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Lattice-matched II–VI selenide quantumwell (QW) structures grown on InP substrates can be designed for emis-

sion throughout the visible spectrum. InP has, however, strong visible-light absorption, so that a method for ep-

itaxial lift-off and transfer to transparent substrates is desirable for vertically-integrated devices. We have

designed and grown, via molecular beam epitaxy, ZnCdSe/ZnCdMgSe multi-QW gain regions for vertical emis-

sion, with the QWs positioned for resonant periodic gain. The release of the 2.7 μm-thick ZnCdSe/ZnCdMgSe

multi-QW film is achieved via selective wet etching of the substrate and buffer layers leaving only the epitaxial

layers, which are subsequently transferred to transparent substrates, including glass and thermally-conductive

diamond. Post-transfer properties are investigated, with power and temperature-dependent surface- and

edge-emitting photoluminescence measurements demonstrating no observable strain relaxation effects or sig-

nificant shift in comparison to unprocessed samples. The temperature dependent QWemission shift is found ex-

perimentally to be 0.13 nm/K. Samples capillary-bonded epitaxial-side to glass exhibited a 6 nm redshift under

optical pumping of up to 35mWat 405 nm, corresponding to a 46 K temperature increase in the pumped region;

whereas those bonded to diamond exhibited no shift in QWemission, and thus efficient transfer of the heat from

the pumped region. Atomic force microscopy analysis of the etched surface reveals a root-mean-square rough-

ness of 3.6 nm. High quality optical interfaces are required to establish a good thermal and optical contact for

high power optically pumped laser applications.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Epitaxial lift-off (ELO) and transfer of semiconductor structures from

their growth substrates providesmany advantages; allowing structures,

grown lattice-matched on top of a high quality substrate, to bemoved to

substrates where the lattice mismatch would otherwise prevent high

quality growth, or to those which would not be suitable for growth,

e.g. flexible substrates.

The investigation into stratified or layered devices, combining

monolithically grown heterostructures and non-related bulk sub-

strates, is an area of active research. ELO and semiconductor transfer

is a field of growing importance in research applications [1,2], in the

production of thin film transistors [3], light emitting diodes [4], solar

cells [5], sensing arrays [6], complementary metal oxide semicon-

ductor circuits [7], etc.

Additional applications of ELO lie in areas where a band-gap

engineered transferrable semiconductor film offers advantages over

similar methods (e.g. the production of low noise III–V distributed

Bragg reflector (DBR) mirrors with significant performance increase

over the previous highest performing dielectric SiO2/Ta2O5 mirror [8]).

Standard ELO in III–V and III–N semiconductor devices is performed

on structures with a sacrificial layer of fast etchingmaterial underneath

the devicewhich, once removed, allows for the structure to be lifted and

transferred.

For devices based on II–VI semiconductors, ELO has been demon-

strated for II–VI materials grown on GaAs with a sacrificial layer of

MgS [1,9]. While II–VI materials grown on GaAs allow quantum wells

(QWs) with emission in the blue and into green with the incorporation

of compressive strain (ZnCdSe/ZnSSe [10], ZnCdSSe/ZnSSe [11]), II–

VI selenides near lattice-matched to InP provide a range of alloys

with band-gaps throughout the visible spectrum [12]. For example,

optically-pumped edge emitting lasers based on ZnCdSe/ZnCdMgSe

QWs on InP have been demonstrated with emission from blue to

red wavelengths [13].

Inherent difficulties in the II–VI selenidematerial systems include p-

type doping of thematerial for electrical pumping, growing a full length
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DBR within a structure while maintaining crystal quality, and a sub-

strate which absorbs throughout the visible spectrum. High quality

DBRs have been achieved for material lattice-matched to GaAs through

the use of superlattice structures to achieve higher refractive index con-

trastwhilemaintaining growth quality [11,14].While this is possible for

selenide material lattice-matched to InP, for optically-pumped devices

the more flexible solution, proposed here, is to transfer the structures

to separate mirrors or transparent substrates.

For optically-pumped vertical gain structures such as semiconductor

disk lasers (SDLs), doping is not required; however, good thermal man-

agement is important for high power operation. Diamond is typically

used as an intracavity heatspreader [15], or extracavity heat-sink [16];

the former requiring good optical contact as well as thermal contact be-

tween the diamond and the intracavity surface of the sample, which can

be achieved via capillary bonding (e.g. [17–19]). By using ELO to transfer

II–VI selenide structures to transparent substrates, such as diamond,

post-growth, visible spectrum vertical gain structures for use in SDL

cavities can be fabricated.

An initial investigation into substrate removal of II–VI selenide struc-

tures with similar designs grown lattice-matched to InP was reported

by Moug et al. [20]; however, in that case the structures were adhered

to glass usingwax, and cracking or buckling of the II–VImaterialwas ob-

served. This was attributed to strain in the epitaxial structure, despite

the support of the adhesive, preventing further transfer of the struc-

tures. For simple II–VI materials grown on InP, a sacrificial MgSe layer

could be used, in a similar technique to that used for GaAs [9]; however,

for devices requiring layers with high-Mg content these would also be

etched during the ELO process, causing structural damage. The com-

plete removal of the substrate is therefore investigated as a method

for achieving ELO and transfer.

In this report we demonstrate transfer of thin, II–VI selenide epitax-

ial films, following removal of the III–V substrate and buffer layers, from

a temporary glass substrate onto target substrates of diamond and glass,

while maintaining the structural integrity and surface quality. Capillary

bonding [21], results in good mechanical, thermal and optical contact.

We foresee several applications for II–VI films that will benefit from

the ability to place the structure on any substratewithout the absorptive

loss from the InP such as fast colour conversion for use in visible light

communication. Building on previous reports of basic conversion of

GaInN blue light emitting diodes to green, yellow and red [22], we are

investigating the advantages of II–VI selenide colour conversion films

for fast modulation speeds.

2. Experimental details

2.1. Device design and growth for vertical gain structures

The II–VI structures were grown by molecular beam epitaxy (MBE)

in a Riber 2300 system, which includes both III–V and II–VI growth

chambers connected by ultra-high vacuum transfer modules. Prior to

growing the II–VI structure, a buffer layer of InGaAs is grownon the sub-

strate to increase crystal quality, and then, following transfer to the II–VI

chamber, growth of a thin low temperature (170 °C) ZnCdSe buffer

layer for a better III–V/II–VI interface [23]. Crystal quality is monitored

throughout the growth by reflection high-energy electron diffraction.

MBE growth conditions for the II–VI materials were a substrate temper-

ature of 270 °C and a Se to group II flux ratio of approximately 6. Further

details on the growth are reported elsewhere [24].

The design grown for this work, as shown in Fig. 1, is a vertical gain

structure with partial DBR for use within an SDL configuration.

The structure comprises 9 Zn0.48Cd0.52Se QWs designed for emission

at 550 nm, with relative positions set for resonant periodic gain [25]. All

ZnCdMgSe quaternaries are grown by varying the Zn/Cd ratio for lattice-

matching with InP, calibrated through X-ray diffraction (XRD) rocking

curves. The pump-absorbing barriers and carrier confinement layers

are ZnCdMgSe with Mg fractions of 37% and 60% respectively (band-

gaps of 2.7 eV and 3.0 eV). Grown prior to the gain region, the partial

DBR defines the placement of the antinodes of the electric field standing

wave with respect to the QWs and consists of alternating ZnCdMgSe

layers of 25% and 60% Mg fraction, for a refractive index contrast of

0.29. The maximum refractive index contrast that may be achieved is

limited by the fact that higher Mg fractions can lead to the formation of

rock-salt domains [26]. Growth of alternating layers with different Mg

content was achieved by changing cell temperatures between each

layer. At either end of the structure are capping layers of ZnCdSe to pre-

vent oxidation of the Mg containing layers; the bottom cap performing

the additional function of an etch-stop. ZnCdSe absorbs at the QW emis-

sion wavelength, so the cap thickness is limited to 10 nm to minimise

loss while still offering protection. A scanning electron microscope

(SEM) image of the cleaved edge of the un-etched structure is shown

in Fig. 2, the partial DBR layers and quantum wells are clearly visible.

XRD rocking curves are used to characterise the material lattice-

matching and structure strain, shown in Fig. 3. The curve shows good

quality growth with all peaks close to the central peak of InP, andmate-

rial mismatch of no more than 0.15%.

Fig. 1. Structure of the II–VI multi-quantum well film grown on an InP substrate and InGaAs buffer, including a low temperature ZnCdSe buffer and anti-oxidation cap.
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2.2. Epitaxial lift-off and transfer

The II–VI sample is transferred by entirely removing both the InP

substrate and the InGaAs buffer layer, following Moug et al. [20]. Poly-

ethylene glycol (PEG), an easily removable water soluble wax with a

melting point of 60 °C, is used to adhere the epi-side of the sample to

a temporary glass substrate, both to protect the surface and to provide

structural support during the processing. The InP substrate is mechani-

cally polished to a thickness of the order of 100 μmusing SiC paper with

a grit of 1200. The substrate of the sample is then etchedwith a solution

of HCl:H3PO4 (3:1), which does not etch the InGaAs buffer layer.

The InP/HCl:H3PO4 reaction produces gaseous PH3, with an etch rate

of 6.6 μm/min. After an etch time of approx. 15 min no further gas bub-

bles are produced, indicating that all of the InP substrate has been re-

moved. Fig. 4(a) shows a microscope image of a sample etched to the

InGaAs layer. Of note at this stage is the silver colour of this surface,

which is easily discernible from the dark InP. The etch selectivity of

the solution with InGaAs allows for the sample to remain in the acid

until complete substrate removal. The InGaAs buffer is then etched

using H3PO4:H2O2:H2O (1:1:6) which has a high etch selectivity for

the InGaAs/ZnCdSe interface (68:1) with an etch rate of 22.5 nm/s

[20] for InGaAs. The sample changes colour over the course of the

etch, through red to a translucent yellow–orange (depending on struc-

ture reflectivity and transmission characteristics) indicating that the

InGaAs is fully removed (see Fig. 4(b)). Etch time is 15 seconds for com-

plete InGaAs removal.

Once the InGaAs is removed, the only remaining material still at-

tached to the glass with the PEG is the II–VI epi-layer. Thewax dissolves

quickly when the sample is submerged in hot water (approximately

Fig. 2. SEMof themulti-quantumwell structure,with the substrate to the left of the image,

and DBR layer pairs showing prominently. Quantumwells are visible in the active region

to the right and the top of the structure/epi-surface is shown by the black boundary.

Fig. 3. XRD scan of as-grown structure, showing ZnCdMgSe material mismatch of 0.15%

from the central substrate peak.

Fig. 4. Processed samples: (a) Sample following polishing and etching of the InP substrate

to the InGaAs layer; (b) InGaAs buffer layer etched to reveal the II–VI etch stop. (c) A sam-

ple capillary bonded to a 4 mm diameter diamond.
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70 °C) and does not damage the epi-layer. After 1–2 min in the water

the sample is released from the glass.

Once released and free-floating at the water surface, the sample is

b3 μm thick, but has been observed to resist cracking under moderate

curvature. It can be lifted and printed onto the target substrate via cap-

illary bonding to achieve an optical quality interface. Here we bonded

the samples to optically-flat glass, sapphire and diamond windows

(see Fig. 4(c)).

The root-mean-square (RMS) roughness of both the etched and the

as-grown epitaxial surface were measured (see Fig. 5), using a Park XE-

100 atomic force microscope (AFM), to be 3.6 nm and 7.0 nm respec-

tively, averaged across a 5 × 5 μm square of the sample. The as-grown

surface corresponds to the surface profile as seen in the cross-

sectional SEM image in Fig. 2.

3. Results and discussion

To establish post-transfer optical characteristics, measurements of

photoluminescence (PL)were recorded using a Jobin-Yvon HR460 grat-

ing spectral analyser (1200 g/mm grating, Si detector) before and after

the transfer. PL excitation was provided by a GaN diode emitting at

405 nm, focussed to a spot size of approximately 50 μm radius with

power up to 42 mW, corresponding to an excitation density of approx-

imately 500 W/cm2. PL collection and collimation were achieved by

using an f = 80 mm lens. The collimated light was subsequently fo-

cussed into the grating spectrometer with an f = 300 mm lens. The

sample is mounted on a thermo-electric cooler (TEC) with thermally

conductive paste for temperature control.

PL collected at normal incidence to the structure, ‘surface-PL’, shows

the emission of the QWs, modulated by the optical resonances of the

multilayer structure. Fig. 6(a) shows surface-PL measurements before

and after processing for a sample transferred to glass and another to

diamond.

Multiple peakswithin the emission spectral profile are caused by the

summation of multiple structural filters/resonances including contribu-

tions from the DBR layers and the quantum well region. This profile is

consistent with what would be expected within the range of only slight

variation from the designed optical thicknesses. The layer thicknesses

are designed so that the QWs are spaced λ/2 apart to coincide with

the antinodes of the target wavelength standing wave, and the sub-

cavity resonance increases the optical field.

The absolute values for the processed samples cannot be accurately

compared with the unprocessed sample, which includes back-

reflection from the InGaAs buffer layer. What is notable, however, is

Fig. 5. (a) AFM image of the etched II–VI surface, post-transfer, with an RMS calculated

roughness of 3.6 nm. (b) AFM image of the as grown epi-layer, RMS roughness 7.0 nm.

Fig. 6. (a) Surface photoluminescence at room temperature of a sample before and after

processing, both transferred to glass and diamond. The two peaks correspond to sub-

cavity resonances. (b) Surface photoluminescence of the sample on diamond as the

samplemount temperature is increased. Relative peakheight change indicates the redshift

of the underlying quantum well emission at increased temperatures.
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that a distinct difference can be seen in the relative peak heights for the

sample on glass. We attribute this to a pump-induced temperature in-

crease being stronger for the sample bonded to glass. By observing the

surface-PL of the sample on diamond with a controlled change of sam-

ple temperature using the TEC, shown in Fig. 6(b), it can be seen that

the relative peak heights of the resonances shift due to the underlying

redshift of the quantum well PL.

‘Edge-PL’ refers to the PL emitted from the cleaved sample edges,

collected using a microscope objective, so that the unmodulated QW

emission may be observed. The pumped area is close to the edge of

the sample to minimise PL re-absorption. Fig. 7 shows the edge-PL for

structures bonded to glass and diamond.

The sample on glass shows a quantum well emission redshift of

200 nm/W, compared to the sample on diamond, which shows no

measurable change. This pump-induced redshift of the QW emission

with pump power explains the observed relative intensity shift of the

surface-PL resonance peaks for the sample on glass.

To quantify the thermal shift of the QW emission, the edge-PL for an

unprocessed sample ismeasured atfixed lowpumppowerwith varying

mount temperatures. Fig. 8 shows a 0.13 nm/K redshift in the emission

wavelength for the ZnCdSe/ZnCdMgSe multiple QW structure.

This compares well to the predicted thermal shift of 0.11 nm/K [27].

Thus we estimate that the pump-induced temperature increase in the

gain region for the sample bonded to glass was 46 K for only 35 mW

pump power.

4. Conclusions

The release of II–VI multi-quantum well thin films based on

ZnCdMgSe lattice-matched to InP has been achieved by complete re-

moval of the InP substrate and InGaAs buffer layer. AFMmeasurements

demonstrate that the etched surface has low roughness suitable for cap-

illary bonding to non-native substrates; in this case we have transferred

the thin films to glass, sapphire and diamond windows.

Room temperature PL measurements show no significant shift in

QW emission wavelength indicating that no strain relaxation has

occurred following release from the substrate. Samples optically-

contacted to diamond substrates show no shift in wavelength when

optically-pumped, indicating good thermal management suitable for

development of an optically pumped semiconductor disk laser [15].

The transfer of multi-QW semiconductor structures to transparent

substrates allows for optical transmission configurations. This is inter-

esting, e.g., for integrated II–VI films as colour converters or in vertical

emission external cavity lasers using transparent heat-sinks. Limitations

in crystalline/interface quality and thickness due to fabrication

methods, such as monolithic metalorganic vapour phase epitaxy and

MBE, could be bypassed through the use of multiple stacked, separately

grown semiconductor layers. This offers solutions to problems where a

low refractive index contrast, i.e. for integrated DBRs, would require a

high number of periods, resulting in an impractically thick structure

for one single monolithic growth process. Other applications could lie

in the stacking of multi-QW structures for enhanced gain (semiconduc-

tor lasers) or absorption (semiconductor saturable absorbers).
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