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Abstract

This paper presents a new, improved version of the K-L model, as well as a detailed investigation
of K-L and multi-fluid models with reference to high-resolution implicit large eddy simulations
of compressible Rayleigh-Taylor mixing. The accuracy of the models is examined for different
interface pressures and specific heat ratios for Rayleigh-Taylor flows at initial density ratios 3:1
and 20:1. It is shown that the original version of the K-L model requires modifications in order
to provide comparable results to the multi-fluid model. The modifications concern the addition of
an enthalpy diffusion term to the energy equation; the formulation of the turbulent kinetic energy
(source) term in the K equation; and the calculation of the local Atwood number. The proposed
modifications significantly improve the results of the K-L model, which are found in good agreement
with the multi-fluid model and Implicit Large Eddy Simulations with respect to the self-similar
mixing width; peak turbulent kinetic energy growth rate, as well as volume fraction and turbulent
kinetic energy profiles. However, a key advantage of the two-fluid model is that it can represent
the degree of molecular mixing in a direct way, by transferring mass between the two phases. The
limitations of the single-fluid K-L model as well as the merits of more advanced Reynolds-Averaged

Navier-Stokes models are also discussed throughout the paper.
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I. INTRODUCTION

Rayleigh-Taylor (RT) instability and mixing occurs in a range of variable-density techno-
logical flows such as inertial confinement fusion [1], cavitation [2] and combustion [3], as well
as geophysical flows [4]. Geological flow examples include include oil trapping in salt-domes,
atmospheric and oceanic flows, e.g, atmospheric temperature inversions and the formation
of cirrus clouds. In astrophysics, the formation and development of nebulae and supernovae
are also associated with RT instabilities [5-7]. A related process, Richtmyer-Meshkov (RM)
instability occurs in variable-density flows when shock waves are present. For high-Reynolds
number flows these instabilities can give rise to turbulent mixing and accurate modeling of
RT/RM induced turbulence is often a major uncertainty in calculating behavior.

Despite the advances in computer hardware, direct numerical simulation (DNS) for com-
plex applications will remain impracticable at least in the foreseeable future. As a result,
Implicit Large Eddy Simulation (ILES) has been widely used for studying RM and RT mix-
ing [8-12]. ILES combines the ability to directly capture strong shock waves and large flow
scales associated with transition and turbulence at material interfaces without resorting to
subgrid scale models. Although significant progress has been achieved in ILES methods,
the approach is still computationally expensive for complex engineering applications at high
Reynolds numbers. For such problems, turbulence models based on transport equations
that predict the “average” behavior of the turbulent mixing zone, can be used. These equa-
tions allow larger time steps and coarser computational grids than ILES. However, due to
the ensemble averaging of second- and higher-order correlations of turbulent fluctuations,
additional terms arise that require the use of turbulence models.

Turbulence modeling of RM and RT mixing encompasses several challenges. In addition
to the shock waves and material discontinuities, turbulent mixing features baroclinic effects
as well as anisotropy and inhomogeneity resulting from initial and boundary conditions.
The modeling assumptions and closure coefficients are validated and calibrated, respectively,
through comparisons with experiments but also increasingly through comparisons with high-
resolution large eddy and direct numerical simulations.

Turbulence models for compressible mixing can be classified in three categories. The
simplest type of model uses ordinary differential equations for the width of the RT/RM

mixing layer, where the bubble or spike amplitudes are described by balancing inertia,



buoyancy and drag forces; these are called buoyancy drag models [13—-17]. These models are
of limited use as they cannot model multiple mixing interfaces, cannot be easily extended
to two and three dimensions and cannot address de-mixing (reduction of total fluid masses
within the mixing zone); this can occur when there is a reversal in the pressure gradient and
there is not complete mixing at a molecular level within the mixing zone.

To resolve these problems, a second category of models has been proposed, the so-called
two-fluid (or multi-fluid models) [18-21] and references therein. These models use one set of
equations for each fluid in addition to mean flow equations. The models are fairly complex
but provide an accurate modeling framework for de-mixing and capture correctly the relative
motion of the different fluid fragments. Finally, an intermediate class of models, which are
significantly simpler than the two-fluid models, maintains the individual species fraction but
assigns a single velocity for the mixture. The above models are also known as two-equation
turbulence models because they consist of evolutionary equations for the turbulent kinetic
energy per unit mass and its dissipation rate or the equivalent turbulent length scale [22-25].
These models postulate a turbulent viscosity, a Reynolds stress, and dissipation terms, as
well as a buoyancy term for modeling RT and RM instabilities. They are able to handle
multi-dimensions, multi-fluids, and variable accelerations, however, they too cannot address
de-mixing (at least in their present form). A more advanced version of the single fluid
approach is the BHR (Besnard-Harlow-Rauenzahn) turbulent-mix model [26]. Evolution
equations from second-order correlations were developed and gradient-diffusion approxima-
tions were applied to close the system of equations [26]. Using a mass weighted averaged
decomposition, the original BHR model included full transport equations for Reynolds stress
tensor, turbulent mass flux, density fluctuations and the dissipation rate of the turbulent ki-
netic energy. A reduced, simpler but still accurate, version of the model has been previously
presented [27, 28], showing very promising results.

Despite the aforementioned efforts, there is still uncertainty about the optimum choice
of engineering turbulence models for flows involving RT (and RM) mixing, as well as lack of
comparisons between different models. Many of the flows are highly compressible. However,
turbulent velocity fluctuations are usually small compared to the speed of sound. Hence it is
essential that the models give good results for low-Mach number RT mixing. The problem
considered in the paper is the simplest such case in which the fluid densities and acceleration

remain constant and self-similar mixing occurs. This and other near-incompressible self-



similar test cases have been widely used by other researchers, [22] for example, as the
starting point for the development of models for RT/RM mixing. In the RT test case the
depth, at time ¢, to which the turbulent mixing zone extends into to denser fluid 1 is given

by:

P1L— P2 9
hi = a——qgt 1
1 p1+ng (1)

where p; and py are the densities of the two fluids, g is the acceleration and « is a constant
for self-similar mixing. Two different density ratios are considered p;/ps=3 and 20. For RT
experiments a ~ 0.05 to 0.06. However, when simulations (ILES or DNS) are performed
using ideal initial conditions (small random short wavelength perturbations) much lower
values of o ~ 0.026 are obtained [6, 9]. The higher observed values of a are attributed to
the influence of the initial conditions. This presents a problem for turbulence modelling. All
the turbulence models referred to herein will, when model coefficients are specified, give a
unique value of « (at least for a given density ratio). It is argued here that the turbulence
model coefficients should, for practical purposes, be chosen to match a typical experimental
value of . The value chosen in this paper is a=0.06. For the ILES described in [9],
long wavelength random perturbations where included in the simulations to approximate
self-similar mixing at the higher observed values of a.

The aim of this work is twofold:

e To propose specific modifications to the original K-L model of Dimonte and Tipton
[22], which lead to significant improvements in the modeling predictions; for simplicity

the modified model will be henceforth labeled throughout the paper as the K-L model,;

e To compare the K-L and Youngs’ multi-fluid model in 1D Rayleigh-Taylor mixing

flows.

The present study provides an initial step towards a systematic comparison and a better
understanding of single (two-equation) and multi-fluid models. Comparisons with 3D sim-
ulations for more complex flows are considered essential for assessing the advantages of the

more advanced RANS models such as multi-fluid or BHR over the relatively simple single-

fluid models.



II. TURBULENCE MODELS
A. Youngs’ multi-fluid model

The turbulent mixing model is implemented for many fluids in a two-dimensional com-
pressible Eulerian hydro-code [19]. However, all the calculations shown here are for mixing
of two fluids (henceforth labeled as TF') in one dimension at a sufficiently low Mach number
to give incompressible behavior. Hence, for simplicity, the incompressible limit of the model
equations for one dimensional two-fluid mixing is given here. The volume fractions for the
two “phases”are denoted by f,. (r = 1,2). Initially, these correspond to the two initial fluids
which have densities p! (r = 1,2). As the fluids mix, mass is exchanged between the two
phases and this is used to represent the molecular mixing process [29], i.e., the random
mixture of the two fluids is represented by two phases, one rich in initial fluid 1 and one rich
in initial fluid 2. Phase r consists of fractions a,.; by volume of fluid s. Hence the density of
phase 7 is p, = a;1p) + 209 and the mean density of the mixture is p = fip; + fops. The

equations for the volume fractions f, and «,, are:

ofr 0 .\ _
o T 5 Ui} = AV - AV, 2)
afr()érs 8 _ a aars
- = — D
o g Uronth =51 (f’“ O ) i (3)
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In equations (2) and (3) u, denotes the volume-weighted mean velocity for phase r. For
the one dimensional problems considered here the volume weighted mean velocity for the
mixture is zero, i.e. fiu; + fous = 0. AV, is the rate at which the volume is transferred
from phase r to phase s and phase r’ denotes the phase which is not phase r. D is the
turbulent diffusivity.

Mass-weighted mean phase velocities, u,., are needed for the momentum equations. Both
u, and u, include the effects of mixing due to turbulent diffusion and their difference is
attributed to within-phase turbulent diffusion and is prescribed as follows [19]:

Uy — U, = ud — ul (4)



where
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" pf, O
and
4 DOof.
U —_—
' fr Oz
Momentum equations are solved for mass-weighted mean phase velocities, wu,.:
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In equation (5), P denotes the common pressure, F, is the phase r mass fraction, 7, is
the Reynolds’ stress component and X,,» = — X, is the momentum exchange between the
two phases. The momentum exchange consists of drag (C-term), added mass (A-term) and

mass exchange effects:

d d
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If turbulent diffusion effects are absent, the mass exchange term is:

AUTTI = AMT/TUT/ — AMTT,/UT =AM (UT/ — UT) +
(Frfur + Fru,«/) (AMTIT — AMM«/)

where AM,s = p,AV,s and AM = F.u M., + F.M,..

When turbulent diffusion effects are included the term involving AM is replaced by
AM (ur/ —uy —ud + uf) This ensures that if either C' — oo or AM — oo then mixing is
purely diffusive.

Two further equations, for turbulent kinetic energy, K, and length scale L, are used to

close various terms in equations (2) to (6). These are:

d(pK)  0(pKu) 0 0K
o g o \PPrgy ) T Ok e (®)
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7815 +UL(97:L‘ = % (DL&L‘> -+ SL (9)



where Dy, Dy are the turbulent diffusion coefficients and Sk = (us — u;) X12, S, are the
source terms. The turbulence dissipation rate is € and u = Fju; + Fhus. In the equation for
L, uy, denotes the advection velocity. The advective term w,dL/dx spreads out the length
scale to fill the mixing zone without increasing or decreasing L. This is considered physically
reasonable and is chosen in preference of a conservative term.

The full compressible version of the model includes internal energy equations for each
fluid, as described in [19]. The model is able to represent the mixing of several fluids and
results for compressible flow (a simplified implosion) and three-fluid mixing are given in [30].

The two-fluid approach may be regarded as a model for the dynamics of the large-scale
structures present in the mixing zone (parcels of heavy fluid and parcels of light fluid) and
has much in common with two-phase flow models for gas-particle mixtures. Processes such
as differential acceleration by shock or pressure gradient, drag, added mass, are modeled in
a physically plausible way. It is argued that this gives the correct dynamical behavior for a
range of complex flows. The way the present model is constructed is very different to that
generally used for RANS models, which is based on the closure of fluctuating quantities.
However, it should be noted that Llor [21] does provide a statistical derivation of the two-
fluid model. Assessment of the merits and weaknesses of these two approaches is a key

aspect of the current and forthcoming papers.

1. Closure Approzimations

A number of the terms appearing in equations (2) to (9) require closure approximations.

These are given below:

pf1f

C=q 7 ‘ul—ug—ug~l—u§l‘ (10)
2 4 Ou
= ZpK — —py— 11
Ter = 5P T 3 b (11)
where iy = pv/ Kt and ¢, = ¢, L.
AVip = [V, AV = iV (12)

where entrainment rate (V') is given by

V= C3f1f2\/€—_f(



and turbulent dissipation rate (e)
K3/2
b

Four model constants have been introduced, c;, co, c3, ¢4, which need to be chosen by

€E=C

the calibration process. Other terms in the model use typical values and are not varied:
D = 2V/K{,, Dg = D;, = 4V/K/{,. The added mass term uses the added mass coefficient of
1/2 for a solid sphere: A = pfif2/2.

Finally, the closure of the length scale equation needs to be described. The source term
uses a velocity difference in the direction of mixing to give L proportional to the mixing
zone width. When mass exchange between the initial fluids is included, the phase velocity
difference, 1 —uo, only accounts for some of the mixing as it does not allow for within-phase
diffusion. It proves necessary to re-construct fluid velocities, 5. The initial fluid s volume
fraction is given by fs = fiais + foans and the equation for g is obtained by summing (3)
for r =1 and 2 using (4):

Ofs | Ofsts
8]; * g:v

=0 (13)
with .
Ofs
ox

The advection velocity and source terms in the length scale equation are now defined as

fsﬁs = flals (Ul - Uil) + f20423 (UQ — u%l) —D

ur, = f2@1 + fﬂb and

p
Sy = <p(1)2+pp8> (U — 2) (14)
The form of uy, is chosen to transport the length scale to the edges of the mixing zone -
if fl = 0 (spike tip) then uy, = @, (spike tip velocity). The density factor in the source term
is used to reduce the length scale on the low-density side of the mixing zone and give the

required spike/bubble asymmetry. One more model constant p, is introduced here.

2. Model Constants

The key test problem used for mix model calibration is self-similar RT mixing for which
the bubble distance, the depth to which the instability penetrates the denser fluid, is given
by hy = aAgt?, where A is the Atwood number. Model constants are chosen here to give

a = 0.06 and the overall degree of molecular mixing and fraction of turbulence dissipated



p1/p2| 3:1 | 20:1

c1 | 4.062 | 3.765

ce | 0.13 | 0.13

c3 10.2321(0.2039

cq (0.1984]0.2228

p 10.3802(0.3802

TABLE I: Two-fluid model constants.

indicated by ILES results [9]. The exponent p is chosen to give the required spike/bubble
asymmetry at p;/p2 = 20. Hence ¢p,c3,¢4 and p are specified. The model coefficient c,
determines the relative importance of diffusive mixing and pressure gradient driven mixing.
The one-dimensional test cases considered here can be modeled equally well with different
proportions of diffusive mixing. When ¢, is varied, the remaining constants are re-adjusted
to give the same growth rate, degree of molecular mixing etc. The best choice for ¢ needs
to be found by considering a wider range of test problems. The value used here gives ~45%
of mixing due to turbulent diffusion.

The model coefficients used in the full version of the model are in general functions of
a and A and for a given application the coefficient set for a suitable value of « is chosen.
However, in this paper only two values of A are required with a=0.06, which are shown in

Table I.

B. K-L multi-component turbulence model

The K-L model was previously proposed by Dimonte and Tipton [22] for describing
the turbulent self-similar regime of Rayleigh-Taylor and Richtmyer-Meshkov mixing. The
starting point for deriving the model equations are the buoyancy-drag models for the self-
similar growth of RT and RM instabilities [13, 15]. In the present work, a modified version
of the K-L is proposed. The modifications, which are presented in detail below, concern:
i) the model formulation in terms of the total energy instead of the internal energy; ii)
the implementation of the source term in the turbulent kinetic energy equation; iii) the
turbulent diffusion of enthalpy instead of the internal energy; and iv) the calculation of the

local Atwood number based on a higher-order numerical approximation.



Note that the total energy equation (18) uses the diffusion of internal energy as was
originally formulated [22]. The proposed modification to change the diffusion of internal

energy to enthalpy is detailed in section IID.

1. Governing equations

The mean flow is described by the Favre-averaged conservation equations for the mass,

momentum and energy of the mixture, and for the mass fractions of the components:

op 0 ,__
— — . p— 1
8 . (9 . 815 (97'15

(i) + — (D) = — — 0 1
at(pul) + axj( ;) b, O, + pyg (16)

8 % 8 o~ 8 ﬁTijﬂj
L9 (e e L 4 4, o
8x, N, 0x; 81:z Ng plig
0 = 0, ~ . 0 [ OF
2R + 2 pFu) = 2 (NF o (15)

where g is the gravitational acceleration. For a 1-Dimensional (1D) flow i = j = 1.

In the above equations, the statistical (Reynolds) average of a quantity ¢ is denoted by
¢ and its corresponding fluctuation by ¢'. The Favre average ¢ is defined by ¢ = po/p and
its corresponding fluctuation by ¢”. F is the mass fraction, and for perfect gases p = pRT,
where R is the gas constant and T is the Favre average static temperature corresponding to
the static pressure. The modified total energy is defined by:

Uglg

Er=e¢
e+ 5

+K (19)

where ¢ is the internal energy per unit mass; note that £* is not equal to the Favre average
of E. The viscous stresses and the heat conduction were neglected.

The eddy viscosity is calculated using the usual relation for the two equations eddy
viscosity models:

e = Cupuc L (20)
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where C), is a model constant (Table II) and u; = v/2K is the turbulent velocity.
With regard to the turbulent stresses, it is recommended [22, 31] that in the presence
of strong shocks the deviatoric part of this tensor should be omitted and the turbulence

stresses should be approximated by the turbulence pressure:
Tij = (S”CpﬁK (21)

where Cp is a free parameter of the model, which is generally taken as 2/3 (Table II)
and ¢;; is the Kronecker delta. Dimonte and Tipton [22] mentioned that if the deviatoric
part of the turbulent shear stress tensor is not ommited, then the strain rates become
unphysically large; see also [23, 32]. The same conclusion was also drawn in the course of
our research both for the original and the modified K-L model.Furthermore, since the K-L
mixing model is currently constituted without any turbulent shear stress components, it
cannot describe the Kelvin-Helmholtz (KH) instability. Though this problem is found in
many mixing models, it could be ameliorated in the future by the inclusion of a self-limited
(realizable) turbulent shear stress. Despite this, symmetric ICF implosions do not tend to
form KH type instabilities and are thus not important in such flows, though they can still
occur in asymmetric implosions.

The turbulent diffusion terms are adjusted using dimensionless scaling factors, such that
N, (or Np) and Np correspond to the turbulent Prandtl and Schmidt numbers (model

constants) respectively.

2. Model equations

The transport equation for the turbulent kinetic energy (TKE) denoted as K is:

o, o . O,

Q(PK) o (pKu;) = REETS ”
0 ﬂaf( S5 (22)
8:@- NK 81’1 K pe

Nk is the diffusion coefficient for the turbulent kinetic energy K.
The implementation of the source term Sk is defined according to the time scales of the

mean flow, ©, and turbulent structures, ©; as:

N\ 1/2 o4\ —1/2
a7 op Op
_(.p 2
© p(vp) ((%kaxk) (23)
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0 - — (24

If the time scale of the mean flow is much smaller than the turbulent time scale, the

instability is considered to be impulsive (RM-like), otherwise gradual (RT-like):

Cppuy |Avigi| if © < Ag©;
Sk = (25)
Cppuymax (0, Ar;g;) otherwise
where Ag < 1 is a coefficient. In the present study, Ag¢ = 1 was used throughout the
calculations. This criterion is based on the sudden acceleration of a fluid particle (estimated
by the pressure gradient) and is not directly dependent on the CFL number. In (25),
gi = —(1/p)0p/0x; is the acceleration and Ay, is the local Atwood number.
The dissipation of the turbulent kinetic energy, €, represents the mechanical work of the
drag forces on the turbulent structures (bubbles and spikes):

3
u
€ = Oth (26)
where Cp is the drag coefficient (Table II).

The presentation of the model is completed by the equation for the turbulent (or eddy)

length scale, L:

o o B 0 e OL
E(pL) + %(pLui) -~ Ox; (NL axi) (27)
o0,
+CLput + CC[)L -
(%i

where the production is given by Cppug; the last term models the compressibility effects;
and Cp, Cc and Ny, are model constants (Table II).

Finally, using the isobaric assumption for the thermodynamic closure of the mixture [33],
the heat capacity ratio « is given by:

1
Y=+t (28)

y1—1 y2—1

where f; and f5 are the volume fractions of components 1 and 2. The volume fraction is

calculated by the mass fraction using the following relationship:

Fy /M,y

ﬂ:ﬂMhHW%

(29)
where M; is the molar mass of species 7 and obviously f; + fo = 1.

12



01/ p2 3:1 | 20:1

Eddy viscosity (C,) 0.70 | 0.68

Turbulent pressure (Cp) [0.667]0.667

Eddy size production (Cr) | 1 1

Eddy compression (C¢) [0.333/0.333

Local Atwood number (Cy4)| 2 2

Drag (Cp) 0.92 | 0.90
Buoyancy (Cp) 0.86 | 0.97
Diffusion L (Np) 0.125/0.125
Diffusion e (N,) 1.125/1.125
Diffusion h (Np) 1.125(1.125
Diffusion F' (Np) 1.125(1.125
Diffusion K (Ng) 1.5 | 1.5

TABLE II: The K-L model coefficients.

3. K-L model coefficients

The values of the constant coefficients for the modified K-L model here are different than
the original K-L model of Dimonte and Tipton [22]. The values of C,,, Cp and Cp are chosen
to give the best possible overall results for the key terms examined (temporal evolution of
total-Mix and K4, and spatial profiles of VF and K/K,4).

Dimonte and Tipton [22] derived the model coefficients based on a number of approxi-
mations. The coefficients were derived for Ay < 1 or Ay ~ 0 by neglecting density gradient
terms. They also mentioned that “analytical solutions to the model equations are not yet
available for Ay ~ 17. Furthermore, for high Atwood numbers the ratio of the turbulent
kinetic energy (KE) to potential energy (PE) does not remain constant, i.e., KE/PE < 1/2,
but decreases, as experimental observations suggest, to a value of KE/PE = 0.3 for Ay ~ 1,
thus yielding N > 2Np. Dimonte and Tipton [22] also showed that decreasing the value
of N, the volume fraction (VF) profiles sharpen. Due to the different numerical frame-
works used in [22] and here, the model constants require some re-adjustment. As the effect

of the numerical dissipation is to enhance diffusion [34], e.g., widen the VF profiles, it is

13



expected that the diffusion constant N will require a smaller value than the one suggested
analytically. Numerical simulations showed that Ny = 9N, which agrees with the finding
of Nk > 2Ny, [22] for Atwood numbers greater than zero. Similar to [22], in the present
paper Ngy=Np=N.,=1+0.2.

In [22] the model coefficients were derived analytically for self-similar solutions and under
the assumptions of: a) simple flows in the incompressible limit with nearly constant density,
Ay —0; and b) maximum values of the L and K in the self-similar profiles occurring at
the interface and vanishing symmetrically at the mixing boundary. The simplest form that

describes the above conditions is given by:

K (2,t) = Ko(t) (1 - hf;t)>

12

h?(t)

L(z,t) = Lo(t),|1 - (30)

These functions are also used to replace the turbulent length scale L and turbulent kinetic
energy K in the governing equations (for terms such as DL/Dt, dL/dz etc) in order to
obtain the analytical self-similar expressions.

In [22] the K-L model is calibrated to be able to describe the observation [19, 35, 36] that
50% of the potential energy is converted into turbulent kinetic energy, while the other half
is dissipated, so the ratio of the turbulent kinetic energy to potential energy KE/PE = 0.5.
However, this value holds true only when the initial Atwood number is Ay ~ 0. Assuming

that Ay — 1, [36] gives a value of KE/PE ~ 0.3. It was also shown [22] that

B2t 1)

where = Lg/h is the self-similarity ratio and

KE Ny,
— ~328% ~ 16— 2
PE 3B(1/b GC’M% (3)

In the present work, oy, = 0.06 is used to match experimental observations. Using KE/PE ~
0.3, for large Atwood numbers, and C), = 0.7, the turbulent length scale diffusion coefficient
is now equal to Ny ~ 0.21875.

Assuming Ay < 1, Dimonte and Tipton [22] showed that

oLy VW
FTEa (33)
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where Vy = /2Ky. Assuming Ay > 0, the full self-similar form of the L equation can be

btained [22|:
obtained [22] on v ) 2
ﬁ“’?{l— OX(l_X)}v (34)

where x = z/h is the scaled distance (z is the spatial location and h(t) is the bubble
height at time t). The correction term in the brackets has a maximum value of 34,/8 when
X = 0.5. According to [22], N can be obtained by the expression, which is derived by the

mass fraction equation:
1ok Gt
2Ly Ot  Np' h
which leads to Ngp = 2N, assuming Ay < 1 and using (33). However, at the high Atwood

(35)

number limit Ay — 1 one can use (34) to substitute dLg/dt in (35), thus at the maximum

scaled distance of y = 0.5,
16

T 834,

This value indicates that for large Atwood numbers, the value of N should be at least 3

Np

Ny ~ 32Ny, (36)

times smaller than Nz. The above analysis suggests that the constants used in the present
study are consistent with those derived by Dimonte and Tipton [22] for low Atwood number
flows. Therefore, Np > 2N and Ny, < 0.5 for Ay > 0. The remainder of the constants are

either equal to or satisfy the relations/conditions proposed in [22].

4. Local Atwood number estimation

The local Atwood number (Ay;) used in source term Sk is defined by [22]:
Ari = Agi + Ass; (37)

Aqg; recovers the initial Atwood number at the interfaces between fluids, where the density is
discontinuous and Agg; represents the local Atwood number in the self-similar regime, where
the density variation is gradual.

The initial cell Atwood number (Ag;) can be expressed in terms of the reconstructed

values of the densities at the cell’s faces as:

Ag; = max (Ag,_1, Agiy1) (38)
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and the cell face Atwood number (Ag;11/2) can be calculated using reconstructed values of

the density at the cell faces.

_ PL+ — PL- A _ PR+ — PR- (39)

A' = — y i+l = = —
° pre+pi-" "2 pry+ pr-

7 —

M=

where the subscripts L and R stand for the left and right faces of the cell, respectively. In
the general three-dimensional case, the computational cells are assumed hexahedral with
the faces perpendicular to the spatial directions. The reconstructed density values were

recommended [22] to be obtained using van Leer’s monotonicity principle [37] such that:

i Az (0p MON
PL+ =Pi— 5 | 5=

2 \0z), (40)
- Az (95 MON
PL— = Pi-1 9 O -
and MON
dp . _ - (|Ap; Ap;
I (1)

where Ap; = (p; — pi—1).

The self-similar cell Atwood number (Agg;) is given by:

—\ MON
L 0
ASSi = CA — MON aip (42>
_ 8p Z i
p+ L|—
Ox |,

where Cy4 is a model constant (Table II). A simplified formula for calculating the self-similar
Atwood number, Agg;, was employed [38]:
L(9p MON
Assi=— | = 43
=5 (22), )
Here, we propose to calculate the densities at the cell face by simple averaging of the
numerically reconstructed values, which are obtained from the calculation of the inviscid

fluxes (Figure 1), instead of using equation (40). Thus, the densities used in (38) are
calculated by:

—_

Pr = 5 (Pr- + PRY+)
(44)

—_ DO

pr = = (Pr- + pry)

[\]
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FIG. 1: Location of variables used to obtain cell center spatial derivatives.

and the cell-center density gradient used for the self-similar Atwood number (Agg;) in equa-

tion (42) is calculated by a first-order central difference:

op  pr—pL
7 4
ox Ax (45)

The cell initial Atwood number (Ay;) is then calculated as:

PR — PL
Ai:_ — 46
’ PR+ pPL (46)

It was found that using equation (37) for the calculation of the local Atwood number in
the turbulent kinetic energy production source term Sy (equation (22)), over-predicts the
initial growth rate; this is due to the large Ay, as well as the additional Agg; term. To
overcome this problem, equation (37) is reformulated by using a weighted sum of both the
initial and self-similar Atwood number terms, which depends on the value of the turbulent

length scale (L) to cell-width (Ax) ratio:
Ani = (1 —wr) Agi + wr Ass; (47)

where the weighting factor w; = min (L/Ax, 1) is the ratio of the turbulent mixing length
L to the grid cell size Az. This ensures that when L becomes sufficiently large, the Atwood

number is solely based on Agg;, while initially is dominated by Ag;.

C. Numerical implementation of turbulence models
1. Two-Fluid model

The TF model has been numerically implemented using the Lagrange-Remap method

[18, 19]. The volume fractions, densities, internal energies and turbulent kinetic energy are
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defined at cell centers, while the velocity components and length scale are defined at the
vertices. The calculation for each time step is divided into a mixing phase, a Lagrangian
phase and a remap phase. In the mixing phase the fluxes due to the velocity difference,
u, — 1, are calculated. In the Lagrangian phase, the changes in multi-fluid velocities and
internal energies due to pressure terms are calculated using a second-order-accurate time-
integration technique. The fluxes across the cell faces due to the velocity u are calculated
in the remap phase. The spatial discretisation in the remap is obtained by the third-order-
accurate, monotonic advection scheme [37]. As all the variables in the remap phase are
passively advected, numerical mixing can be minimized, compared to the schemes typical in
finite volume codes, by allowing the reconstructed slope to depend on the advection timestep.
Most of the computational steps use explicit time integration; little iteration is needed (unless
complex equations of state are used for mixtures). Althought it appears more difficult to
implement the TF model than the K-L model, it is argued here that use of suitable operator
splitting in the Lagrange-remap method makes this a relatively straightforward process,
which does not increase computer time requirements by a large factor.

The ILES results used in the assessment of the turbulence models have also been obtained
using the Lagrange-Remap method, but with a single velocity field. Further details on the
ILES method can be found in the literature [19, 39].

2. K-L model

The K-L model has been numerically implemented for the compressible Euler equations
(molecular effects assumed negligible) using the finite volume Godunov-type [40] (upwind)
method. Additionally, the following is used: 1) the isobaric assumption to estimate the heat
capacity ratio of the mixture equation (28); 2) the MUSCL 5*-order [41] augmented by a low
Mach number correction [42] for reconstructing the variables [p(1 — F'), pu, p, pF, pK, pL]; 3)
the HLLC solver [43] along with the pressure-based wave speed estimate (PVRS) method for
the solution of the numerical inter-cell flux estimation (Riemann problem); and 4) a third
order TVD Runge-Kutta scheme for time integration; see [44-47] and references therein.
It has been found that the above procedure does not generate any unphysical pressure

oscillations at the interface between components of different heat capacity ratios (71 # 72).
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D. Enthalpy diffusion

It has been suggested [48] that when there is species diffusion between N different fluids in
multi-component flows (whether turbulent or molecular), an enthalpy diffusion term should
be present to account for the energy transfers associated with the compositional changes.

The term referred to as the inter-diffusional enthalpy flux is given by:
N —_~
da = Z thz (48)
i=1

The diffusion of enthalpy is a well known process in the reacting flow community, where
changes in temperature and composition are ubiquitous [49]. For turbulent diffusion it is
reasonable to assume that the diffusivities are the same for all fluid species. The relative

mass fluxes, J;, are then given by:

_ OF;
= —pD 49
PP (49)
where
- Mt
D =1= 50
p N, (50)

hi =& + = = 7é (51)
Pi
and for the mixture N
h=3"(Fih;) (52)
i—1

There is also an energy flux due to heat conduction:

g = thhcng (53)
where Dy, is, in the present case, the turbulent thermal diffusivity and 7 is the temperature
of the mixture. The mult-fluid model uses a different treatment for the flow of energy in
which separate equations are used for the internal energies of each phase [19]. The TF model
does not use (48) but it will be shown here that equivalent results are obtained for the RT
test case.

In this paper, compressible models are used at low Mach number to simulate incompress-

ible mixing. Hence, it is important to consider the incompressible limit of the compressible
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model. Other researchers [50] have pointed out that when diffusivity is present, the mass-
weighted mean velocity, @, is no longer divergence free in the incompressible limit. For
perfect gases with different molecular properties but with equal temperature and pressure

at the interface, the incompressible limit (¢t — oco) gives [50]:

0 D op
- ( + pax> 0 (54)
and (15) now becomes
dp 0 op
== (Dam> (55)

Rayleigh-Taylor mixing can also occur at the boundary between two regions of the same fluid

at the same pressure but at different temperatures. In the incompressible limit (p — o),

o5 0 (. 0p
»_2 (Dthar) (56)

For high-Reynolds number Rayleigh-Taylor mixing these two cases are equivalent in the

eqn.(15) takes the form:

incompressible limit. Hence, the K-L model should give the same results for the two cases.
This implies D = Dy, for turbulent diffusion. Thus, the expression for the sum of the
enthalpy and conduction fluxes (assuming that the specific heats for each fluid are constant)
is significantly simplified:
N (- OF, oT
= .= —pD hy— 2=

i=1

S OF, - 0T
_pDZ (7@'61 O + %Csz 637) - (57)

i=1

N OF; _ ¢,
_—DE: 5278 i Al
p (7261 ox Tt Z(%:)

i=1

oh e Oh
=P Y T Ny o (58)
The flux g, should replace the flux ¢. = —]‘\‘[—i% in the energy equation (17). In order to test

the validity of equation (58), a simple gedanken experiment (with the turbulent diffusivity,
D, set to a constant value and zero gravitational acceleration g = 0) is devised based on the

ansatz:

If perfect gases of different molecular mass but equal temperature and pressure

begin to diffuse and miz, there should be no change in temperature.
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Thus, an initial constant temperature profile should remain as such while the two compo-
nents begin to diffuse. To test the above, we use a 1D domain of 1 m size (—0.5 < z < 0.5)
with the interface located at x = 0 m and p; = 20 kg/m?, py = 1 kg/m?, v, = v = 1.4,
D = 0.01 m?/s and py = 10000 Pa. Moreover, since the temperature is constant, so should
the internal energy per unit volume p1€é; = p2és be for equilibrium, hence pic,; = pacys.

Equation (55) may now be solved analytically to give:

1

p=5 (i )+ 5 (71— ) ert (2) (59)

so that the volume fraction distribution is given by:

fi==[1 —erf(2)] (60)

N | —

with
T

\/ADt + w3

and wy = 0.02 m being the initial diffuseness of the interface used in order to avoid high

z =

early time diffusive velocities.

Note that no turbulence model is used for this test, thus the inviscid (Euler) part of the
equations is only retained along with the diffusional terms where the turbulent viscosity
is replaced by pD. We have also conducted simulations using different heat capacity ratios
for the two fluids with v = 2 and 5 = 1.4. This requires that the following condition is
additionally satisfied:

Co1p1 (71 — 1) = cpapa (72 — 1) (61)

The simulation is performed until ¢ = 0.5 s and the profiles of the density and normalized
temperature (107" /T}), scaled by the initial interface temperature Tp, are plotted in Figures
2 and 3 for fluids with the same and different heat capacities, respectively. The results
clearly show that the addition of the inter-diffusional enthalpy flux corrects the temperature
profile, i.e., it remains constant.

All simulations conducted henceforth have used the turbulent diffusion of enthalpy, in-
stead of internal energy (unless otherwise stated). The total energy equation (17) then

recasts as follows:
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FIG. 2: Temperature and density profiles for v; = v2 = 5/3.
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FIG. 3: Temperature and density profiles for v; = 2 and v = 5/3.
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a(ﬂE )+ oz, (pE™ ;) = s, (pti;) — o, .
L0 (mOnY O (0K (62)

To account correctly for the compositional change in the mass-fraction due to turbulent
diffusion, the turbulence model constants for the diffusion of mass fraction, Ng, and enthalpy,
Np, must be equal (Ng = Nj). The flux of the turbulent diffusion of mass per unit volume
of each species (u,/Np) OF;/0x carries with it a corresponding amount of specific enthalpy
hi, which comprises the sum of the specific internal energy (e;) and the product of the
pressure and specific volume (p/p;), all functions of the state of the thermodynamic system.
Thus, there exists an inter-diffusion enthalpy flux term [48] associated with the diffused
mass-flux, which under the current K-L model assumptions is defined as h; (p./Ng) OF;/Ox.
If the diffusion coefficients Np and N, were to be different, then the diffusion of enthalpy
would not satisfy the above physical process. This is also obvious noticing that the laminar
viscosity pD is replaced by the turbulent ., /Npg in (58).

It is worth mentioning that Mordn-Lépez and Schilling [24, 25] also included an inter-
diffusional enthalpy flux term in their K-¢ model. However, a different formulation was
used. In [24, 25], three terms, heat conduction, internal energy diffusion and inter-diffusional
enthalpy flux, were used to model the flow of internal energy, whereas in this paper a single
term, the diffusion of total enthalpy is used.

Further results on the influence of the inter-diffusional enthalpy flux in RTI mixing are

presented in section 1T E.

III. RAYLEIGH-TAYLOR MIXING

The turbulence models have been applied to 1D RT cases with density ratios 3:1 and 20:1
(p1=3g/cm?® or 20g/cm?® and p,=1g/cm?®). The computational domain has dimensions [-8,
20] cm with the heavy fluid placed on the left side of the domain and the initial interface at
x=0. Unless otherwise stated, the computational grid consists of 100 cells and the adiabatic
exponent is y=5/3 for both fluids. The following relation is satisfied in all cases Agg=1, thus

for density ratio 3:1 the gravitational acceleration is g=2cm/s? and for 20:1 is g ~1.105cm /s?.
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Note that from the measuring units given to the physical properties of the fluids, it naturally
follows that time is measured in seconds.

Comparisons between the models are presented for the normalized turbulent kinetic en-
ergy (K/Kpa.) and volume fraction (V F') profiles vs. X/W as well as for the evolution of
the mixing width W and maximum turbulent kinetic energy K,,... The mixing width is
defined by W = [ fi(1 — fi)dz, where f; is the dense fluid volume fraction. For the two
fluid model, the single-fluid TKE (K,) is defined by K; = K +1/2 Fy Fy(u; — us)?, where K
is the TKE in the two-fluid model, and F} 9, u; 2 are the fluid mass fractions and velocities,
respectively.

With regard to the initial conditions, the two fluids are considered to be in isentropic
hydrostatic equilibrium, i.e. @=0 and p/p? = constant within each fluid, where 7 is the
ratio of specific heats (v = ¢,/¢,). The initial pressure and density profiles are obtained by

integrating dp/dx = pg, hence

o [1+ Ity xl)] T e
pole) =4 (63)
] R
por |1+ fyglgf;g(x — xl)l o x> g
1
POl [1 + ’:1'[;{::9(93 — :BI)] o r < X1
po(x) = 1 (64)
PoL l1+7;1§;$g(x—x1)]“ x> 1

where pg; is the initial pressure at the interface; pog and po, are the initial densities of the
heavy (left side) and light (right side) fluids, respectively; 7 is the position of the interface.
The two-fluid and K-L models are initialized in a similar way. The calculation begins when
the mixing zone is 2-3 meshes wide, according to the self-similar growth law (1). The above
conditions are used outside the initial mixing zone together with K=L=0 and U;=U;=0
(the velocities of the two fluids). For the K-L model, within the mixing zone, a simple
approximation is used for Ky = |Ag|gno, while Ly and 7 are related to the mixing width of
the fine grid ILES: Ly = 19?/Ax, where Ay is the initial Atwood number and 7, = Ax/4

is the initial amplitude of the perturbation. Note that Ly and 7, are not dependent on the
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grid resolution used in the K-L model simulations. The value of Az is simply related to the
fine grid ILES that (based on non-dimensional units) used perturbation standard deviation
~ 0.0005L gz With Lye. = 500, i.e., ~ Ax/4, where Az is the cell width.

The TF calculation is initialized by integrating the buoyancy-drag model [17], which
consists of an ordinary differential for the bubble and spike distances and velocities, hq, ho,
hi, ho, up to the time ¢ = 2. For the simple test case, this is equivalent to obtaining hq,
hy from equation 1 and hs, hy from a similar equation for the spike distance (the depth
to which the mixing zone extends into the lighter fluid 2). Fluid volume fractions, fs, are
then set within the mixing zone (—hy,+hs) to give a profile which approximates the self-
similar distribution. The initial length scale within the mixing zone is set to L = h; and
the turbulence kinetic energy is set to K = 4K,,4. fl fg with K4z h% Finally mass is
exchanged between the two initial fluids in the mixing zone in order to initialize the phase
variables, f,., a,s. The extent of the mass exchange is chosen to give the required value of
the molecular mixing parameter (equation 65). The initialization is chosen to trigger self-
similar mixing without significant over-shoots or under-shoots and makes a key contribution
to reducing the effect of mesh size.

The RTI mixing results are split into two parts, one containing an investigation of a
heavy-to-light density ratio of 3:1 (initial Atwood number Ay = 0.5), and the other 20:1
(Ap ~ 0.905). For each Atwood number, a series of tests are conducted to examine the sin-
gle and two-fluid models sensitivities and dependencies on various physical conditions. The
dependence of the solution on the initial interface pressure is investigated and a grid conver-
gence study is performed to examine the effects of grid resolution. Furthermore, the effects
of different heat capacity ratios () for the two fluids on the turbulence modeling results
is also investigated. For the assessment of the turbulence models, we examine the spatial
profiles of the volume-fraction (V' F') and normalized turbulent kinetic energy (K/Kaz) VS.
X/W as well as the self-similar growth of the integral mixing width (/') and maximum
turbulent kinetic energy (K,,qz) vs. self-similar time (Aggt?).

Note that for self-similar turbulent mixing at a given density ratio, both W and K, .,
grow at a constant rate equivalent to Aggt?. Since for the cases considered here Agg = 1,
both W and K., are plotted against ¢2. The late-time gradients of the curves are noted in

tables I1I and V.
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A. Comments on Large Eddy Simulations

A complete description of the implicit large eddy simulations (ILES) used in this study
can be found in [9]. The ILES results have been obtained by using the TURMOIL Lagrange-
remap hydro-code which calculates the mixing of compressible fluids. The TURMOIL hydro-
code solves the Euler equations plus advection equations for fluid mass fractions. The
Lagrange-remap method was first used for RT mixing by Youngs [39]. More details of
the method, its application to RT and Richtmyer-Meshkov mixing and further discussion
of MILES and other ILES techniques are given in Grinstein et al. [8]. Direct numerical
simulation (DNS) is feasible at moderate Reynolds number and is essential for assessing the
influence of Reynolds number and Schmidt number. It is argued here that high-resolution
ILES is the most computationally efficient way for calculating the high-Reynolds number
behavior and that this approximation was needed to make the series of simulations presented
by Youngs [9] feasible. As in previous ILES studies for RT mixing, the present ILES [9]
were conducted under the assumption that the Reynolds number is high enough to have
little effect on the main quantities required for engineering application. In particular, the
Reynolds number is assumed to be high enough for the effect of the Schmidt number to be
unimportant, i.e., the flow is beyond the mixing transition as defined by Dimotakis [51]. For
RT mixing a suitable definition of the Reynolds number is Re = hlhl /v, where h; is the
extent of the mixing zone and v is the kinematic viscosity. According to the experimental
results (see [51, 52] and references therein) the mixing transition corresponds to Re ~ 10%.
The results shown in this paper are applicable to high Reynolds number mixing in which
Re exceeds 10% .

Previous results for variable density RT flows at Atwood numbers up to 0.5 [53-55] have
shown that mixing becomes qualitatively different at high density ratios compared to when
the densities are commensurate in the Boussinesq approximation limit. Specifically it is
found that the location of peak turbulence kinetic energy, K, moves into the light fluid side
as the Atwood number increases. Subsequently, the molecular mixing proceeds differently
cither side of the RT layer. Another consequence observed in [6] when simulating a 0.5
Atwood number RT flow, is that the penetration distance of the pure heavy fluid is larger
than that of the pure light fluid [53, 54]. This mixing asymmetry (higher growth rate in the

spike regions compared to the bubble regions), also observed experimentally, increases as
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FIG. 4: ILES contours of volume fraction for density ratio 3:1

the Atwood number increases. Such physical processes need to be captured and modelled
correctly by a mixing model in order for it to be deemed successful and for it to be applicable
over a wide range of cases. As such, the mixing models examined herein are tested under
two different density contrasts, a low 3:1 and high 20:1 heavy to light fluid density ratios.
The volume fraction contours from the ILES are shown in Figs 4 and 5 for density ratios 3:1
and 20:1 respectively. The ILES results from [9] which are used here, are obtained from very
high resolution simulations, typically using 2000 x 1000 x 1000 size meshes, and it is argued
that the results used are mesh-converged to the point that the effect of the unresolved scales
is negligible. For some of the cases considered in [9], DNS results are available [50] that are

very similar to the ILES results.

B. Summary of K-L turbulence model modifications

The key modifications in the original K-L model [22] are:

1. The turbulent internal energy diffusion term is replaced by the turbulent diffusion of

enthalpy;

2. The local Atwood number and cell-center gradients are calculated using equations

(44)-(47);
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FIG. 5: ILES contours of volume fraction for density ratio 20:1

To assess the effects of these modifications, we employ the RT case with a density ratio

2. Figure 6 shows the results

of 20:1 and an initial interface pressure of pp=1000 dyn/cm
obtained for the volume fraction (V F') and normalized turbulent kinetic energy (K/Kuqz)
using the original K-L model (depicted by sup-script o) and with the aforamentioned mod-
ifications (depicted by sup-scipt m). Evidently, the proposed modifications lead to better
agreement with ILES [9] for both quantities examined. Therefore, the results presented in

the rest of the paper have been obtained using the modified K-L model.

C. Density Ratio 3:1

The self-similar growth rate parameters of W and K,,,, are important to capture correctly
during model calibration. Theory in the self-similar regime of the RT instability indicate
that the bubble distance h;, defined as the most extreme location where the light fluid has
penetrated the heavy and is of at least 1% volume fraction, is given by hy, = aAgt®.

As already mentioned in Section IT A 2, a self-similar growth rate parameter of o = 0.06
giving h, = 0.06Agt? is presently used as indicated by ILES [9]. In addition, the high-
resolution ILES [9] found that the mixing width W scales with the bubble height h;, as
hy = BW, where 3 = 3.433 — 0.387A2%. This then allows for the calculation of the growth
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Case w Kooz

ILES|0.017984| 0.010

TF |0.018247(0.009958

K-L |0.018077|0.009536

TABLE III: Self-similar growth rate parameters of W and K,qz

for density ratio 3:1; pg = 500dyn/cm?® and v; = vo =5/3

rate parameter of W. Comparison of the TF and K-L models results with ILES for the late

time growth rate parameters of W and K,,,, are presented in Table III.

1. Effect of initial interface pressure

Calculations using both models have been performed for different initial pressures at the
interface (pp=250, 500, 2000 dyn/cm?) in order to assess the incompressibility limit of the
models. The results are included in Figures 7-8. The growth of W is similarly predicted by
both models. In the case of the K-L model, there is only a slight effect of the initial interface

pressure on W (Figure 7), whereas the TF results remain largely unchanged. The reason for
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FIG. 7: Time evolution of mixing width and maximum turbulent kinetic energy for RTI mixing of

fluids with initial density ratio 3:1. Different initial interface pressures.

the larger value of W with increasing initial interface pressure is also linked to the higher
K paz, thus resulting in a larger turbulent viscosity u; and mass-fraction diffusion. Though
the final value (¢t = 10, Aggt®> = 100) for K,,,, also increases with higher initial interface
pressure in the TF model, it is more pronounced in the case of the K-L model.

Figures 8a and 8b show the V F' and K/K,,,, profiles, respectively, at two time instants
for the RT case with density ratio 3:1 and initial interface pressure p = 500 dyn/cm?.
Comparisons are also presented with ILES [9]. The (3D) ILES results (¢t = 10 sec.) have
been spatially averaged to allow comparisons with the 1D turbulence model calculations.
The K. and W profiles show that both turbulence models achieve self similar solutions.
The V F profiles are almost identical and in excellent agreement with ILES. Some minor
discrepancies appear in the K/K,,,, profiles, especially on the spike side, where the TF and

K-L results agree closely.

2.  Grid Convergence study

In this section, the effects of grid resolution on the results is investigated by doubling the

number of cells twice, starting from the original discretization of 100 cells. Hence the grid
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initial density ratio 3:1.

convergence study has been carried out using three grids with N, = 100, 200 and 400 cells,
respectively.

The reduction in numerical dissipation associated with the cell size (filter) is apparent
only at the early stages of the simulation, until the turbulent viscosity of the model becomes
large enough to have a greater effect on the results than the numerical dissipation of the
convection terms. This is shown in the integral mixing width (W) and maximum turbulent
kinetic energy (Kq.) results in Figures 9-10. The grid resolution seems to have an effect
on the growth rate only at the early stage of the simulation. Once the turbulence viscosity
becomes sufficiently large, all grids achieve a similar growth rate. This is further supported
by the negligible differences in the profiles of K/K,,,, and W, for both the K — L and TF
models, shown in Figures 10a and 10b.

For the K — L model the reduction in numerical dissipation due to the increasing grid
resolution occurs primarily at the beginning of the simulations, during which there is a
noticeable gradual divergence of the mixing width (I¥) and maximum turbulent kinetic
energy (Kq.) growth rates up until the turbulence model diffusion becomes the leading
cause. Due to this difference in initial growth rate, the results provided by the finer grids

appear to be “delayed” in comparison to the coarser grids. For the TF model, the integral
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FIG. 9: Time evolution of mixing width and maximum turbulent kinetic energy for RTI mixing of

fluids with initial density ratio 3:1. Effect of grid resolution.

mixing width shows little variation with mesh. As already noted, the initial conditions
model is used to minimize this variation. For K/K,,,, there are also small "delays” due to
the change in mesh size. For both the K — L and TF models the effect of mesh size for this

simple test is small and not significant for practical applications.

D. Density Ratio 20:1

Several calculations were performed for different interface pressures and specific heat
capacity ratios. A summary of the test cases are presented in Table IV.

In addition to investigating the TF and K-L models behavior for different interfacial
pressures and specific heat capacity ratios, we have performed a series of tests for the K-
L models to examine the effects of: i) turbulent diffusion of internal energy term (section
[ITE), i.e., comparing the results obtained using equation (17) (internal energy diffusion) to
those of equation (62) (enthalpy diffusion); and ii) calculation of the local Atwood number
(Section IITF), using equations (37)-(43) or (44)-(47).

Comparison of the results for the late time growth rate parameters of W and K4,

between the TF and K-L models and ILES, are presented in Table V for the case of 20:1.
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FIG. 10: Volume fraction (a) and Turbulent kinetic energy (b) profiles for RTI mixing of fluids

with initial density ratio 3:1. Effect of grid resolution.
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Case|pg (dyn/cm?)| y1 | 72
1 1000 |5/3|5/3
2 2000 |5/3]5/3
3 4000 |5/3]5/3
4 1000 2|2
) 1000 4 15/3

TABLE IV: Simulations carried out for density ratio 20:1

Case w Kiax

ILES|0.019254| 0.0170

TF |0.019410/0.015407

K-L |0.018964|0.015157

TABLE V: Self-similar growth rate parameters of W and K,qz

for density ratio 20:1; pg = 2000 dyn/cm? and vy = 72 =5/3

Both turbulence models are in fairly good agreement with ILES, however the TF model

provides overall better results.

1. Effect of initial interface pressure

Calculations have been performed for fluids of an initial density ratio 20:1 and equal
specific heat capacity ratios 71 = v = 5/3. The parameter altered is the initial interface
pressure, ranging po=1000, 2000 and 4000 dyn/cm?, in order to assess the incompressibility
limit of the turbulence models. Self-similarity is achieved (Figure 11) by both models while
the change in the initial interface pressure has almost negligible effect in either model.

The VF and K/K,,,, results at different time instants and for initial interface pressure
of p = 4000 dyn/cm? (Case 3) are shown in Figures 12a and 12b, respectively. Similar to
the 3:1 density ratio, the V F' results are nearly identical and in very good agreement with
ILES. Furthermore, the TF and K-L results for K/K,,,, are in very good agreement with
ILES. While the two models accurately predict the peak location and edges, there are some
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FIG. 11: Time evolution of mixing width and maximum turbulent kinetic energy for RTI mixing

of fluids with initial density ratio 20:1. Different initial interface pressure py.

discrepancies in the results in the “sloped” regions. In some areas the TF model seems to be
more accurate, such as the slope around the peak of K/K,,,,, while the K-L model appears

to be more accurate around the edges of the instability.

2. Effect of heat capacity ratio

To further assess the behavior of the models, calculations were performed by altering the
values of specific heat ratio for both fluids: v; = 75 = 2, as well as 73, = 4, 7 = 5/3 (Cases
4 and 5 in Table IV). Figure 13 shows that W and K., correctly retain their self-similar
growth rate and magnitude for all specific heat ratio combinations tested. This is indicative
of the correct thermodynamic closure of both the TF and K-L model and, as it will be shown
in the next section, in the case of the K-L model it is a direct result of using the turbulent

diffusion of enthalpy.

E. Effect of Enthalpy Diffusion

In section II D, a gedanken test-case was used to justify the substitution of the turbulent

diffusion of internal energy per unit mass by the specific enthalpy as proposed by Cook [48].
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(a) VF vs X/W (b) K/Kpmag vs X/W

FIG. 12: Volume fraction (a) and normalized turbulent kinetic energy (b) profiles for RTT mixing

of fluids with initial density ratio 20:1.

It was shown that the conservation form of the total energy equation (pE*) using equation
(17) should be reformulated as equation (62). The effects of the above terms will also be
discussed in this section for the 20:1 RT case with 73 = 4 and 72 = 5/3 (Case 5 in Table
V).

The effects of the enthalpy term are significant for the maximum turbulent kinetic en-
ergy Kyq. and nearly negligible on the mixing width W (Figure 15). The implementation
of turbulent enthalpy diffusion gives growth rates for W and K,,,, similar to the TF model.
Furthermore, the VF (Figure 14a) and K/K,,.. (Figure 14b) profiles are significantly im-
proved, matching closely those obtained by the TF model and ILES.

The effects of the enthalpy vs. internal energy diffusion on the temperature profile are
shown in Figure 16. The temperature profile at t=10 sec has been normalized by the initial
interface temperature corresponding to py = 1000 dyn/cm?, while satisfying the condition
(61). The results correspond to Cases 1 and 5 of Table IV. Introduction of the enthalpy flux
gn instead of ¢, in the K-L model, leads to similar results to the TF model. In contrast,
when using the diffusion of internal energy (17) in the K-L model, an unphysical wave-like

oscillation in temperature occurs.
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FIG. 13: Time evolution of mixing width and maximum turbulent kinetic energy for RTI mixing

of fluids with initial density ratio 20:1. Different specific heat ratios ~.
F. Effect of local Atwood number estimation

In this section, the original formulation for calculating the local Atwood number based
on equation (37) is compared to that of equation (47), which makes use of the density values
obtained during the reconstruction process (see section II1B). Case 2 was selected in order
to reduce the effect of any other parameter influencing the end results. The local Atwood
numbers Ay, and Ap;/q, will refer to the results obtained using equations (37) and (47),
respectively.

A significant difference can be observed in Figure 17 for the self-similar growth rate of
Kz, which initially is too large when using Ay;. In contrast, Ar; 4., closely matches the
TF results throughout the simulation. Consequently, the growth rate of the integral mixing
width (W) is overestimated. At late times the self similar growth rates of both W and K4,
become similar since both for Ar; and Ag;/4., as L/AX tends to infinity (£/az — oo) the
initial Atwood number approaches zero (Agp; — 0) due to the reduced density gradient of
the heavily diffused mixing width.

The effects of Az; and Ar;/q, on VF are negligible. On the other hand, the effects are
significant for the normalized turbulent kinetic energy K/K,,... The spike and bubble

locations of the RT instability are less accurately captured using the Ay; approach, e.g., the
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K/Kmax

(a) VF vs X/W (b) K/Kpmag vs X/W

FIG. 14: Volume fraction (a) and normalized turbulent kinetic energy (b) profiles for RTT mixing

of fluids with initial density ratio 20:1. Effect of enthalpy diffusion term.

K /K 4. profile around the spike (right section of profile) is not in agreement with neither

the TF model, ILES nor the K-L model using Ar;/ 4, -

G. Molecular Mixing in the Two-Fluid Model

A key advantage of the TF model is its ability of representing the degree of molecular
mixing in a direct way, by transferring mass between the two phases. At a given value of z
the mixture is represented by two components (phases), one rich in initial fluid 1 and one
rich in initial fluid 2. For mixing of incompressible fluids the degree of molecular mixing at
a given value of x may be conveniently expressed in terms of fluid volume fractions. For 3D

distributions, a molecular mixing parameter may be defined as [9, 19, 50]:

o) = 12 (65)

{(F1)(f2)

where (¢) denotes either the plane average or ensemble average of ¢.
The degree of molecular mixing for the layer as a whole may be quantified by a global

molecular mixing parameter:

f<f1f2>d33

O = T )z

(66)
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FIG. 15: Time evolution of mixing width and turbulent kinetic energy for RTI mixing of fluids

with initial density ratio 20:1. Effect of enthalpy diffusion term.
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FIG. 16: Comparison of normalized temperature (7'/Ty) profiles between internal energy and

enthalpy diffusion terms for density ratio 20:1 cases 1 and 5 at t=10 sec.
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FIG. 17: Time evolution of mixing width and turbulent kinetic energy for RTI mixing of fluids

with initial density ratio 20:1. Effect of local Atwood number term.

Both #(z) and © lie within the range 0 (no molecular mixing) to 1 (homogeneous mixing at
each x-level).

For the TF model the equivalent molecular mixing parameter is:

_ Jianiaas + foaiao
o) = (fran + foam) (firanz + foa) (67)

The global mixing parameter is calculated in a similar way. The parameter c3 in the TF
model (section ITA) is chosen so that the global mixing parameter from the model matches
that from the ILES simulations for the required values of A and «a.

Figures 19a and 19b show plots of §(z) at ¢ = 10 for the two density ratios. The TF
model results are compared with those from the ILES simulations [9]. Values of 6(z) on
the low-density side are higher than those on the high-density side. This is attributed to
the increased velocity fluctuations on the low-density side (see figures 8b and 12b). The
effect is significantly greater at the higher density ratio. The TF model gives a very good
representation of the variation of 0(x) across the mixing layer. For p;/ps = 20 the values
of §(x) are slightly higher in the TF model than for ILES. This is because the available
ILES data corresponds to a = 0.08, a higher value than that used for the model calibration

(reference [9] shows that © reduces as « increases).
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K/Kmax

(a) VF vs X)W (b) K/Komag vs X/W

FIG. 18: Volume fraction (a) and normalized turbulent kinetic energy (b) profiles for RTT mixing

of fluids with initial density ratio 20:1. Effect of local Atwood number term.

IV. CONCLUSIONS

Direct comparisons of the TF and K-L models were presented, for first time, in 1D engi-
neering RT calculations of different initial density ratios. The comparison was additionally
complemented by averaged ILES data [9]. The investigation covered a range of physical
conditions; different initial interface pressures and specific heat ratios; examined the effect
of grid resolution; the turbulent diffusion of enthalpy [48] vs. internal energy; and the
calculation of the local Atwood number.

The turbulent diffusion of enthalpy formulated herein for the K-L turbulence model
is shown to have a significant impact on the accuracy of the results, particularly for the
maximum turbulent kinetic energy, K,,.., and less for the integral mixing width, W. Fur-
thermore, the profiles of the volume fraction (V F') and normalized turbulent kinetic energy
(K /K naz) were also influenced by the enthalpy term.

The calculation of the Atwood number based on the values obtained during the recon-
struction process, significantly improved the profile of K/K,,q., while the limiting process
based on the turbulent length scale L and the cell-width Az improved the early-time self-
similar growth rate of K., leading to results similar to the TF model.

The key findings from the comparison of the TF and K-L turbulence models are:
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comparison of TF model with ILES (TURMOIL)

Both models achieve self-similarity.
Both models give similar results for the V F' profiles;

the TF model overall predicts more accurately the K /K, profile, especially at higher

density ratios.

The mixing growth is similarly captured by both models, particularly at higher Atwood

numbers.

Both models retain the same self similar growth rate for different heat capacity ratios

(7).

The TF model is less sensitive to changes of the initial interface pressure; small discrep-
ancies in the K-L only appear at low density ratio (3:1) and initial interface pressure

(250 dyn/cm?).

The correct treatment of the enthalpy flux is needed in the K-L model in order to
obtain temperature profiles, which are in good agreement with ILES and the TF

model.
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8. Changes in the procedure for the calculation of the local Atwood number in the K-L
model led to self-similar growth rates that closely matched those obtained by ILES
and the TF model, particularly at early time.

9. A key advantage of the TF model is that it is capable of representing the degree of

molecular mixing in a direct way, by transferring mass between the two phases.

Finally, it is worth making a couple of comments on the numerical aspects. Simulations
on finer grid resolutions result in less numerical dissipation [24, 56], which intertwines with
the dissipation and diffusion explicitly provided by the turbulence model. This is a complex
issue difficult to quantify in a priori manner. However, it is shown here that grid conver-
gence is achieved provided that the dissipation and diffusion introduced by the model are of
larger /similar magnitude to the corresponding numerical counterparts.

The present study provides an initial step towards a systematic comparison and a better
understanding of single (two-equation) and multi-fluid models. The K-L mixing model
uses a single velocity, which makes it numerically efficient and robust, but it precludes the
description of de-mixing when the acceleration reverses sign. A comparison with ILES or
DNS results for more complex test problems is considered essential for assessing the merits of
the more advanced RANS models (TF or BHR [26]) over the relatively simple K-L model.
The TF model has been successfully applied to more complex cases [19, 30] and further
work is underway to obtain comparisons between the models for a range of 2D RM and RT
problems pertinent to ICF applications, including investigation of the initial conditions and

late-time mixing.
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