

Remark 4.1. In the definition of the operator L̂N
t [q∗, q̃] in (4.1), the position of the tagged inspectee

is counted twice as his own position (crime level) M̃ tag,q̃
N (t) and as his contribution towards the crime

empirical measure XN
tag(t). Alternatively, instead of XN

[q∗,q̃](t) one can take the empirical measure

of other inspectees only, i.e. XN−1
[q∗] (t). Such notations are used e.g. by Gomes in [14]. However,

the distinction between these two notations disappear in the limit N → ∞.

The controlled process {
(
X[q∗,q̃](t), M̃

tag,q̃(t)
)
, t ∈ [0, T ]} of the continuum limit as N → ∞ is

generated by the limiting operators Ât[q
∗, q̃] : [C1(Σd × Ld)]

d → [C(Σd × Ld)]
d of L̂N

t in (4.1):

Ât[q
∗, q̃]f(x, lk) := lim

N→∞
y→x

L̂N
t f(y, lk)

=
d∑

j=1
i 6=j

(
xiq

∗
ij(t, x)− xjq

∗
ji(t, x)

) ∂f
∂xj

(x, lk) +
d∑

j=1
i 6=j

q̃kj(t,x)(f(x, lj)− f(x, lk)) (4.2)

where the space [C1(Σd × Ld)]
d is the set of continuous and bounded vector-valued functions f on

Σd × Ld which are differentiable in the first variable.

Remark 4.2. It is worth noting that the process {
(
XN

[q∗,q̃](t), M̃
tag,q̃
N (t)

)
, t ∈ [0, T ]} is a Markov

process only if this pair is considered as an entity. In other words, a single component, either
{XN

[q∗,q̃](t), t ∈ [0, T ]} or {M̃ tag,q̃
N (t), t ∈ [0, T ]}, is not a Markov process and cannot be discussed

separately, since the distribution evolution of the N interacting inspectees {XN
[q∗,q̃](t), t ∈ [0, T ]} is

coupled with any individual’s dynamics {M̃ tag,q̃
N (t), t ∈ [0, T ]}.

In the continuum limit, since any single inspectee’s behaviour has negligible impact on the whole
population’s statistical behaviour, the distribution dynamics {X[q∗,q̃](t), t ∈ [0, T ]} is still the solu-
tion to the ordinary differential equation (3.13), although one inspectee chooses a different strategy
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from q∗. Since {X[q∗,q̃](t), t ∈ [0, T ]} is a deterministic process and not affected by any single in-

spectee’s behavior {M̃ tag,q̃(t), t ∈ [0, T ]}, one can view {M̃ tag,q̃(t), t ∈ [0, T ]} as a Markov process,
parameterised by {X[q∗,q̃](t), t ∈ [0, T ]}.

We show that, as N → ∞, the Markov process {
(
XN

[q∗,q̃](t), M̃
tag,q̃
N (t)

)
, t ∈ [0, T ]} generated by

L̂N
t in (4.1) converges to the Markov process

{
(
X[q∗,q̃](t), M̃

tag,q̃(t)
)
, t ∈ [0, T ]} generated by Ât in (4.2). This result is crucial for the final result

which is stated in Theorem 4.3.
To this end, we need the concept of propagators. For a set of continuous function C(Σd,Ld), a

family of mappings Ψt,r from C(Σd,Ld) to itself, parametrized by the pairs of numbers r ≤ t (resp.
t ≤ r) from a given finite or infinite interval is called a (forward) propagator in S, if Ψt,t is the
identity operator in C(Σd,Ld) for all t and the following chain rule, or propagator equation, holds
for r ≤ s ≤ t:

Ψt,sΨs,r = Ψt,r.

Let Ψ0,t
N ;tag[q

∗, q̃] denote the propagator generated by L̂N
t [q∗, q̃] in (4.1) and Φ0,t

tag[q
∗, q̃] the prop-

agator generated by Ât[q
∗, q̃] in (4.2). By saying this, we mean that for f ∈ D(L̂N

t ), the equations

d

ds
Ψt,s

N ;tagf = Ψt,s
N ;tagL̂

N
s f,

d

ds
Ψs,r

N ;tagf = −L̂N
s Ψs,r

N ;tagf, 0 ≤ t ≤ s ≤ r,

hold a.s. in s and for f ∈ D(Ât), the equations

d

ds
Φt,s
tagf = Φt,s

tag Âsf,
d

ds
Φs,r
tagf = −ÂsΦ

s,r
tagf, 0 ≤ t ≤ s ≤ r,

hold a.s. in s.

Theorem 4.2. Suppose that as N → ∞, the initial data xN0 ∈ Σd converges to certain x0 ∈ Σd

and the initial data mN (0) ∈ Ld converges to certain m(0) ∈ Ld. Then for any switching function
q̃ which is Lipschitz continuous in x and any f ∈ [C1(Σd × Ld)]

d

lim
N→∞

∣∣∣Ψ0,t
N ;tag[q

∗, q̃]f(xN0 ,mN (0)) − Φ0,t
tag[q

∗, q̃]f(x0,m(0))
∣∣∣ = 0 (4.3)

uniformly in t ∈ [0, T ] with any T > 0.

Proof. First, if the space [C1(Σd × Ld)]
d is a core of the propagator Φ0,t

tag[q
∗, q̃] generated by the

limiting operator Ât[q
∗, q̃] defined in (4.2), then we have the convergence of the generators on the

core of the liming semigroup, i.e., for any f ∈ [C1(Σd × Ld)]
d

lim
N→∞

L̂N
t [q∗, q̃]f(x, lk) = Ât[q

∗, q̃]f(x, lk)

which implies the convergence of the semigroup on the core [C1(Σd×Ld)]
d, c.f. Kallenberg (2002),

i.e. the statement (4.3) is proved.
The result that [C1(Σd × Ld)]

d is a core of the propagator Φ0,t
tag[q

∗, q̃] generated by the limiting

operator Ât[q
∗, q̃] defined in (4.2) is proved in Appendix B in 3 steps, see Appendix B.1-Appendix

B.3.
Here we only need to check the conditions in Appendix B.3 are satisfied. By (3.11) and (A.3)

we have that the optimal switching function q∗(t, li, x) is Lipschitz continuous in x. It is clear that
from (3.13), the function F in (B.7) with Fi(t, x) =

∑d
j=1 xjq

∗
ji(t, x;V (t, ·)) is Lipschitz continuous

in both t and x. Together with the condition that q̃ is Lipschitz in the variable x, the conditions
in Appendix B.3 are satisfied. The proof is completed.
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Remark 4.3. This kind of convergence results of N -particle approximations have been proved e.g.
by Kolokoltsov, Troeva and Yang (2014) for a diffusion process and by Kolokoltsov, Li and Yang
(2012) for rather general Markov processes with smoothing property (excluding the present case).

As a direct consequence of Theorem 4.1 and Theorem 4.2 , we have the result in the following
theorem, stating that any solution derived from the limiting model (3.12)-(3.13) can be used to
approximate the one for an N player game.

Theorem 4.3. Suppose that
(i) as N → ∞, the initial data xN0 ∈ Σd converges to certain x0 ∈ Σd and the initial data

mN (0) ∈ Ld converges to certain m(0) ∈ Ld.
(iii) the terminal cost function JT : Ld × Σd → R is Lipschitz in both variables.
Then a strategy profile

{α∗(X(t)), q∗(t, ·,X(t);V (t, ·)), . . . , q∗(t, ·,X(t);V (t, ·))}

with α∗ and q∗ defined respectively in (3.4) and (3.11), and with (X,V ) being a solution to the
system (3.12)-(3.13), is an ǫ-equilibrium in any N inspectee inspection game with ǫ = ǫ(N) → 0 as
N → ∞.

Proof. First denote by M q∗

N (t) and M q∗(t) the state dynamics of an inspectee with the switching
strategy q∗ in the finite N inspectees setting and in the continuum liming setting, respectively.
Similarly, denote by XN

[q∗](t) and X[q∗](t) the state dynamics of the population with every inspectee
applying the switching strategy q∗ in the finite N inspectees setting and in the continuum liming
setting, respectively. In fact, X[q∗](t) and X[q∗,q̃](t) generated by the operator Ât[q

∗, q̃] in (4.2) are
the same object, namely the solution to Eq. (3.13), see Remark 4.2.

To show that the strategy α∗(X[q∗](t)) with X[q∗](t) being a solution to (3.13) is an ǫ-equilibrium
for the inspector, we need to show that, for ǫ = ǫ(N) > 0,

UN (a∗(t),X[q∗](t)) ≥ UN (a∗N (t),XN
[q∗](t))− ǫ (4.4)

where the payoff function UN defined in Eq (2.9), and the inspector’s best response functions α∗
N (t)

and α∗(t) are defined in Eq (2.10) and Eq (3.4) in the N inspectees setting and in the mean field
inspection setting, respectively.

By the definition of α∗
N (t) and α∗(t), we have that α∗

N (t) and α∗(t) are Lipschitz continuous in
XN (t) and X(t) respectively. Then by Theorem 4.2 we have

lim
N→∞

|α∗(t)− α∗
N (t)| = 0.

That is, for N big enough, we have
α∗(t) = α∗

N (t)± ǫ

with ǫ→ 0 as N → ∞. Therefore for N big enough, again by Theorem 4.2

UN ( α∗(t),X[q∗](t))− UN (α∗
N (t),XN

[q∗](t))

=E

(
−α∗(t) + L

d∑

i=1

Xi,[q∗](t)
(
P (α∗(t))σli − (1− P (α∗(t)))li

))

− E

(
−α∗

N (t) + L

d∑

i=1

XN
i,[q∗](t)

(
P (α∗

N (t))σli − (1− P (α∗
N (t)))li

))

>− ǫ,
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with ǫ→ 0 as N → ∞, where the continuity of P in α is used.
Next, to show that the strategy q∗ is an ǫ-equilibrium for an individual inspectee, we need to

show, for any inspectee a = 1, . . . , N and ǫ = ǫ(N) > 0

J (a)(t, li, q
∗;XN

[q∗]) ≥ J (a)(t, li, q̃;X
N
[q∗,q̃])− ǫ (4.5)

for any q̃ where the payoff function J (a) is defined in (2.6). Since the payoff function J (a) defined
in (2.6) is Lipschitz in XN , the appendix C implies Eq. (4.5). The proof is completed.

5 Approximation analysis

In this section, we will approximate the optimal switching strategy q∗ defined in (3.11) by a sequence
of smooth function q∗η, for η > 0. We prove that any smooth approximation q∗η as a solution to
a forward-backward model is also ǫ -Nash to any inspection game with finite-number inspectees.
This approximation analysis is motived by the following two considerations.

Firstly, based on the result that there exists a solution, a consistent pair (X(t), V (t, ·)), to
the system of equations (3.12)-(3.13), one can obtain an optimal investment strategy α∗(X(t)) by
(3.4) and an optimal switching strategy q∗(t, li,X(t);V (t, ·)) by (3.11). Since there are no analytic
formulae for computing X and V , one needs to find numerical solutions of X and V . In this paper,
we do not attempt to investigate methods for abstaining numerical solutions but we intend to adapt
our results proved in the previous sections for numerical analysis. Recall that the obtained optimal
switching strategy q∗ defined in (3.11) is a Lipschitz function in x. However, for numerical analysis,
very often the smoothness of the function q∗ is needed. The results in Theorem 5.1 makes our
theoretical results in section 4 applicable to numerical analysis.

Secondly, considering smooth approximations q∗η as ǫ -Nash equilibria to the inspection game
with finite-number inspectees enables us to discuss the error bound of the approximation asN → ∞.

Now by standard procedure we construct a sequence of matrix-valued smooth functions q∗η :

[0, T ]× Ld × Σd → Rd to approximate the continuous function q∗. We define for η > 0

q∗η(t, li, x) :=

∫

Σd

q∗(t, li, x− y)φη(y)dy (5.1)

where the function φη is a smooth mollifier. We have that for any t ∈ [0, T ] and li ∈ Ld, q
∗
η converges

to q∗ uniformly on Σd, i.e.

lim
η→0

sup
x∈Σd

|q∗η(t, li, x)− q∗(t, li, x)| = 0.

A typical example of the molllifier φη can be φη(y) =
1√
2πη

e
− y2

2η .

Theorem 5.1. Suppose that as N → ∞, the initial data xN0 ∈ Σd converges to certain x0 ∈ Σd and
the initial data mN (0) ∈ Ld converges to certain m(0) ∈ Ld. Moreover, the terminal cost function
JT : Ld × Σd → R is Lipschitz in both variables. Then

(i) any q∗η defined in (5.1) is an ǫ-Nash for a finite game with ǫ = ǫ(η,N) → 0 as N → ∞ and
η → 0.

(ii) if q∗η defined in (5.1) is two continuously differentiable in x, ǫ is of order 1/N .

Proof. (i) To prove q∗η is an ǫ-Nash, we aim to prove that for (t, li) ∈ [0, T ]×Ld and for any other q̃

J (a)(t, li, q
∗
η ,X

N
q∗η
) > J (a)(t, li, q̃,X

N
[q∗η ,q̃]

)− ǫ. (5.2)

14



Take the approximating smooth optimal control q∗η(t, li, x) = (q∗η,i1(t,Xη(t)), . . . , q
∗
η,id(t,Xη(t))) and

consider the system

{
dXη,i(t)

dt
=
∑d

j=1Xη,j(t)q
∗
η,ji(t,Xη(t)), i = 1, . . . , d

X(0) = x(0)
(5.3)

Let Xq∗η be the solution to the system (5.3). We have that Xq∗η converges to Xq∗ as η → 0. By

Theorem 4.2, as N → ∞, XN
q∗η

→ Xq∗η and XN
q∗ → Xq∗ . Therefore we have XN

q∗η
→ XN

q∗ as N → ∞

and η → 0. Since the payoff function J (a) defined in (2.6) is continuous and Lipschitz continuous
in XN , we have for small enough η > 0 and big enough N

J (a)(t, li, q
∗
η ,X

N
q∗η
) = J (a)(t, li, q

∗
η ,X

N
q∗) + J (a)(t, li, q

∗
η ,X

N
q∗η
)− J (a)(t, li, q

∗
η ,X

N
q∗)

= J (a)(t, li, q
∗
η ,X

N
q∗)± ǫ(η,N, q∗)

= J (a)(t, li, q
∗,XN

q∗)± ǫ(η,N, q∗)

> J (a)(t, li, q
∗,XN

q∗)− ǫ(η,N, q∗)

≥ J (a)(t, li, q̃,X
N
[q∗η ,q̃]

)− ǫ(η,N, q̃, q∗)

where the result in the appendix C is used. Hence (5.2) is proved.
(ii) To prove ǫ is of order 1/N for a twice continuously differentiable q∗η , we aim to show that

for f ∈ [C2(Σd × Ld)]
d,

∣∣∣Ψ0,t
N ;tag[q

∗
η , q̃]f(x

N
0 ,mN (0)) − Φ0,t

tag[q
∗
η, q̃]f(x0,m(0))

∣∣∣ ≤ C(T )
1

N
‖f‖[C2(Σd×Ld)]d

. (5.4)

Here Ψ0,t
N ;tag[q

∗
η , q̃] denote the propagator generated by L̂N

t [q∗η , q̃] and Φ0,t
tag[q

∗
η, q̃] the propagator

generated by Ât[q
∗
η, q̃]. The space [C2(Σd × Ld)]

d is the set of continuous and bounded vector-
valued functions f on Σd × Ld which are twice continuously differentiable in the first variable.

By (4.1) and (4.2), we write

L̂N
t [q∗η , q̃]f(y, lk) =

d∑

i,j=1
i 6=k

(y · ei)q
∗
η,ij(t, y)N

[
f(y − ei

N
+

ej
N
, lk)− f(y, lk)

]

+
d∑

j=1

(y · ek −
1
N
)q∗η,kj(t, y)N

[
f(y − ek

N
+

ej
N
, lk)− f(y, lk)

]

+
d∑

j=1

1
N
q̃kj(t, y)N

[
f(y − ek

N
+

ej
N
, lj)− f(y, lk)

]
(5.5)

and

Ât[q
∗
η, q̃]f(x, lk) =

d∑

j=1
i 6=j

(
xiq

∗
η,ij(t, x)− xjq

∗
η,ji(t, x)

) ∂f
∂xj

(x, lk)

+

d∑

j=1
i 6=j

q̃kj(t,x)(f(x, lj)− f(x, lk)). (5.6)
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In fact, since q∗η is twice continuously differentiable in x, the space [C2(Σd × Ld)]
d is a invariant

core for L̂N
t [q∗η , q̃] and Ât[q

∗
η , q̃], that is

L̂N
t [q∗η , q̃] : [C

2(Σd × Ld)]
d → [C2(Σd × Ld)]

d

and
Ât[q

∗
η, q̃] : [C

2(Σd × Ld)]
d → [C2(Σd × Ld)]

d.

Further, by Taylor theorem, (5.5) can be expended by using the following representation (ref.
Kolokoltsov (2010), Corollary F.2)

f(y − ζ, lk)− f(y, lk) =

(
∂f(y, lk)

∂ζ
, ζ

)
+

∫ 1

0
ds(1− s)

(
∂2f(y, lk)

∂ζ2
, ζ2
)
. (5.7)

Therefore, for f ∈ [C2(Σd × Ld)]
d, we have

‖(L̂N
t [q∗η , q̃]− Ât[q

∗
η , q̃])f‖[C2(Σd×Ld)]d

≤ C(T )
1

N
‖f‖[C2(Σd×Ld)]d

. (5.8)

To complete the proof, we need the following calculation: for s ≤ t

Ψs,t
N ;tagf − Φs,t

tagf = Ψs,r
N ;tagΦ

r,t
tag[|

t
r=sf =

∫ t

s

d

dr

(
Ψs,r

N ;tagΦ
r,t
tag

)
fdr

=

∫ t

s

Ψs,r
N ;tag

(
L̂N
t − Ât

)
Φr,t
tagfdr. (5.9)

By (5.8) and (5.9) together, we get the required statement (5.4). Consequently, by the definition
of J (a) in (2.6) we have

sup
t

∣∣∣J (a)(t, ·, q∗η ,X
N
q∗η
)− J (a)(t, ·, q̃,XN

[q∗η ,q̃]
)
∣∣∣ ≤ C(T )

1

N
‖f‖[C2(Σd×Ld)]d

.

6 Appendix

A Proof to Theorem 4.1

The proof to Theorem 4.1 consists of three steps.
Step 1: for any given X ∈ C([0, T ],Σd), we show that the HJB equation (3.12) is well posed.

Moreover, the resulting solution, denoted by V (t, li;X), is Lipschitz with respect to the parameter
X.

For proving the existence of a solution to the ordinary differential equation (3.12), it is sufficient
to have that the function H defined in (3.10) is Lipschitz in φ uniformly.

Since the optimal switching function q∗ij in (3.11) is Lipschitz continuous in φ, we conclude that
there exists a constant c > 0 such that for any li ∈ Ld, x ∈ Σd,

|H(li, φ, x) −H(li, ψ, x)| ≤ c‖φ − ψ‖, ∀φ,ψ ∈ Rd. (A.1)

Therefore, for any X ∈ C([0, T ],Σd), there exists a unique solution to (3.12).
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To show that the solution V is Lipshitz with respect to the parameter X, we write the equation
(3.9) in integral form:

V (t, li;X) +

∫ T

t

H(li, V (s, ·;X),X(s))ds = 0.

The function H defined in (3.10) is Lipschitz in x uniformly, since for any li ∈ Ld, φ ∈ Rd and any
x, y ∈ Σd,

|H(li, φ, x)−H(li, φ, y)| ≤ li(1 + σ) |P (α∗(x))− P (α∗(y))| ≤ c‖x− η‖TV (A.2)

with a constant c > 0. For any t ∈ [0, T ], li ∈ Ld and X,Y ∈ C([0, T ],Σd)

|V (t, li;X)− V (t, li;Y )|

≤

∫ T

t

|H(li, V (s, ·;X),X(s)) −H(li, V (s, ·;Y ), Y (s))|ds

≤

∫ T

t

|H(li, V (s, ·;X),X(s)) −H(i, V (s, ·;X), Y (s))|ds

+

∫ T

t

|H(li, V (s, ·;X), Y (s))−H(li, V (s, ·;Y ), Y (s))|ds

≤ cT‖X − Y ‖∞ + c

∫ T

t

‖V (s, ·;X) − V (s, ·;Y )‖ds

where (A.1) and (A.2) are used to get the last inequality. Then by Gronwall’s inequality, the
solution to (3.12) is Lipschitz continuous in X, i.e. there exists a constant c > 0 such that for any
t ∈ [0, T ],

‖V (t, ·;X) − V (t, ·;Y )‖ ≤ cT‖X − Y ‖∞.

Consequenctly, by the definition of q∗ in (3.11), we have that for any t ∈ [0, T ] and i, j = 1, . . . , d
with i 6= j,

|q∗ij(t,X(t);V (t, ·;X)) − q∗ij(t, Y (t);V (t, ·;Y ))| ≤ cT‖X − Y ‖∞. (A.3)

Step 2: we prove the existence of the solution to the following equation

{
dXi(t)

dt
=
∑d

j=1Xj(t)qji(t,X(t)), i = 1, . . . , d

X(0) = x(0)
(A.4)

with a given switching policy q which is Lipschitz in x and then prove the sensitivity of the solution
X(·) with respect to those q which are Lipschitz in x.

Define a vector field G : [0, T ]×Σd ×R → Rd with its ith component Gi : [0, T ]×Σd ×R → R

Gi(t, x, q) :=

d∑

j=1

xjqji(t, x). (A.5)

To prove the existence of a solution to (3.13) it is sufficient to prove that G is Lipschitz continuous
in x. We say G is Lipschitz continuous in x if each component Gi, i = 1, . . . , d, is Lipschitz in
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x. Now we show that Gi is Lipschitz in x by using Schwarz inequality. Since q is assumed to be
Lipschitz in x, we have for t ∈ [0, T ] and x, y ∈ Σd,

|Gi(t, x, q)−Gi(t, y, q)| ≤ |
d∑

j=1

xj(qji(t, x)− qji(t, y))| + |
d∑

j=1

(xj − ηj)qji(t, y)|

≤ c‖x− y‖+Q‖x− y‖ (A.6)

which implies that Gi is Lipschitz in the second variable x. Hence, for any given q which is Lipschitz
in x, there exists a solution to (A.4).

To prove the sensitivity of the solution to (A.4) with respect to those q which are Lipschitz in
x, we rewrite (A.4) in a integral form. Let X ( resp. Y ) be the solution to (A.4) under the control
policy q1 (resp. q2), with the same initial value x0 ∈ Σd, namely

Xi(t) = x0,i +

∫ t

0
Gi(s,X(s), q1(s, li,X(s)))ds

and

Yi(t) = x0,i +

∫ t

0
Gi(s, Y (s), q2(s, li, Y (s)))ds.

Then by (A.6), we have

|Xi(t)− Yi(t)| ≤

∫ t

0
|Gi(s,X(s), q1(s, li,X(s)))ds −Gi(s, Y (s), q2(s, li, Y (s)))|ds

≤

∫ t

0
|Gi(s,X(s), q1(s, li,X(s))) −G(s,X(s), q2(s, li,X(s)))|ds

+

∫ t

0
|Gi(s,X(s), q2(s, li,X(s))) −Gi(s, Y (s), q2(s, li, Y (s)))|ds

≤

∫ t

0
c|q1(s, li,X(s)) − q2(s, li,X(s))|ds +

∫ t

0
c‖X(s) − Y (s)‖TV ds.

By Gronwall’s inequality, we get for any t ∈ [0, T ]

‖X(t)− Y (t)‖TV =

d∑

i=1

|Xi(t)− Yi(t)| ≤ cT sup
li∈Ld

‖q1(·, li,X(s)) − q2(·, li,X(s))‖∞ (A.7)

with a constant c > 0.
Step 3: In summary, so far we have considered the following mapping

X → q∗ → X̄

Γ : C([0, T ],Σd) =⇒ C([0, T ],Σd). (A.8)

By analysing (3.12) we get (A.3), namely the resulting optimal switching function q∗(t, li, x) is
Lipschitz with respect to x; further, by analysing (3.13) with any switching policy q which is
Lipschitz in x, we get (A.7), namely the solution to (3.13) is Lipschitz with respect to its control
parameter q. Therefore we can conclude that the mapping Γ (A.8) is Lipschitz, that is, for any
X,Y ∈ C([0, T ],Σd), there exists a constant c > 0 such that

‖Γ(X) − Γ(Y )‖∞ = ‖X̄ − Ȳ ‖∞ ≤ cT‖X − Y ‖∞ (A.9)
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where the norm ‖ · ‖∞ is defined in (2.2).
Thus for a small T , the mapping Γ is a contraction, proving statement (i). For arbitrary finite

T , one has, from (3.2), that the image of the mapping Γ is bounded equicontinuous and hence
a compact subset of C([0, T ],Σd) (by Arzela-Ascoli theorem). Hence by the Brouwer fixed point
theorem, Γ has a fixed point, proving statement (ii).

B [C1(Σd × Ld)]
d is a core for the generator Ât

This appendix aims to prove step by step that the space [C1(Σd × Ld)]
d is a core for the limiting

generator Ât defined in (4.2). In B.1, we consider a single deterministic system X(t), t ∈ [0, T ] and
show that [C1(Σd)]

d is a core for the generator of the system. Then in B.2, we consider a time-
homogenous Markov chain M(t), t ∈ [0, T ] modulated by a deterministic system X(t), t ∈ [0, T ].
We show that [C1(Σd × Ld)]

d is a core for the generator of the system (M(t),X(t)), t ∈ [0, T ].
Finally in B.3, we consider a time- nonhomogenous Markov chain M(t), t ∈ [0, T ] modulated by
a deterministic system X(t), t ∈ [0, T ]. This Fellow process (M(t),X(t)), t ∈ [0, T ] is exactly the
one generated by the limiting operator Ât defined in (4.2). We show that [C1(Σd × Ld)]

d is indeed
a core for the generator of the system (M(t),X(t)), t ∈ [0, T ], namely the generator Ât defined in
(4.2).

Recall that the space [C1(Σd×Ld)]
d is the set of continuous and bounded vector-valued functions

f on Σd × Ld which are differentiable in the first variable. The standard notation ˙ denotes the
differentiation with respect to time, e.g. ẋ = dx

dt
.

B.1 Evolution of the deterministic dynamics X(t)

Consider a system X(t), t ∈ [0, T ] which is described by the first-order ordinary differential equation

Ẋt = F (Xt) (B.1)

with a given initial x0 ∈ Σd and F : Σd → Rd. The system X(t), t ∈ [0, T ] has the generator
A : [C1(Σd)]

d → [C(Σd)]
d which is of the form

Af(x) = F (x)
∂f

∂x
(x). (B.2)

Let φt denote the semigroup generated by the generator A in (B.2). The solution of Eq. (B.1) is

f(Xt(x0)) = (φtf)(x0).

Lemma B.1. If the function F in (B.1) is Lipschitz, then [C1(Σd)]
d is a core of the generator A

in (B.2).

Proof. Since the space [C1(Σd)]
d is not invariant under the operator A (B.2), we cannot apply the

standard result (c.f. Kallenberg (2002)) that a dense invariant subset of the domain is always a
core. We introduce a subspace by collecting all shifted functions from [C1(Σd)]

d and their linear
combinations and denote this space by [C̃(Σd)]

d

C̃(Σd) := {fi(Xt(x0))
∣∣∀t ∈ [0, T ], fi ∈ C1(Σd)}

with i ∈ {1, . . . , d}. By its construction, this space [C̃(Σd)]
d is an invariant core for the semigroup

φt. In order to prove that [C1(Σd)]
d is still a core for the semigroup φt, we construct a sequence
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of vector-valued smooth functions Fn and for each n ∈ N, the entry Fn
i ∈ C1(Σd), i = 1, . . . , d is

defined as

Fn
i (x) :=

∫

Σd

Fi(x− y)φn(y)dy

where the mollifier φn is at least first order differentiable and with compact support. So we have,
as n → ∞, Fn

i ∈ C1(Σd) converges to Fij ∈ C̃(Σd) as n → ∞. Then we consider the following
approximating systems

Ẋt = Fn(Xt)

with an initial x0 ∈ Σd. Let Xn
t (x0) denote the solution to this approximating systems. Since Fn

converges F as n → ∞, we have Xn
t (x0) converges to Xt as n → ∞. Therefore the closure of the

subspace [C1(Σd)]
d is [C̃(Σd)]

d which is a core of A, hence [C1(Σd)]
d is a core of A.

B.2 A homogenous Markov chain M(t) modulated by a deterministic evolution

X(t)

Consider a Markov chain M(t), t ∈ [0, T ] on Ld with a switching function q on Σd

x → Q(x) =




q11(x), . . . , q1d(x)
. . .

qd1(x), . . . , qid(x)
. . .

qd1(x), . . . , qdd(x)



. (B.3)

Let the Markov chain M(t), t ∈ [0, T ] be modulated by a deterministic evolution X(t), t ∈ [0, t]
which is described by the first order ordinary differential equation

Ẋt = F (Xt) (B.4)

with a given initial x0 ∈ Σd and F : Σd → Rd. Then the modulated Markov chain is a Feller
process on [C(Σd × Ld)]

d, which is denoted by (X(t),M(t)), t ∈ [0, T ] and is described by

ḣ = Q(Xt(x0))h (B.5)

with a given initial function h0 ∈ C(Σd × Ld). The solution of (B.5) is

ht(h0, x0) = (ψth0)(x0) (B.6)

where ψt is the semigroup of the Feller process (X(t),M(t)).

Lemma B.2. If the functions F in (B.4) and q in (B.3) are Lipschitz, then [C1(Σd × Ld)]
d is a

core for the generator of the semigroup ψt in (B.6).

Proof. Following the proof for A.1, we construct a sequence of matrix-valued smooth functions Qn

with each entry qnij ∈ C
1(Σd) defined as

qnij(x) :=

∫

Σd

qij(x− y)φn(y)dy, i, j = 1, . . . , d

where the mollifier φn is at least first order differentiable and with compact support, so that Qn

converges to Q as n→ ∞. The solutions to the approximating systems

ḣ = Qn(Xn
t (x0))h
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are denoted by hnt (x0, h0), where the sequence Xn
t (x0) is constructed in the proof for A.1. Since

Xn
t (x0) → Xt(x0) as n → ∞ and Q is a Lipschitz function, we have Qn(Xn

t (x0)) → Q(Xt(x0)) as
n→ ∞. Hence, hnt (x0, h0) → ht(x0, h0) as n→ ∞. Therefore the closure of the space [C1(Σd×Ld)]

d

is [C̃(Σd × Ld)]
d, hence [C1(Σd × Ld)]

d is a core the generator of the semigroup ψt in (B.6).

B.3 A non-homogenous Markov chain M(t) modulated by a deterministic evo-

lution X(t)

Consider a time non-homogenous Markov chain M(t), t ∈ [0, T ] on Ld with a switching function Q

on [0, T ] ×Σd

(t, x) → Q(t, x) =




q11(t, x), . . . , q1d(t, x)
. . .

qi1(t, x), . . . , qid(t, x)
. . .

qd1(t, x), . . . , qd(t, x)



. (B.7)

Let the time non-homogeneous Markov chain M(t), t ∈ [0, T ] be modulated by a deterministic
evolution X(t) which is described by

Ẋt = F (t,Xt) (B.8)

with a given initial x0 ∈ Rd and F : [0, T ] × Σd → Rd. Then the modulated non-homogenous
Markov chain is a Feller process on [C(Σd ×Ld)]

d, which is denoted by (X(t),M(t)), t ∈ [0, T ] and
is described by

ḣ = Q(t,Xt(x0))h (B.9)

with a given initial function h0 ∈ C(Σd × Ld). The solution of (B.5) is

ht(h0, x0) = (ψt,0h0)(x0) (B.10)

where ψt,s, 0 ≤ s ≤ t, is the two-parameter semigroup of the Feller process (X(t),M(t)).

Lemma B.3. If the function F in (B.8) and q in (B.7) are Lipschitz in both x and t, then
[C1(Σd × Ld)]

d is a core for the generator of ψt,s in (B.10).

Proof. Set y = (x, t) ∈ Σd × [0, T ]. Then Markov chain M(t) is governed by the switching function
q(y) and the system (B.8) is translated to

Ẋt = F (y)

ṡ = 1

with a initial data (x0, 0). Then a direct application of the result in the appendix B.2 complete the
proof.

C ǫ equilibrium under a general payoff function J

This appendix states that, for an inspection game with a general payoff function J of inspectees,
any optimal q∗ derived from the corresponding mean field inspection game model is an approximate
Nash for any inspectee.

21



Consider all N inspectees aim to maximise a general payoff function J as a function of t, l, q
and x. Let XN = {XN (t), t ∈ [0, T ]} be the distribution evolution of the N interacting inspectees
among d states in Ld. Let X = {X(t), t ∈ [0, T ]} be a solution to the mean field inspection game
and q∗ be the resulting optimal switching strategy for a representative inspectee. If XN → X and
the payoff function J is Lipschitz uniformly in x, then q∗ is an ǫ equilibrium for an inspection games
with any finite N inspectees, namely for any (t, li) ∈ [0, T ] × Ld,

J(t, li, q
∗,XN ) ≥ J(t, li, q̃,XN )− ǫ

where ǫ = ǫ(N, q∗, q̃) → 0 as N → ∞.

Proof. SinceXN → X and J is Lipschitz uniformly in x, for any (t, li) ∈ [0, T ]×Ld and an switching
function q, we have

lim
N→∞

J(t, li, q,XN ) = J(t, li, q,X).

Since inspectees aim to maximise their payoffs and in the limit N → ∞, q∗ is the optimal
strategy, for any (t, li) ∈ [0, T ]× Ld we have

J(t, li, q
∗,X) ≥ J(t, li, q̃,X)

for any q̃. Therefore, for any (t, li) ∈ [0, T ] × Ld and for N big enough, there exists an ǫ =
ǫ(q∗, q̃, N) > 0 so that

J(t, li, q
∗,XN ) = J(t, li, q

∗,X) + J(t, li, q
∗,XN )− J(t, li, q

∗,X)

= J(t, li, q
∗,X)± ǫ(q∗, N)

≥ J(t, li, q̃,X) ± ǫ(q∗, N)

= J(t, li, q̃,XN ) + J(t, li, q̃,X)− J(t, li, q̃,XN )± ǫ(q∗, N)

= J(t, li, q̃,XN )± ǫ(q̃, N)± ǫ(q∗, N)

≥ J(t, li, q̃,XN )− ǫ(q∗, q̃, N)

with ǫ = ǫ(q∗, q̃, N) → 0 as N → ∞.
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