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Mean Percentage of Returns for Stock Market Linked Savings

Accounts

Ling Feng1, Zhigang Huang1, Xuerong Mao2 ∗
1 School of Economics and Management, Fuzhou University, China

2 Department of Mathematics and Statistics,

University of Strathclyde, Glasgow G1 1XH, U.K.

Abstract

Stock market linked savings accounts have become more and more popular. The returns
of these accounts are random so the returns, even the initial capital, are not guaranteed.
They are very much different from the familiar fixed-term-fixed-rate savings accounts. The
aim of this paper is to perform the stochastic and numerical analysis on the stock market
linked savings accounts in order to establish the theory on the mean percentage of return
(MPR). We will mainly perform the case studies on 5 typical plans linked to the UK Financial
Times Stock Exchange (FTSE) 100 Index, but the theory developed is fully illustrated so
that it can be applied to other plans by the reader.

Key words: Stock market linked savings accounts, stochastic differential equations, ran-
dom payoff, the FTSE 100 index, Monte Carlo simulation, Euler–Maruyama scheme.

1 Introduction

Income needs seem to be a top priority at the moment—and with low savings rates and top UK
equity income funds yielding less than 4%, it is perhaps easy to understand why. With savings
rates continuing at their record lows, some savers are turning to alternatives. It is in this spirit
that many financial institutions are offering stock market linked savings plans to those looking
to combine a high yield opportunity with some protection against a falling stock market. Here
are some of them:

P1 Target Income Deposit Plan: This plan from Investec is designed to repay your initial
deposit and to deliver a pre-defined income if the UK Financial Times Stock Exchange
(FTSE) 100 Index (we will simply use the Index from now on) increases over the 3 year
term: (a) 13% income if the Index is higher after 3 years. (b) If after 3 years the Index is
equal to or lower than its starting level, you will receive back only your initial deposit.

P2 Stock Market Linked Savings Bound: This plan from Santander is designed to repay your
initial deposit and to deliver a return over the 5 year term: (a) 40% income if the Index
is increased by more than 40% in 5 years. (b) If after 5 years, the Index is increased by
a percentage between 0.5% and 40%, you will receive an income by the same percentage.
(c) If after 5 years the Index is not increased by more than 0.5%, you will receive a 0.5%
income.

P3 Deposit Kick Out Plan: This plan from Gilliat is a 5 year plan. If the index is at or above
its starting value at the end of year 3, 4 or 5, you will receive your original capital back
plus 35% income. But if the Index is lower at the end of any of these 3 years, you will not
receive any growth and you will only receive your capital back.

∗Corresponding author. E-mail: x.mao@strath.ac.uk
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P4 The Investec FTSE 100 Target Income Deposit Plan: This is a six year structured deposit
plan linked to the performance of the Index. The Index is measured at the start of the
Plan, and then on a yearly basis thereafter. If the average closing level of the Index for
the five business days up to and including the anniversary date is higher than 90% of the
Initial Index Level a fixed income of 5% gross will be paid to you. If the anniversary Index
level is equal to or below 90% of the Initial Index Level no income will be paid for that
year. However should the Index meet the required level on any future anniversary, any
previously missed income payments will be added back and paid out.

P5 Income Accumulator Plan: This plan from Morgan Stanley is a six year structured income
investment plan linked to the performance of the Index. It offers up to 6.5% each year,
with income being accrued for each week the Index closes between 4,500 and 9,000 points -
if it closes outside of this range, no income will be added for that week. Income payments
will be calculated and paid at the end of each quarter, the total income payment being
proportionate to the number of Weekly Observation Dates the Index is between the 4,500
to 9,000 range. For example for a quarter consisting of 13 weeks, should the Index finish
between the range on 11 of 13 Weekly Observation Dates, the quarterly income payment
would be 1.375% ((0.065/4) × 11/13). Also included is some protection against a falling
market, since your initial capital is returned in full unless the value of the Index at the
end of the term is below 4,250 points. If the Index is lower, your initial investment will be
reduced by 1% for each 1% that the Final Index Level is below the level of the Index at
the start of the plan so you could lose some or all of your original capital.

All these plans are linked to the performance of the Index. The incomes of these plans are
random. They are very much different from the familiar fixed-term-fixed-rated savings accounts.
The index has increased by 14.43% in year 2013 (see Figure 1 in the end of paper). On the
other hand, leading three to six year fixed rates are currently offering between 2.6% and 3.15%,
so the plans above look very attractive.

However, the past performance of the Index is not a guide to its future performance. In
particular, recalling the past 17-year performance (see Figure 2 in the end of paper), one might
feel the Index may have reached its peak and it will decline in the future (Plans P4 and P5 aim to
attract these savers). So the returns of these plans, even the initial capital, are not guaranteed.

The aim of this paper is to perform the stochastic and numerical analysis on the stock
market linked savings accounts in order to establish the theory on the mean percentage of
return (MPR). We will mainly perform the case studies on Plans P1-P5 listed above, but the
theory developed is fully illustrated so that it can be applied to other plans by the reader.

Our stochastic and numerical analysis is dependent on the stochastic models for the Index.
There are many stochastic models developed in the past 50 years, including the geometric
Brownian motion, the CRR model, the mean reverting square root process (see e.g. [1, 3, 4, 5,
7, 8, 10, 13, 14]). In this paper we will use some of these known models to establish our new
theory. We have to emphasize that it is certainly not the aim of this paper to model the Index.
Our aim is to compute the mean payoffs for the stock market linked savings accounts should the
Index follows a given stochastic model.

To illustrate the use of our theory, we will only compare the stock market linked savings
accounts with the bank fixed term savings accounts by assuming that the savers choose only
one of these two. Leading three to six year fixed rates are currently offering between 2.6% and
3.15% annually. For illustration, we will assume the annual fixed rate is 2.875% (the average
of these two) throughout this paper. By the common sense, the saver will not choose a stock
market linked savings account if the corresponding MPR is not greater than the percentage of
the income of a fixed term savings account. For example, Plan P1 is not attractive if its MPR
is not greater than 8.875% (= (1 + 0.02875)3 − 1).

2



2 MPR based on Geometric Brownian Motion

In this section we assume that the Index, denoted by x(t), follows the geometric Brownian motion
(GBM). The GBM was first used by Samuelson [16] in financial modelling. It was later used
by Merton [14] and Black and Scholes [1] to derive their Nobel Prize winning pricing formula.
Looking at Figure 1 and assuming that the Index will perform in a similar pattern in the future
as year 2013, one would feel that the GBM is appropriate.

The GBM is described by the linear stochastic differential equation (SDE)

dx(t) = µx(t)dt+ σx(t)dB(t), t ≥ 0, (2.1)

where µ, σ are both positive constants, known as the growth rate and the volatility, respectively,
andB(t) is a standard Brownian motion defined on a complete probability space (Ω,F , {Ft}t≥0,P)
with the filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right continuous and increas-
ing while F0 contains all P-null sets). Let us highlight that the unit for the time t is year. We
let t = 0 be the starting date of the underlying plan and let x(0) = x0 > 0 be the starting level
of the Index. It is well known (see e.g. [4, 11, 12]) that the SDE has its explicit solution

x(t) = x0 exp
(

(µ− 0.5σ2)t+ σB(t)
)

, t ≥ 0 (2.2)

The Index in 2013 is shown in Figure 1 and its daily closing levels are listed in the Appendix.
In 2013, there are 253 business (banking) days and we let xi (1 ≤ i ≤ 253) denote these levels.
Moreover, the closing level of the Index on 31 Dec 2012 is 5897.81 and we set it as the starting
level for 2013, namely x0 = 5897.81. Assume that during this year, the Index obeys the SDE
model (2.1). Let h = 1/253. Then, by (2.2), we have

x(ih) = x((i− 1)h) exp
(

(µ− 0.5σ2)h+ σ[B(ih)−B((i− i)h)]
)

, 1 ≤ i ≤ 253.

This implies immediately that

log(x(ih)/x((i− 1)h)) ∼ N((µ− 0.5σ2)h, σ2h).

Set ξi = log(xi/xi−1). Then {ξi}1≤i≤253 is a sample of the normal distributionN((µ−0.5σ2)h, σ2h).
It is therefore well known that the sample mean

ξ̄ =
1

253

253
∑

i=1

ξi

and variance

s2ξ =
1

252

253
∑

i=1

(ξi − ξ̄)2

give good estimations for (µ − 0.5σ2)h and σ2h, respectively. In other words, the estimated
growth rate µ̂ and volatility σ̂ satisfy

(µ̂− 0.5σ̂2)h = ξ̄ and σ̂2h = s2ξ .

That is,
µ̂ = 253(ξ̄ + 0.5s2ξ) and σ̂2 = 253s2ξ . (2.3)

Using the data listed in the Appendix with x0 = 5897.81, we easily get

µ̂ = 0.1423 and σ̂ = 0.1220. (2.4)

A sample path of the solution to the SDE (2.1) with µ = 0.1423 and σ = 0.1220 starting from
x0 = 5897.81 on t ∈ [0, 1] is shown in Figure 3 (in the end of paper).

In the remaining of this Section, we will often use these estimated parameters to illustrate
our theory. We will also assume that all plans discussed in this paper start from 31 December
2013 and the starting level of the Index is 6749.09 (i.e. the closing level on 31 December 2013),
unless otherwise specified.
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2.1 Plan P1

This is the simplest plan discussed in this paper. By (2.2), we have

x(3) = x0 exp
(

3(µ− 0.5σ2) + σB(3)
)

= x0 exp
(

3(µ− 0.5σ2) +
√
3σZ

)

,

where Z ∼ N(0, 1) as B(3) ∼ N(0, 3) =
√
3Z. (Please recall that the time is measured in years).

It is easy to see that x(3) > x0 if and only if

Z > −
√
3(µ− 0.5σ2)

σ
=: z1,

where =: means “denoted by”. Hence

P(x(3) > x0) = P(Z > z1) = 1−N(z1),

where N(x) is the cumulative probability function of the standard normal distribution, namely

N(x) =

∫ x

−∞

1√
2π

e−y2/2dy, x ∈ (−∞,∞).

We recall that for Plan P1, the plan holder will receive a 13% return if x(3) > x0 but nothing
if x(3) ≤ x0. Hence the MPR for Plan P1 is

MPR = 0.13× P(x(3) > x0) + 0× P(x(3) ≤ x0) = 0.13(1−N(z1)). (2.5)

Recall that we assume that the annual fixed interest rate for 3-year fixed rate bounds is 2.875%.
By the common sense, one would not take Plan P1 if

MPR ≤ (1 + 0.02875)3 − 1 = 0.08875345. (2.6)

If one figures out µ and σ he can easily verify if (2.6) holds or not and then decide whether take
Plan P1. For example, if one uses the parameters estimated by (2.4), namely µ = 0.1423 and
σ = 0.1220, then the MPR = 0.1263897. In this case, he would take the plan.

On the other hand, observing that the Index has continuously grown for 5 years (see Figure
2), he may feel the Index will not grow so fast in the future though the volatility may remain
the same as before. He would like to know the range for the value of µ for which he would not
take Plan P1. Note that (2.6) is equivalent to N(z1) ≥ 0.3172812, or z1 ≥ −0.4753151, namely

µ− 0.5σ2

σ
≤ 0.2744233. (2.7)

This implies µ ≤ σ(0.2744233 + 0.5σ) = 0.04092164. In other words, when the volatility is
around 0.1220, he would not take Plan P1 if µ ≤ 4.1%.

Formula (2.7) can be used in another way. Assume that one feels the growth rate is likely to
be about 5% in the next 3 years and he wishes to know the volatility range for which he would
not take Plan P1. In this case, (2.7) becomes 0.5σ2 + 0.2744233σ − 0.05 ≥ 0, which implies
σ ≥ 0.1442749. In other words, when µ = 0.05, he would not take Plan P1 if σ ≥ 0.1442749.

2.2 Plan P2

This plan is slightly more complicated than Plan P1. By (2.2), the percentage of increase of the
Index in 5 years is Ẑ − 1 (of course decrease when this is negative), where

Ẑ := exp
(

5(µ− 0.5σ2) +
√
5σZ

)

,
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where Z appears as B(5) ∼ N(0, 5) =
√
5Z (similarly in a couple of places later) and := means

“denotes”. Hence the MPR for Plan P2 is

MPR = 0.4P(Ẑ − 1 > 0.4) + E

(

(Ẑ − 1)I{0.05≤Ẑ−1≤0.4}

)

+ 0.05P(Ẑ − 1 < 0.05), (2.8)

where IA is the indicator function of set A, i.e. IA(x) = 1 if x ∈ A and 0 otherwise. In a similar
way as we did for Plan P1, we can show

P(Ẑ − 1 > 0.4) = 1−N(z2), P(Ẑ − 1 < 0.05) = N(z3), (2.9)

where

z2 =
log 1.4− 5(µ− 0.5σ2)√

5σ
, z3 =

log 1.05− 5(µ− 0.5σ2)√
5σ

. (2.10)

Let us now compute

E

(

(Ẑ − 1)I{0.05≤Ẑ−1≤0.4}

)

= E

(

ẐI{1.05≤Ẑ≤1.4}

)

− P(1.05 ≤ Ẑ ≤ 1.4)

= E

(

ẐI{1.05≤Ẑ≤1.4}

)

−N(z2) +N(z3).

But

E

(

ẐI{1.05≤Ẑ≤1.4}

)

=

∫ z2

z3

1

2π
exp

(

5(µ− 0.5σ2) +
√
5σz − 0.5z2

)

dz

=

∫ z2

z3

1

2π
exp

(

5µ− 0.5(z −
√
5σ)2

)

dz

= e5µ
∫ z2−

√
5σ

z3−
√
5σ

1

2π
exp

(

− 0.5y2
)

dy

= e5µ[N(z2 −
√
5σ)−N(z3 −

√
5σ)].

Hence

E

(

(Ẑ − 1)I{0.05≤Ẑ−1≤0.4}

)

= e5µ[N(z2 −
√
5σ)−N(z3 −

√
5σ)] +N(z2) +N(z3). (2.11)

Substituting (2.10) and (2.11) into (2.8), we get the following theorem:

Theorem 2.1 For Plan P2, we have

MPR = 0.4− 1.4N(z2) + 1.05N(z3) + e5µ[N(z2 −
√
5σ)−N(z3 −

√
5σ)], (2.12)

where z2 and z3 are defined by (2.10).

In the common sense, one would not take Plan P2 if

MPR ≤ (1 + 0.02875)5 − 1 = 0.152257. (2.13)

In this paper we will use the software R to perform numerical calculations or the Monte Carlo
simulations. It is convenient to design the following R-function on µ and σ to compute the MPR
for Plan P2:

P2 <- function(m,s){

z2=(log(1.4)-5*(m-0.5*s^2))/(sqrt(5)*s)

z3=(log(1.05)-5*(m-0.5*s^2))/(sqrt(5)*s)

z2a=z2-sqrt(5)*s

z3a=z3-sqrt(5)*s

0.4-1.4*pnorm(z2)+1.05*pnorm(z3)+exp(5*m)*(pnorm(z2a)-pnorm(z3a))}
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For example, if µ = 0.1423 and σ = 0.1220 as estimated by (2.4), entering

P2(0.1423,0.1220)

in R we get the MPR = 0.3832473. In this case, one should take Plan P2. If we reduce the
growth rate to µ = 0.041 but keep the volatility unchanged, then performing

P2(0.041,0.1220)

we get the MPR = 0.2094509 so Plan P2 is still better than fixed term savings accounts.
Recalling that one would not take Plan P1 when µ = 0.041 and σ = 0.1220, we see Plan P2
seems offer a better return. If we further reduce the growth rate to µ = 0.005, the same as the
basic rate set by the Bank of England, but still keep the volatility unchanged, then entering

P2(0.005,0.1220)

in R we get the MPR = 0.1301531 so Plan P2 becomes not attractive.

2.3 Plan P3

This plan is more complicated than the two before. It is known that the solution of equation
(2.1) is a homogeneous Markov process. Given any x(s) = x > 0 at s ≥ 0, equation (2.1) has
the solution

x(s+ t) = x exp
(

(µ− 0.5σ2)t+ σ
√
tZ
)

, t ≥ 0. (2.14)

It is then easy to show

P(x(s+ t) ≤ y|x(s) = x) = N(z4), y > 0,

where

z4 =
log(y/x)− (µ− 0.5σ2)t

σ
√
t

. (2.15)

Hence the transition probability density of the solution is

p(x; y, t) =
1√

2πtσy
exp

(

− [log(y/x)− (µ− 0.5σ2)t]2

2tσ2

)

. (2.16)

By the Markov property, we have

P(x(3) ≥ x0, x(4) ≥ x0, x(5) ≥ x0)

= P(x(3) ≥ x0)P(x(4) ≥ x0|x(3) ≥ x0)P(x(5) ≥ x0|x(4) ≥ x0)

=

∫ ∞

x0

p(x0;x3, 3)
(

∫ ∞

x0

p(x3;x4, 1)
[

∫ ∞

x0

p(x4;x5, 1)dx5

]

dx4

)

dx3. (2.17)

It is not difficult to show
∫ ∞

x0

p(x4;x5, 1)dx5 = 1−N(d(x4, 1)),

where

d(x, t) :=
log(x0/x)− (µ− 0.5σ2)t

σ
√
t

for x > 0, t > 0. (2.18)

Hence
∫ ∞

x0

p(x3;x4, 1)
[

∫ ∞

x0

p(x4;x5, 1)dx5

]

dx4

=

∫ ∞

x0

1√
2πtσx4

exp

(

− [log(x4/x3)− (µ− 0.5σ2)]2

2σ2

)

[1−N(d(x4, 1))]dx4.
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Setting
log(x4/x3)− (µ− 0.5σ2)

σ
=: x̄4,

and noting

d(x4, 1) =
log(x0/x3)− [σx̄4 + 2(µ− 0.5σ2)]

σ
= d(x3, 1)− x̄4 − (µ− 0.5σ2)/σ,

we get

∫ ∞

x0

p(x3;x4, 1)
[

∫ ∞

x0

p(x4;x5, 1)dx5

]

dx4

=

∫ ∞

d(x3,1)

1√
2π

e−0.5x̄2

4 [1−N(x̄4)]dx̄4

=

∫ ∞

d(x3,1)

1√
2π

e−0.5x̄2

4 [1−N(d(x3, 1)− x̄4 − (µ− 0.5σ2)/σ)]dx̄4

= 1−N(d(x3, 1))−
∫ ∞

d(x3,1)

1√
2π

e−0.5x̄2

4N(d(x3, 1)− x̄4 − (µ− 0.5σ2)/σ)dx̄4

= 1− I(d(x3, 1)), (2.19)

where

I(x) := N(x) +

∫ ∞

x

1√
2π

e−0.5x̄2

4N(x− x̄4 − (µ− 0.5σ2)/σ)dx̄4, x ∈ R. (2.20)

Substituting this into (2.21) we get

P(x(3) ≥ x0, x(4) ≥ x0, x(5) ≥ x0) =

∫ ∞

x0

p(x0;x3, 3)[1− I(d(x3, 1))]dx3. (2.21)

In the same way as (2.19) was proved, we can then show

P(x(3) ≥ x0, x(4) ≥ x0, x(5) ≥ x0)

= 1−N(d(x0, 3))−
∫ ∞

d(x0,3)

1√
2π

e−0.5x̄2

3I(−
√
3x̄3 − 4(µ− 0.5σ2)/σ)dx̄3. (2.22)

Recalling that the holder of Plan P3 will receive 35% income only if x(3) ≥ x0, x(4) ≥ x0 and
x(5) ≥ x0 otherwise no income, we hence obtain the following theorem:

Theorem 2.2 For Plan P3, we have

MPR = 0.35

(

1−N(d(x0, 3))−
∫ ∞

d(x0,3)

1√
2π

e−0.5x̄2

3I(−
√
3x̄3 − 4(µ− 0.5σ2)/σ)dx̄3

)

, (2.23)

where d(x, t) and I(x) are defined by (2.18) and (2.20), respectively.

Although the integration involved cannot be computed analytically, it can be done numer-
ically. For illustration, let us assume that

x0 = 6500, µ = 0.025, σ = 0.05.

So d(x0, 3) = −0.8227 and

MPR = 0.2781611− 0.35

∫ ∞

−0.8227

1√
2π

e−0.5x̄2

3I(−
√
3x̄3 − 1.9)dx̄3. (2.24)
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Noting 0 ≤ I(x) ≤ 1, the following formula is accurate enough

MPR = 0.27813− 0.35

∫ 4

−0.8227

1√
2π

e−0.5x̄2

3I(−
√
3x̄3 − 1.9)dx̄3 (2.25)

(the error is less than 0.35(1−N(4)) = 1.11× 10−5). Also, noting

I(x) = N(x) +

∫ 0

−∞

1√
2π

e−0.5(̄x−u)2N(u− 0.475)du, x ∈ R,

we see that

∣

∣

∣
I(x)−N(x)−

∫ 0

−3.525

1√
2π

e−0.5(̄x−u)2N(u− 0.475)du
∣

∣

∣
≤ N(−4) = 3.167124× 10−5.

It is therefore good enough to use

I(x) = N(x) +

∫ 0

−3.525

1√
2π

e−0.5(x−u)2N(u− 0.475)du, x ∈ R. (2.26)

Moreover, we have that −
√
3x̄3 − 1.9 = −0.4749 and −8.8283 when x̄3 = −0.8227 and 4,

respectively. We can now easily compute the MPR using (2.25) numerically. Inputting the
following R-codes in R

Dt=0.0001

I <- 1:83535

u<-1:35250

u<-(u-35250)*Dt

for (i in 1:83535){

x=(i-88284)*Dt

y <- exp(-0.5*(x-u)^2)*pnorm(u-0.475)

I[i]= pnorm(x)+sum(y)*Dt/sqrt(2*pi)}

x<-1:48228

x<-(x-8228)*Dt

i<- (-sqrt(3)*x-1.9+8.8284)*10000

i<- trunc(i)

y<-exp(-0.5*x^2)*I[i]

0.27813-0.35*sum(y)*Dt/sqrt(2*pi)

will give us the MPR = 0.2564508. This is larger than (1 + 0.02875)2 − 1 = 0.152257 so
Plan P3 is more attractive than a 5-year fixed rate savings account. Let us point out that the
numerical calculations above for the integrals involved use the Riemann sums with sufficiently
small partitions (Dt= 0.0001) so it is almost accurate.

Let us now introduce the Monte Carlo simulation to compute the MPR approximately. The
linear SDE (2.1) has its explicit solutions at t = 3, 4, 5:

x(3) = x0 exp
(

3(µ− 0.5σ2) + σB(3)
)

,

x(4) = x(3) exp
(

(µ− 0.5σ2) + σ(B(4)−B(3))
)

,

x(5) = x(4) exp
(

(µ− 0.5σ2) + σ(B(5)−B(4))
)

.

Making use of these solutions, we can simulate a sample of large size for (x(3), x(4), x(5)). By
the large number theory, the proportion of min(x(3), x(4), x(5)) ≥ 6500 gives a good estimation
for the probability P(min(x(3), x(4), x(5)) ≥ 6500), and hence we will be able to obtain the MPR
approximately. For this purpose, let us design an R-function:
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P3 <- function(x0,m,s,N){

## dx(t)=mxdt+sxdB(t), 0\le t\le 5

## N the sample size, x0 initial value

y <- 1:3

x <- 1:3

for (j in 1:N){

x[1]=x0*exp((m-0.5*s^2)*3 +s*sqrt(3)*rnorm(1))

x[2]=x[1]*exp((m-0.5*s^2)+s*rnorm(1))

x[3]=x[2]*exp((m-0.5*s^2)+s*rnorm(1))

y[j]=min(x)}

y[y<x0]<-0

y[y>0]<-1

0.35*sum(y)/N}

Now, we enter

> P3(6500,0.025,0.05,50000)

in R and get the MPR 0.256816, which is very close to 0.2564508 obtained above. Of course,
every time the function P3 is performed, a slightly different value for the MPR is produced.
This is one difference between the Monte Carlo simulations and the numerical calculations
above. However, the value should be around 0.2564 as long as the sample size N is sufficiently
large (we use N = 50000). It is a good idea to perform P3 a number of times and then take the
average of the values as the MPR. For example, performing P3 ten times

MPR <-1:10

for (j in 1:10){

MPR[j]<-P3(6500,0.025,0.05,50000)}

sum(MPR)/10

we get the average value 0.2563561 for the MPR, which is more accurate. This example has
shown the accuracy of the Monte Carlo simulations. There are other advantages. For example,
it is simple than the numerical calculations above. The computation time is also much less than
the numerical calculations (the reader may try and see the difference).

Moreover, the R-function P3 can handle different SDE parameters and initial values easily.
For example, assume that Plan P3 starts from 31 December 2013 and the starting level of the
Index x0 = 6749.09, the closing level of the Index on 31 December 2013. Moreover, we use the
growth rate and volatility as estimated by (2.4), namely µ = 0.1423 and σ = 0.1220. Performing

P3(6749.09,0.1423,0.1220,50000)

we get the MPR= 0.337736. Keeping σ unchanged but reducing µ to 0.041, 0.02, and further
to 0.005, we get the MPR 0.206402, 0.157339, and 0.122871, respectively. These Monte Carlo
simulations show Plan P3 is more attractive than 5-year fixed rate savings accounts if µ ≥ 2%
and the volatility is around 0.1220.

The further benefits of the Monte Carlo simulations are demonstrated when we discuss the
other plans in the following sections where the analytical solutions become too complicated.

2.4 Plan P4

This plan is even more complicated and we do not have an analytical solution yet but we will
develop a Monte Carlo method to compute the MPR approximately.
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First of all, we observe that there are 253 business days per year (ignoring the leap year).
We next assume that the plan holder will deposit his income, if any, at each anniversary to a
fixed term bank savings account and the annual interest rate is r = 0.02785 (as we assume in
this paper). Moreover, the initial index level is the closing level of the Index at the start date of
the plan. We may regard the initial index level as unit 1 (i.e. scaled by 6749.09 so x0 = 1), as
the SDE model (2.1) is linear and the annual income depends on the percentage change of the
Index.

Let us now consider the closing level of the Index for the five business days up to and
including the first anniversary date. Set h = 1/253 and let Z1, · · · , Z5 follow the standard
normal distribution N(0, 1) independently. Then, these five closing levels are

x(1− 4h) = exp
(

(µ− 0.5σ2)(1− 4h) + σ
√
1− 4hZ5

)

and
x(1− jh) = x(1− (j + 1)h) exp

(

(µ− 0.5σ2)h+ σ
√
hZj+1

)

, j = 3, 2, 1, 0.

The payment index level (PIL) for year 1 is

PIL1 =
1

5

4
∑

j=0

x(1− jh).

If PIL1 > 0.9, then 5% income is paid at the first anniversary date. The holder can then
deposit it in a savings account and hence by the end of the Plan, he will get 0.05(1 + r)5. If
PIL1 ≤ 0.9, no payment is made at the first anniversary date. Similar, we can get PILi for year
i (2 ≤ i ≤ 6). Let PIL = (PIL1, · · · ,PIL6), i.e. the payment index level vector. For example, if
PIL = (0.89, 0.91, 0.86, 0.85, 1.01, 0.87), then at anniversaries 1,3,4 and 6, no payment is made,
but at anniversaries 2 and 5, 2× 5% and 3× 5% incomes are paid, respectively. In the end, the
plan holder receives 2× 0.05(1 + r)4 + 3× 0.05(1 + r) (percentage of) income.

Let us now design an R-function to perform the Monte Carlo simulations in order to get
the MPR for this plan:

P4 <-function(m,s,r,N){

## dx=mxdt+sxdB(t), r fixed interest rate

## N sample size

h=1/253

b=m-0.5*s^2

pay <- rep(0,times=N)

for (i in 1:N){

Z <- rnorm(30)

t <- rep(c((1-4*h),h,h,h,h),times=6)

x <- exp(b*t+s*sqrt(t)*Z)

x <- cumprod(x)

x <- cumsum(x)

PIL <- x[c(5,10,15,20,25,30)]-c(0,x[c(5,10,15,20,25)])

PIL <- PIL/5

cyr=0

for (j in 1:6){

if (PIL[j]>0.9) {pay[i]+0.05*(cyr+1)*(1+r)^(6-j)-> pay[i]

cyr=0}

else {cyr+1-> cyr}}}

sum(pay)/N}

If we use the parameters estimated by (2.4), namely µ = 0.1423 and σ = 0.1220, then

10



P4(0.1423,0.1220,0.02875,50000)

shows the MPR = 0.3221625. That is, the average percentage of return for 6 years is about
32.22% and this is certainly better than the 6-year fixed term savings bound whose return is
18.54%.

On the other hand, this plan is currently on offer in the UK market in order to attract the
savers who have the feeling that the Index may have reached its peak and it will decline in the
future (please recall Figure 2), as the plan even offers an income against a falling market up
to 10%. Let us assume µ = −0.02 (the Index declines 2% per year in average) but leave the
volatility the same as before. Then

P4(-0.02,0.1220,0.02875,50000)

shows the MPR = 0.2034199 so Plan P4 is still better off. Further reduce µ to −0.03, we get
MPR = 0.1828537 so the plan almost makes even with the fixed-term savings accounts. To see
the sensitivity of the volatility, we fix µ = −0.02 but increase the volatility to σ = 0.15. In this
case, we have the MPR = 0.1963491. These Monte Carlo simulations show that Plan P4 looks
attractive unless the Index will decline more than 2% annually in the future.

2.5 Plan P5

This plan is most complicated one among the five plans we discuss in this paper. It has the
features of Plans P2 and P4. There are 1520 business days in 6 years (taking leap years into
account) so we may assume that there are 304 weeks and 5 business days every week. Assume
also in years 1,2,4,5, there are 12,13,13,13 weeks in quarter 1,2,3,4, respectively, but in years 3
and 6, there are 12,13,12,13 weeks in quarter 1,2,3,4, respectively. Let qwi denote the number
of weeks in the ith quarter for these 24 quarters. For example, qw1 = 12, qw2 = 13 etc.
We also let rw denote the weekly fixed interest rate. So (1 + rw)

304 = 1.028756 which gives
rw = 0.0005595869. Moreover, the annual income payment rate is rp = 0.065 so the quarterly
income payment rate rqp = 0.01625 (0.065/4).

Set h = 6/304 and let Z1, · · · , Z304 follow N(0, 1) independently. Then the closing levels of
the Index at the end of these 304 weeks are

xj = x(j − 1) exp
(

(µ− 0.5σ2)h+ σ
√
hZj

)

, j = 1, 2, · · · , 304,

where x(0) = x0. Define the payment indices

PIj =

{

1 if 4500 ≤ xj ≤ 9000,

0 otherwise.

Then the proportion of the number of Weekly Observation Dates in quarter i (1 ≤ i ≤ 24) when
the Index is between the 4,500 to 9,000 range is

pi =
1

qwi

qi
∑

j=qi−1+1

PIj ,

where q0 = 0 and qi =
∑i

k=1 qwk (i.e. the total number of weeks from quarter 1 to i). So the
income payment at the end of quarter i is rqppi, which can can be saved for 304 − qi weeks
resulting the income rqppi(1 + rw)

304−qi at the end of the plan. Thus, the total percentage of
income over the 6 years is

24
∑

i=1

rqppi(1 + rw)
304−qi
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and the mean percentage of income is

MPI = E

(

24
∑

i=1

rqppi(1 + rw)
304−qi

)

. (2.27)

On the other hand, if the value of the Index at the end of the term, namely the Final Index
Level (FIL), x304 is below 4500 points, then initial investment will be reduced by (x0−x304)/x0,
which is the percentage of loss. Therefore, the mean percentage of loss in 6 years is

MPL = E

(

I{x304<4500}
x0 − x304

x0

)

. (2.28)

Consequently, the MPR of Plan P5 is

MPR = MPI−MPL. (2.29)

The analysis above enables us to design an R-function compute the approximated MPR for
this plan:

P5 <- function(x0,m,s,r,rp,N){

rw=(1+r)^(6/304)-1

rqp=rp/4

h=6/304

b=m-0.5*s^2

qw1 <- c(12,13,13,13)

qw2 <- c(12,13,12,13)

qw <- c(qw1,qw1,qw2,qw1,qw1,qw2)

q <- cumsum(qw)

intwk <- 304-q

income<-rep(0,times=N)

loss<-rep(0,times=N)

for (i in 1:N){

Z <- rnorm(304)

x <- exp(b*h+s*sqrt(h)*Z)

x <- x0*cumprod(x)

PI <-rep(1,times=304)

PI[x<4500] <- 0

PI[x>9000] <- 0

PI <- cumsum(PI)

p <- (PI[q]-c(0,PI[q[1:23]]))/qw

income[i] <- sum(rqp*p*(1+rw)^intwk)

I=0

I[x[304]<4500]<-1

loss[i]=I*(x0-x[304])/x0}

meanincome=sum(income)/N

print(meanincome)

meanloss=sum(loss)/N

print(meanloss)

meanincome-meanloss}

For example, if x0 = 6749.09, µ = 0.1423 and σ = 0.1220, entering

P5(6749.09,0.1423,0.1220,0.02875,0.065,50000)
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in R we get the MPI= 0.181587 and MPL= 7.344638× 10−6, and hence the MPR= 0.1815797.
As the MPR is less than 0.185384 (= (1 + r)6 − 1)), Plan P5 is worse than the 6-year fixed
savings account in this case. This is because the growth rate 0.1423 is so large that the Index is
very likely to exceed 9000.

Looking at Figure 2, one may feel that the Index is likely to decline in the future. Assume
µ = −0.03 but leave σ unchanged. Then entering

P5(6749.09,-0.03,0.1220,0.02875,0.065,50000)

in R we get the MPI= 0.3725448 and MPL= 0.1194941, and hence the MPR= 0.2530507. In
this case, Plan P5 is better than the 6-year fixed savings account.

There is a theoretical formula for the MPL, which will allow us to verify the Monte Carlo
simulations. In fact, by the explicit formula (2.2), we have

x304 = x0 exp
(

6(µ− 0.5σ2) +
√
6σZ

)

,

where Z ∼ N(0, 1). It is easy to see that x304 < 4500 if and only if

Z <
log(4500/x0)− 6(µ− 0.5σ2)√

6σ
=: z5.

Hence

MRL =

∫ z5

−∞

1√
2π

e−0.5z2
[

1− exp
(

6(µ− 0.5σ2) +
√
6σz

)

]

dz

= N(z5)−
∫ z5

−∞

1√
2π

exp
(

6(µ− 0.5σ2) +
√
6σz − 0.5z2

)

dz

= N(z5)− e6µ
∫ z5

−∞

1√
2π

exp
(

− 0.5(z −
√
6σ)2

)

dz

= N(z5)− e6µN(z5 −
√
6σ). (2.30)

This can be computed in R easily. In fact, in the case when x0 = 6759.09, µ = −0.03 and
σ = 0.1220, entering

x0=6749.09

m=-0.03

s=0.1220

z5=(log(4500/x0)-6*(m-0.5*s^2))/(sqrt(6)*s)

pnorm(z5)-exp(6*m)*pnorm(z5-sqrt(6)*s)

we get the theoretical MPL= 0.119745. We see the approximated MPL 0.1194941 obtained
above by the Monte Carlo simulations is very close to this theoretical result.

The plan holder would hope the Index will not grow or decline too fast. Given the initial
level is 6749.09 (almost right at the middle between 4500 and 9000), it is easy to see it is better
for the growth rate to be around 0. We can verify this by entering

P5(6749.09,0,0.1220,0.02875,0.065,50000)

which yields the MPR= 0.3322351.

3 MPR based on Mean Reverting SDE Models

In the previous section, we have shown how to compute the MPR analytically or numerically or
by the method of Monte Carlo simulations assuming the Index follows the GMB. On the other
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hand, if we look at the performance of the Index over the past 17 years (1997-2013) shown in
Figure 2, we observe that the Index varies around 5200. It is therefore possibly more appropriate
to use mean reverting SDEs models. There are several mean reverting SDEs models (see e.g.
[4, 5, 10, 13]). For example, the mean reverting process

dx(t) = µ(λ− x(t))dt+ σx(t)dB(t) (3.1)

or the mean reverting square root process (also known as the CIR model [3])

dx(t) = µ(λ− x(t))dt+ σ
√

x(t)dB(t) (3.2)

or, more generally, the mean reverting theta process [10]

dx(t) = µ(λ− x(t))dt+ σ(x(t))θdB(t). (3.3)

Due to the page limit, we will only use the CIR model (3.2) as an example to show how to
perform Monte Carlo simulations to compute the MPRs for the stock market linked savings
accounts. In this section, we will also assume the system parameters

µ = 0.25, λ = 5200, σ = 10. (3.4)

We should point out that it is not the aim of this paper to estimate these parameters based on
the historical data but we refer the reader to e.g. [2, 15] in this direction. Figure 4 (in the end
of paper) is a sample path of the CIR model (3.2) for 17 years with the parameters above and
initial value 4000. This sample path is a Monte Carlo simulation based on the Euler-Maruyama
(EM) scheme (see e.g.[9, 13]):

xi = xi−1 + µ(λ− xi−1)∆t+ σ
√

|xi−1|∆Bi−1, 1 ≤ i ≤ T/∆t, (3.5)

where ∆t > 0 is the step size and ∆Bi−1 = B(i∆t)− B((i− 1)∆t). Higham and Mao [6] show
that

lim
∆t→0

E

(

sup
1≤i≤T/∆t

|x(i∆t)− xi|2
)

= 0. (3.6)

This strong convergence result forms the fundamental theory on the approximate MPRs by the
Monte Carlo simulations developed in this section. Due to the page limit once again, we will
not carry out the Monte Carlo approximations for all plans listed in Section 1 but only for Plans
P4 and P5.

3.1 Plan P4

As in Section 2.4, we let h = 1/253 and r = 0.02785. As the SDE model (3.2) is nonlinear, we
cannot scale the initial value to unit 1 but simply use what it is, namely x0 = 6749.09. Define
the payment index (PI) for year i (1 ≤ i ≤ 6)

PIi =

{

1 if 1
5

∑4
j=0 x(i− jh) > 0.9x0,

0 otherwise.

Set the payment index vector PI = (PI1, · · · ,PI6). Clearly, PI takes its values in the finite space
S := {0, 1}6. For example, if PI = (1, 0, 0, 0, 1, 0), then at anniversaries 2,3,4 and 6, no payment
is made, but at anniversaries 1 and 5, 5% and 4×5% incomes are paid, respectively. In the end,
the plan holder receives 0.05(1 + r)5 + 4 × 0.05(1 + r) (percentage of) income. In this way, we
can define uniquely an income function Pay : S → [0,∞). Hence the MPR of Plan P4 is

MPR = E(Pay(PI)). (3.7)
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We will use the EM scheme with step size ∆t to approximate x(i − jh) for i = 1, 2, · · · , 6
and j = 4, 3, 2, 1, 0. Denote the EM approximation to x(i− jh) by X(i− jh). The approximate
PI for year i is then

PIi(∆t) =

{

1 if 1
5

∑4
j=0X(i− jh) > 0.9x0,

0 otherwise.

Let PI(∆t) = (PI1(∆t, · · · ,PI6(∆t)).

Theorem 3.1 For Plan P4, we have

MPR = lim
∆t→0

E(Pay(PI(∆t))). (3.8)

Proof. By (3.6), we have

lim
∆t→0

E

(

sup
1≤i≤6, 0≤j≤4

|x(i− jh)−X(i− jh)|2
)

= 0. (3.9)

Define

x̄i =
1

5

4
∑

j=0

x(i− jh) and X̄i =
1

5

4
∑

j=0

X(i− jh)

for 1 ≤ i ≤ 6. It then follows from (3.9) that

lim
∆t→0

E

(

sup
1≤i≤6

|x̄i − X̄i|2
)

= 0. (3.10)

Recalling the definitions of PIi and PIi(∆t) as well as that the function Pay is defined on the
finite space S = {0, 1}6, we see easily that the required assertion (3.8) holds if we can show

lim
∆t→0

[P(Fi ∩Gc
i ) + P(F c

i ∩Gi)] = 0, 1 ≤ i ≤ 6, (3.11)

where Fi = {x̄i > 0.9x0}, F c
i = Ω−Fi and Gi = {X̄i > 0.9x0}, Gc

i = Ω−Gi. We now show this
for i = 1. Note that both x̄1 and X̄1 are continuously distributed random variables. Thus, for
any ǫ ∈ (0, 1), there is a sufficiently small δ > 0 such that

P(0.9x0 < x̄1 < 0.9x0 + δ) + P(0.9x0 < X̄1 < 0.9x0 + δ) < ǫ/2. (3.12)

Moreover, it follows from (3.13) that there is a sufficiently small ∆t∗ > 0 such that

P(|x̄1 − X̄1| ≥ δ
)

< ǫ/2, ∀∆t < ∆t∗. (3.13)

Therefore, for any ∆t < ∆t∗, we derive that

P(Fi ∩Gc
i ) + P(F c

i ∩Gi)

≤ P({x̄1 ≥ 0.9x0 + δ} ∩Gc
i ) + P(0.9x0 < x̄1 < 0.9x0 + δ)

+ P(F c
i ∩ {X̄1 ≥ 0.9x0 + δ}) + P(0.9 < X̄1 < 0.9x0 + δ)

≤ P(|x̄1 − X̄1| ≥ δ
)

+ P(0.9x0 < x̄1 < 0.9x0 + δ)

+ P(0.9X0 < X̄1 < 0.9x0 + δ)

< ǫ.

This means that (3.11) holds for i = 1. In the same way, we can show it holds for i = 2, · · · , 6.
The proof is therefore complete.

The theorem shows that if we choose the step size ∆t sufficiently small, we then have
E(Pay(PI(∆t))) ≈ MPR. By the large number theory, if we simulate a sample of a large size
for PI(∆t), its sample mean gives a good approximation for the MPR. The theory above leads
us to design an R-function to perform the Monte Carlo simulations in order to get the MPR for
this plan:
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CIRP4 <-function(x0,a,b,c,r,M,N){

## dx=a(b-x)dt+cxdB(t), x0 initial index level

## r fixed interest rate

## N sample size, Dt=1/(253M)

pay <- rep(0,N)

d <- 0.9*x0

Dt <- 1/(253*M)

L <- 6*253*M+1

yr<-249:253

yr<-c(yr,253+yr,2*253+yr,3*253+yr,4*253+yr,5*253+yr)

yr<-yr*M+1

for (k in 1:N){

X <- rep(0,L)

X[1]=x0

for (i in 2:L){

X[i]=X[i-1]+a*(b-X[i-1])*Dt+c*sqrt(abs(X[i-1]))*sqrt(Dt)*rnorm(1)}

X<-X[yr]

X <- cumsum(X)

PIL <- X[c(5,10,15,20,25,30)]-c(0,X[c(5,10,15,20,25)])

PIL <- PIL/5

PI<-rep(0,6)

PI[PIL>d] <- 1

cyr=0

for (j in 1:6){

if (PI[j]>0.5) {pay[k]+0.05*(cyr+1)*(1+r)^(6-j)-> pay[k]

cyr=0}

else {cyr+1-> cyr}}}

sum(pay)/N}

For example, using the parameters in (3.4), the step size ∆t = 1/2530 and the sample size 10000,
by performing

CIRP4(6749.09,0.25,5200,10,0.02875,10,10000)

we get the approximate MPR = 0.1815733. This indicates that Plan P4 is worse than a 6-year
fixed rate bound, if the Index follows the CIR model (3.2) with the parameters specified in (3.4).
This is not surprising as the mean index is 5200 and hence the index is very likely to be below
0.9x0 = 6074.18.

3.2 Plan P5

We will use the same notation as in Section 2.5. Set h = 6/304. Then the closing levels of the
Index at the end of the 304 weeks are xj = x(jh) (1 ≤ j ≤ 304). Define the payment indices

PIj =

{

1 if 4500 ≤ xj ≤ 9000,

0 otherwise,

and form the payment index vector PI = (PI1, · · · ,PI304). Clearly, PI ∈ S := {0, 1}304. Let us
now define an income function Inc : S → [0,∞) by

Inc(v) =

24
∑

i=1

rqppi(1 + rw)
304−qi
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for v = (v1, · · · , v304) ∈ S, where q0 = 0, qi =
∑i

k=1 qwk and

pi =
1

qwi

qi
∑

j=qi−1+1

vj .

With this function, the income (percentage) over the 304 weeks is Inc(PI). On the other hand, if
the value of the Index at the end of the term, namely the Final Index Level (FIL), x304 is below
4500 points, then initial investment will be reduced by (x0 − x304)/x0, which is the percentage
of loss. Therefore, the mean percentage of return in 6 year is

MPR = E

(

Inc(PI)− x0 − x304
x0

)

. (3.14)

We will use the EM scheme with step size ∆t to get the approximate solutions Xj ≈ xj for
1 ≤ j ≤ 304. Define the approximate payment indices

PIj(∆t) =

{

1 if 4500 ≤ Xj ≤ 9000,

0 otherwise,

and form the approximate payment index vector PI(∆t) = (PI1(∆t), · · · ,PI304(∆t)).

Theorem 3.2 For Plan P5, we have

MPR = lim
∆t→0

E

(

Inc(PI(∆t)− x0 −X304

x0

)

. (3.15)

The proof is similar to that of Theorem 3.2 so is omitted. This theorem leads us to design
the following R-function to perform the Monte Carlo simulations in order to get the approximate
MPR for Plan P5:

CIRP5 <- function(x0,a,b,c,r,rp,M,N){

## dx=a(b-x)dt+cxdB(t), x0 initial index level

## r fixed interest rate, rp payment rate

## N sample size, Dt=6/(304M)

rw=(1+r)^(6/304)-1

rqp=rp/4

pay <- rep(0,N)

Dt <- 6/(304*M)

L <- 304*M+1

wk <- (1:304)*M+1

qw1 <- c(12,13,13,13)

qw2 <- c(12,13,12,13)

qw <- c(qw1,qw1,qw2,qw1,qw1,qw2)

q <- cumsum(qw)

intwk <- 304-q

income<-rep(0,times=N)

loss<-rep(0,times=N)

for (i in 1:N){

X <- rep(0,L)

X[1]=x0

for (k in 2:L){

X[k]=X[k-1]+a*(b-X[k-1])*Dt+c*sqrt(abs(X[k-1]))*sqrt(Dt)*rnorm(1)}

x <- X[wk]
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PI <-rep(1,times=304)

PI[x<4500] <- 0

PI[x>9000] <- 0

PI <- cumsum(PI)

p <- (PI[q]-c(0,PI[q[1:23]]))/qw

income[i] <- sum(rqp*p*(1+rw)^intwk)

I=0

I[x[304]<4500]<-1

loss[i]=I*(x0-x[304])/x0}

sum(income-loss)/N}

For example, using the parameters in (3.4), the step size ∆t = 6/30400 and the sample size
10000, by performing

CIRP5(6749.09,0.25,5200,10,0.02875,0.065,100,1000)

we get the approximate MPR = 0.3320692. This indicates that Plan P5 is much better than a
6-year fixed rate bound, if the Index follows the CIR model (3.2) with the parameters specified
in (3.4). This is not surprising as the mean index is 5200 and the starting index level is 6749.09
and hence the index is very likely to be in the range from 4500 to 9000 in the next a few years.

4 Conclusions

In this paper, we have discussed five typical savings plans linked to the UK FTSE 100 Index. For
some of them, we have obtained theoretical formulas for the MPRs which can either be computed
explicitly or numerically. For most of them, we have established the approximation theory which
enables us to perform Monte Carlo simulations to obtain the approximate MPRs. The theory
established in this paper can be applied to other stock market linked savings accounts.

5 Appendix

The daily closing levels of FTSE 100 in year 2013:

[1] 6027.37 6047.34 6089.84 6064.58 6053.63 6098.65 6101.51 6121.58 6107.86

[10] 6117.31 6103.98 6132.36 6154.41 6180.98 6179.17 6197.64 6264.91 6284.45

[19] 6294.41 6339.19 6323.11 6276.88 6347.24 6246.84 6282.76 6295.34 6228.42

[28] 6263.93 6277.06 6338.38 6359.11 6327.36 6328.26 6318.19 6379.07 6395.37

[37] 6291.54 6335.70 6355.37 6270.44 6325.88 6360.81 6378.60 6345.63 6431.95

[46] 6427.64 6439.16 6483.58 6503.63 6510.62 6481.50 6529.41 6489.65 6457.92

[55] 6441.32 6432.70 6388.55 6392.76 6378.38 6399.37 6387.56 6411.74 6490.66

[64] 6420.28 6344.12 6249.78 6276.94 6313.21 6387.37 6416.14 6384.39 6343.60

[73] 6304.58 6244.21 6243.67 6286.59 6280.62 6406.12 6431.76 6442.59 6426.42

[82] 6458.02 6430.12 6451.29 6460.71 6521.46 6557.30 6583.48 6592.74 6624.98

[91] 6631.76 6686.06 6693.55 6687.80 6723.06 6755.63 6803.87 6840.27 6696.79

[100] 6654.34 6762.01 6627.17 6656.99 6583.09 6525.12 6558.58 6419.31 6336.11

[109] 6411.99 6400.45 6340.08 6299.45 6304.63 6308.26 6330.49 6374.21 6348.82

[118] 6159.51 6116.17 6029.10 6101.91 6165.48 6243.40 6215.47 6307.78 6303.94

[127] 6229.87 6421.67 6375.52 6450.07 6513.08 6504.96 6543.41 6544.94 6586.11

[136] 6556.35 6571.93 6634.36 6630.67 6623.17 6597.44 6620.43 6587.95 6554.79

[145] 6560.25 6570.95 6621.06 6681.98 6647.87 6619.58 6604.21 6511.21 6529.68

[154] 6583.39 6574.34 6611.94 6587.43 6483.34 6499.99 6465.73 6453.46 6390.84
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[163] 6446.87 6492.10 6440.97 6430.06 6483.05 6412.93 6506.19 6468.41 6474.74

[172] 6532.44 6547.33 6530.74 6583.99 6588.43 6588.98 6583.80 6622.86 6570.17

[181] 6558.82 6625.39 6596.43 6557.37 6571.46 6551.53 6565.59 6512.66 6462.22

[190] 6460.01 6437.50 6449.04 6453.88 6437.28 6365.83 6337.91 6430.49 6487.19

[199] 6507.65 6549.11 6571.59 6576.16 6622.58 6654.20 6695.66 6674.48 6713.18

[208] 6721.34 6725.82 6774.73 6777.70 6731.43 6734.74 6763.62 6746.84 6741.69

[217] 6697.22 6708.42 6728.37 6726.79 6630.00 6666.13 6693.44 6723.46 6698.01

[226] 6681.08 6681.33 6674.30 6694.62 6636.22 6649.47 6654.47 6650.57 6595.33

[235] 6532.43 6509.97 6498.33 6551.99 6559.48 6523.31 6507.72 6445.25 6439.96

[244] 6522.20 6486.19 6492.08 6584.70 6606.58 6678.61 6694.17 6750.87 6731.27

[253] 6749.09
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Figure 1: FTSE 100 Index: 2013

Figure 2: FTSE 100 Index: 1997-2013
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Figure 3: A sample path of the GBM
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Figure 4: A sample path of the CIR model.
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