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Both experiments and numerical simulations pertinent to the study of self-similarity in
shock-induced turbulent mixing often do not cover sufficiently long enough times for
the mixing layer to become developed in a fully turbulent manner. When the Mach
number of the flow is sufficiently low, numerical simulations based on the compressible
flow equations tend to become less accurate due to inherent numerical cancellation er-
rors. This paper concerns a numerical study of the late time behaviour of single-shocked
Richtmyer-Meshkov Instability (RMI) and associated compressible turbulent mixing us-
ing a new technique that addresses the above limitation. The present approach exploits
the fact that RMI is a compressible flow during the early stages of the simulation and
incompressible at late times. Therefore, depending on the compressibility of the flow
field the most suitable model, compressible or incompressible, can be employed. This
motivates the development of a hybrid compressible-incompressible solver that removes
the low-Mach number limitations of the compressible solvers, thus allowing numerical
simulations of late time mixing. Simulations have been performed for a multi-mode per-
turbation at the interface between two fluids of densities corresponding to an Atwood
number of 0.5, and results are presented for the development of the instability, mixing
parameters and turbulent kinetic energy spectra. The results are discussed in comparison
with previous compressible simulations, theory and experiments.

1. Introduction

When a shock wave impacts on the interface between two fluids of different densities
a Richtmyer-Meshkov instability (RMI) is initiated leading to turbulent mixing between
the two fluids (Richtmyer 1960; Meshkov 1969). RMI appears in different applications in
science and engineering. In Inertial Confinement Fusion (ICF), RMI causes the mixing
between the capsule material and the fuel within, diluting and cooling the fuel with a
significant loss of reaction efficiency (Lindl et al. 1992). In scramjet engines the instability
enhances the mixing between fuel and oxidizer, thus increasing the efficiency of the com-
bustion (Yang et al. 1993). Arnett (2000) attributed to RMI the lack of stratification of
the products of supernova 1987A and Almgreen et al. (2006) showed how RMI, together
with the Rayleigh-Talyor instability (RTI), is the cause of the loss of spherical symmetry
in the supernovae remnants.
Due to the presence of shock waves, the modelling and simulation of RMI requires

the use of compressible flow equations. After the shock wave has passed the interface
the effects of compressibility on the mixing layer are gradually reduced and eventually
a fully incompressible flow is established. It is well established in the literature that for
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low Mach number flows compressible methods exhibit cancellation errors and slow con-
vergence rates (Guillard and Viozat 1999; Thornber et al. 2008) (and references therein).
Several remedies have been proposed; however, the above issues still influence the per-
formance of compressible solvers in low speed regimes, which also includes the late-time
development of the self-similar growth of the mixing zone. Most of the existing experi-
ments and simulations do not reach a fully turbulent regime, and the self-similar growth
of the instability remains to a certain extent a hypothesis (Abarzhi 2008). Progress in
numerical methods (see Thornber et al. (2010); Youngs (2013) and references therein)
has pushed the boundaries of numerical simulations to late time, enabling the investiga-
tion of self-similarity, the influence of initial conditions on RMI and RTI, and turbulent
mixing driven by spherical implosions (Hahn et al. 2011; Thornber et al. 2012, 2010;
Lombardini et al. 2014a,b). In (Hahn et al. 2011), the flow physics associated with the
passage of a shock wave, including reshocked flow, through an inclined material inter-
face with perturbations with different spectra but the same variance was investigated
by implicit large eddy simulations (ILES) using two different computational codes and
different grid resolutions. The results showed that short wavelength surface irregularities
approximated by a power spectrum proportional to the wavenumber of the mode lead to
more total mixing in the early stages, but cannot maintain the turbulent mixing rate at
late times due to the lack of long-living large energetic scales. Additionally, the turbu-
lent kinetic energy decays faster after shock interaction with the inclined interface when
compared to long wave- length surface irregularities characterized by a spectrum of the
form k−2.
Past numerical simulations of RMI with multi-mode perturbation rely entirely on com-

pressible methods. One of the first works published (Youngs 1984) showed 2D single and
multi-mode simulations for a shock tube experiment. Over the last three decades, the
increasing computational power has allowed researchers to use compressible computa-
tional fluid dynamics to simulate 3D RMI, e.g. (Youngs 1994; Oron et al. 2001; Thornber
et al. 2010; Hill et al. 2006; Thornber et al. 2012). Fully incompressible simulations have
been limited to simpler test cases where the perturbation at the interface is formed
by a periodic wave of constant length (Pham and Meiron 1993; Mueschke et al. 2005).
Velikovich and Dimonte (1996) have also presented a nonlinear theory for incompress-
ible fluids driven by an impulsive force. The motivation for using an incompressible
method at late times, as an alternative to compressible flow solvers, arises primarily from
the need to circumvent cancelation errors associated with the compressible flow solvers;
extend the simulation time interval by solving the computationally less demanding set
of incompressible flow equations; and provide complementary to compressible flow equa-
tions a set of data for comparison purposes. The present work aims at simulating RMI
by following an approach not previously explored. The main idea is to use the most ap-
propriate numerical model depending on the flow conditions. Therefore, we propose to
use the compressible and incompressible flow solvers at the early and late times of the
RMI mixing, respectively. This approach avoids the numerical errors in the low-Mach
regime, and allows to run the simulations for longer times. Thus, it can potentially allow
a better understanding of late time RMI mixing as well as obtaining simulation data for
calibrating empirical models. It should also be mentioned that in the past 10-15 years
significant progress has been achieved with respect to the theoretical understanding of
RMI. Comparison with rigorous theories, see (Abarzhi 2008, 2010; Anisimov et al. 2013;
Nishihara et al. 2010; Sreenivasan and Abarzhi 2013) and references therein, would be
beneficial for numerical simulations and this would be part of future work.

The paper is organised as follows. Section 2 presents the existing theories for RMI asso-
ciated with multi-mode interface perturbations. The computational models are presented
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in Section 3. The results from the hybrid and compressible simulations are discussed in
Section 4, and the main conclusions are summarised in Section 5.

2. The Richtmyer-Meshkov instability

RMI is closely related to Rayleigh-Taylor Instability (RTI) and sometimes is also re-
ferred to as the impulsive or shock-induced RTI (Kull 1991). According to the two-
dimensional compressible vorticity equation:

ρ
d

dt

(

ω

ρ

)

=
1

ρ2
∇ρ×∇p , (2.1)

where ρ is the density, ω is the vorticity, and p is the pressure, the mechanism primarily
involved in the process is the deposition of baroclinic vorticity at the interface (Zabusky
1999; Aure and Jacobs 2008; Mikaelian 2003), which increases the circulation in this area
with time. When the shock wave passes from one fluid to the other, clockwise vorticity is
deposited and an unstable sheet of vortices, which drives the deformation of the interface,
is created. The first model, also known as impulsive model, was derived by Richtmyer
(1960) and predicts the growth of the interface, a, according to the formula:

da

dt
= k∆ua0

ρ2 − ρ1
ρ2 + ρ1

, (2.2)

where k is the wavenumber of the perturbation, ∆u is the impulse of velocity imparted
by the incident shock wave, a0 is the initial amplitude of the perturbation and At = (ρ2−
ρ1)(ρ2 + ρ1) is the Atwood number. The accuracy of the model sensibly improves when
the post-shocked quantities a+0 and A+

t are employed (Richtmyer 1960). A discussion
on the agreement and disagreement between compressible linear theory, based on the
linearization of the Euler equations in one space dimension, and the impulsive model
was discussed in (Velikovich and Dimonte 1996; Yang et al. 1994). Large eddy and direct
numerical simulations can greatly benefit from comparing the numerical results with
theoretical results, including zero-order, linear, weakly nonlinear and highly nonlinear
theories, similar to Stanic et al. (2012).

2.1. Self-similarity and late-time development

During the recent decades, several attempts have been made to describe the late-time
evolution of RMI, i.e. when the mixing layer has passed the initial linear growth and
evolves in a fully turbulent manner. Different models based on self-similarity considera-
tions, or bubble formation, have been formulated. Irrespective from the approach used,
all the theories and experiments agree on the fact that the growth of the instability, W ,
follows an exponential trend:

W (t) = C(t− t0)
θ , (2.3)

where C and t0 are constants dependant on the perturbation and the initial conditions,
where the value of the growth exponent, θ, is the main subject of the investigation. One of
the first studies was carried out by Barenblatt et al. (1983), in which the authors discussed
the propagation of turbulence from an instantaneous planar source. Observing that the
rate of turbulent kinetic energy (TKE) for this case is governed by a balance of turbulent
diffusion and dissipation into heat and by using dimensional analysis, they calculated that
the growth of the mixing layer has the form of W (t) ∝ tθ, where θ = 2/3 in the case of
absence of dissipation and θ = 1−µ, with 1/3 < µ < 1, in the presence of dissipation. The
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same result was achieved by Youngs (1994), who applied self-similarity considerations by
starting from the Kolmogorov process and the scaling law of the turbulent dissipation
rate in order to formulate the following model equations:

kinetic energy dissipation:
d

dt
(LU2) = −aU3 ,

growth of the mixing layer:
dW

dt
= U ,

length scale : L = bW + cλmin ,

(2.4)

where a, b and c are model constants and λmin is the shortest wavelength included in the
perturbed interface. For initial values W = U = 0, the growth of the mixing layer is:

W

λmin

= A

[

(

1 +
V0t

pAλmin

)θ

− 1

]

, (2.5)

where A is a model constant, λmin is the shortest wavelength included in the perturbed
interface and θ = 2/3 in the case without dissipation, or θ < 2/3, otherwise. These results
were also verified by Ramshaw (1998) who used a Lagrangian formulation for the energy
to obtain an equation for the evolution of W . For low Reynolds numbers, a different value
for the growth exponent was found by Huang and Leonard (1994), obtaining θ = 1/4
by applying Saffman’s hypothesis (Saffman 1967) that bounds the integral moments of
vorticity distribution for the large scales. Zhou (2001) investigated the inertial sub-range
energy spectrum associated with RMI, extending the classic Kolmogorov phenomenology
to shock-driven turbulence and proposing the following form for the turbulent sub-inertial
range:

E(k, x) = CRMk−3/2
√

At∆uǫ(x) , (2.6)

which predicts a slightly lower decay than the classic k−5/3 given by the Kolmogorov’s
spectrum for homogeneous decaying turbulence. Developing further the analysis, Zhou
(2001) also proposed 2/3, 5/8 and 7/12 as possible values for the growth exponent (the
choice depends on how the evolution of the energy-containing range of the spectrum
is modelled). The upper bound value also agrees with the analysis of Barenblatt et al.
(1983) and Youngs (1994). Another study based on analogies with weakly anisotropic
turbulence was proposed by Clark and Zhou (2006) suggesting that θ varies between 2/7
and 2/5. More recently, Llor (2006) investigated the behaviour of a freely decaying slab
of turbulence with respect to the invariance of angular momentum. The author showed
that for self-similar decay the kinetic energy decays as t−n, where n depends on the range
of wavenumbers involved in the problem. Using the impulsive field as initial condition
(Saffman and Meiron 1989), it was found that for n = 4/3 and n = 10/7 the exponent
θ is 1/3 and 2/7, respectively. Poujade and Peybernes (2010) found a similar range of
values: 1/4 ≤ θ ≤ 2/7.

2.2. Experiments and numerical simulations

Obtaining reliable data from experiments, which involve multi-mode perturbations at
the interface is not a straightforward task. Youngs (1994) showed how the development
of RMI is affected by the initial conditions through Eq. (2.5), therefore the generation of
an interface with well-defined properties is crucial for the production of reliable data. A
significant step regarding RMI experiments was achieved by Castilla and Redondo (1993)
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and Jones and Jacobs (1997). Castilla and Redondo (1993) adopted a new solution to
generate the impulse that triggers the instability. Instead of using the classic shock-
tube, the authors impulsively accelerated a box containing the fluids by allowing it to
fall onto a cushioned surface. The technique was successively improved by using coils
instead of cushions by Jacobs and Sheeley (1996). Jones and Jacobs (1997) generated
the interface between two fluids without using any solid membrane, which was until
then the standard approach but introduced experimental uncertainties, e.g. the pieces
of membrane shredded by the passage of the shock significantly affected the evolution
of the flow field, thus not allowing any proper comparison with numerical simulations.
Dimonte (1999) recreated the RMI by enclosing the two fluids in a box which was driven
downwards at very high acceleration for a short time by linear electric motors. A range
of values were obtained and the trend was expressed through the following equation:

θs = θb

(

ρh
ρl

)0.22±0.05

, (2.7)

for a range of Atwood numbers between 0.15 and 0.96. Experiments (Dimonte and Schnei-
der 2000) confirmed the results giving an exponent for the formula (2.7) of 0.21 ± 0.05.
Studying separately the evolution of bubble and spikes, the authors found that θb is sub-
stantially independent from the Atwood number and has a value of 0.25± 0.05, whereas
the spikes exponent has a very similar value to θb only for At < 0.8. For 0.9 < At < 0.96,
θs drastically increases from 0.35 to 0.85. A possible explanation is given by Thornber
et al. (2010), where it was shown that for a high Atwood number (At = 0.9) the self-
similar regime is achieved compared to lower At.

In the numerical simulations of the late-time behaviour of RMI by Thornber et al.
(2010) two multi-mode perturbations with different power spectra and combinations of
fluids with different Atwood numbers were investigated in order to examine the influence
of initial conditions in the growth of the instability. When the interface is characterised
by a constant power spectrum of a combination of narrowband wavenumbers, a θ ≈ 0.23
was computed, which is in agreement with Dimonte and Schneider (2000). On the other
hand, the value of θ ≈ 0.62 was found in the case that the interface is formed by a
broadband of modes with a power spectrum proportional to k−2, which is close to the
upper bound limit calculated by the theoretical analysis presented in §2.1.
In summary, previous investigations of RMI were based on compressible simulations,

both at the early and late times of the RMI mixing. Using an incompressible flow ap-
proach at late times can shed light on several issues, both physics and numerics related,
e.g. better understanding of cancellation errors associated with compressible solvers; tur-
bulent mixing behaviour before the flow reaches the self-similar regime, as well as in the
self-similar regime; values of the growth exponent and understanding the discrepancies
between experiments and numerical simulations, as well as different ILES models.

3. Numerical methods

3.1. Governing equations

Two computational models are employed in this study, the full compressible model and
the hybrid models that combines compressible and incompressible methods. The com-
pressible model is governed by the compressible Euler equations:
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∂U

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= 0 , (3.1)

where























U = (ρ, ρu, ρv, ρw,E)T

E = (ρu, ρu2 + p, ρuv, ρuw, (E + p)u)T

F = (ρv, ρuv, ρv2 + p, ρvw, (E + p)v)T

G = (ρw, ρuw, ρvw, ρw2 + p, (E + p)w)T

E = ρe+ 0.5ρ(u2 + v2 + w2)

. (3.2)

The variables u, v and w are the velocity-components; E is the total energy per unit
volume; and e is the specific internal energy. The system is closed by the equation of
state for ideal gas p = ρe(γ − 1), where γ is the ratio of the specific heats.

The hybrid model uses the compressible Euler equations at the initial stage of the
simulations and the variable-density, incompressible Euler equations at late times:



















∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

∂UI

∂t
+

∂EI

∂x
+

∂FI

∂y
+

∂GI

∂z
= −∇p

, (3.3)

where















UI = (ρu, ρv, ρw)T

EI = (ρu2, ρuv, ρuw)T

FI = (ρuv, ρv2, ρvw)T

GI = (ρwu, ρwv, ρw2)T

. (3.4)

The subscript (.)I stands for the incompressible model. An additional transport equation
is added to the models in order to keep track of the species propagation:

∂φ

∂t
+

∂(uφ)

∂x
+

∂(vφ)

∂y
+

∂(wφ)

∂z
= 0 . (3.5)

This equation is cast in terms of the volume fraction multiplied by density, φ = ρVf =
ρvi/vTOT, where vi represents the volume occupied by the species i inside the cell and
vTOT is the total volume of the cell. In the variable-density incompressible model, the
transport equations is cast in terms of the total density, φ = ρ.

3.2. Numerical methods

The numerical methods employed in this study for solving the compressible and in-
compressible equations fall into the category of Implicit Large-Eddy Simulation (ILES)
(Youngs 1991; Grinstein et al. 2007; Drikakis 2003). ILES methods do not use of any
Sub-Grid Scale model (SGS), as conventional LES does, but rely on high-resolution,
non-oscillatory (physics-capturing) schemes in order to obtain the amount of dissipation
needed to keep the solution stable, as well as modelling (or mimicking) the effects of the
unresolved turbulent scales. High-resolution methods were originally designed to address
issues of accuracy, and physically-correct behaviour in the proximity of discontinuities
such as shock waves, as well as contact discontinuities. ILES is the established numer-
ical approach for compressible turbulent mixing but is also widely used in many other
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Domain dimensions (Lx × Ly × Lz) Resolution (Nx ×Ny ×Nz)

6π × 2π × 2π 768× 256× 256
2.8π × 2π × 2π 720× 512× 512

Table 1: Domain dimensions and relative grid resolutions.

fluid mechanics applications (see e.g. Drikakis et al. (2009); Grinstein et al. (2007) and
references therein). Furthermore, Bell and Colella (1989) and Drikakis et al. (1994) have
shown that non-oscillatory methods can also be used for incompressible flows.

In this study, the incompressible and compressible Euler equations are solved by non-
oscilatory methods (Drikakis and Rider 2004). The compressible equations are discretised
by the characteristics-based method, as detailed in Eberle (1987); Bagabir and Drikakis
(2004); Drikakis (2003). High resolution is achieved by the Monotonic Upstream-Centered
Scheme for Conservation Laws (MUSCL) scheme in its Total Variation Diminishing form
(Van Leer 1977) in conjunction with the fifth-order accurate limiter (Kim and Kim 2005)
and low-Mach corrections (Thornber et al. 2008). The fifth-order version of the MUSCL
scheme has been found to provide accurate results for a broad range of flows (Drikakis
et al. 2009).
The incompressible equations are solved by a pressure-projection technique which uses

the pressure to enforce the divergence-free constraint for incompressible flows. The mo-
mentum equations are advected without taking into account the pressure, thus disregard-
ing the solenoidal nature of the field. The pressure is then computed iteratively by solving
an elliptic equation, and the velocity components are projected onto the divergence-free
space, thus recovering the incompressible sought solution. The advective fluxes are dis-
cretised by the Rusanov flux (Rusanov 1961; Drikakis and Rider 2004), and similar to
the compressible case the fifth-order MUSCL scheme has been used for reconstructing
the cell-face variables. For the time integration, a second-order Runge-Kutta method in
its Strong-Stability-Preserving version (Spiteri and Ruuth 2002), has been employed in
conjunction with CFL numbers of 0.2 and 0.5 for the incompressible and compressible
solvers, respectively.

3.3. Initial conditions

The RMI case considered here consists of a shock wave travelling from a heavy to a light
gas with Mach number M = 1.84 along the x-direction (Youngs 2004). The perturbation
at the interface consists of constant narrowband high wavenumbers, λ, power spectrum
with modes bounded between λmin = 16∆x and λmax = 32∆x, where ∆x is the grid
spacing. The standard deviation of the perturbation, σ, is set as 0.1λmin, a value which
assures that the modes are linear at the initialisation. The perturbation wavelengths
become shorter as the grid is refined, implying that the mixing layer at a given moment
in time will be shorter for a finer grid if exactly the same initial conditions are assumed.
Further information on the initial conditions can be found in (Hahn et al. 2011; Thornber
et al. 2012). The dimensions of the computational domain and the grid resolutions used
are summarised in Table 1. In order to reduce the reflection of the transmitted and
reflected shock-waves at the inlet and the outlet of the computational domain, an one-
dimensional extended domain (beyond the computational domain) is connected to these
boundaries. This extended domain comprises 7000 cells with the same step size as the
cells in the main field. The above implementation significantly eliminates the reflection
of the shock waves.
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The initial conditions of the non-shocked fluids are:

heavy fluid: (ρ, u, p) = (3.0,−29.16, 1000), (3.6)

light fluid: (ρ, u, p) = (1.0,−29.16, 1000), (3.7)

corresponding to At = 0.5.

3.4. Numerical transition from compressible to incompressible flow

The numerical transition (NT) from the compressible to the incompressible model is im-
plemented according to the local Mach number of the flow, specifically the highest value
of the local Mach (M) number throughout the computational domain (Ω). M is calcu-
lated at the end of each compressible timestep. When maxΩ(M) < MNT, where MNT is
the numerical threshold that distinguishes a compressible from an incompressible flow,
the incompressible solver is initialised from the compressible solution. From a physical
point of view, it is commonly accepted that a flow can be considered incompressible
when maxΩ(M) < 0.3 (Anderson 2007). Numerical tests performed in this study aimed
at addressing the sensitivity of the incompressible solver with respect to the transition
showed that the value of MNT = 0.2 provides accurate results. This also agrees with
the threshold value found by (Oggian et al. 2014) for the single mode RMI case. The
incompressibility assumption and the effects of different numerical schemes on RMI were
also discussed in (Oggian et al. 2014) in detail.
The density varies throughout the computational domain in the compressible model,

whereas the variable-density incompressible model assumes that density is constant in
all computational cells except for cells where mixing occurs. Therefore, in the transition
from compressible to incompressible, the density of the pure fluids and the density in-
side the mixing layer are re-calculated. At the end of the compressible simulation, the
incompressible densities (ρ1)I and (ρ2)I are computed by averaging the densities of cells
where only pure fluid 1 or 2 are present. The averaged values allow the reconstruction of
the incompressible mixing layer based on Vf :

(ρMIX)I = Vf (ρ1)I + (1− Vf )(ρ2)I . (3.8)

In the above formula, the densities are obtained from the averaging process, and the
Vf distribution from the compressible solution. The density reconstruction is based on
the volume fraction instead of the density field because in the compressible simulation
the same volume fraction for given cells does not (necessarily) correspond to the same
density values. Therefore, average densities for all the cells with Vf = 1 and Vf = 0 are
calculated, and the density ρ throughout the domain is re-calculated according to the
volume fraction distribution. In the numerical transition the momentum terms ρu, ρv and
ρw are not modified. The pressure is initialised by a constant value, which is corrected by
the incompressible solver at each time step, so as to satisfy the divergence-free constraint.

4. Numerical simulations

Unless otherwise specified, the results presented in this section refer to the finest grid.
The simulations were carried out on Cranfield University’s HPC facility - Astral, us-
ing 64 processors. The approximate computational time for the compressible simulations
was 90 days for τ = 500. The corresponding time for the hybrid solver was 10 days for
τ = 1500. This clearly shows the computational advantage gained by the hybrid solver,
which allows longer periods of mixing development to be computed at less computing
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Figure 1: Interface deformation (iso-surface Vf = 0.5) at the instant of the numerical transition from
the compressible to the incompressible model for the 256 cross-section grid (τ ≈ 5.78).

Figure 2: Growth of the mixing layer during the compressible stage for the 256 cross-section grid
(0 < τ < 5.78). The rapid decay after the overshoot at τ ≈ 0.3 is due to compression of the initially
diffused interface when the shock wave interacts with it.

time.

In order to allow the comparison of the results on different grid resolutions by taking
into account the grid-dependence of the initial perturbation, the time is non-dimensionalised
by the minimum wavelength at the interface, λmin = 16∆x:

τ = t
A+

t ∆u

λmin

. (4.1)

The incompressible solver is initialised at tNT ≈ 0.156 s, which corresponds to non-
dimensional times of approximately 5.78 and 11.56 for 256 and 512 resolutions, re-
spectively. The densities assigned to the incompressible fluids after the transition are:
(ρ1)I = 5.23 and (ρ2)I = 1.82. The status of the interface at the end of the compressible
part of the simulation is presented in Figure 1. The linear growth of the mixing layer
(Figure 2) is dictated by the larger scales generated by the perturbed interface. An initial
velocity is given to the gas interface so that the centre of the interface remains stationary
after the passage of the shock wave. The initial growth of W prior to the interaction of
the shock wave with the interface is due to numerical diffusion of the interface (Figure
2). This is followed by compression due to the interaction of the shock wave with the
interface, hence the abrupt reduction in W .
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Figure 3: Growth of the integral length of the mixing zone computed by the hybrid solver and inter-
polated using non-linear regression analysis. The results of the compressible simulation from Thornber
et al. (2010) are also shown.

Source Interpolation θ
interval

Compressible (C) 40 < τ < 500 0.244
Hybrid (H) 40 < τ < 500 0.225

40 < τ < 1500 0.213
Thornber et al. (2010) (compressible) 40 < τ < 500 0.260
Youngs (2004) (compressible) not specified 0.243
Dimonte and Schneider (2000) (experiments) not specified 0.25± 0.05

Table 2: Growth exponent values for various compressible and hybrid simulations, as well as experi-
ments.

4.1. Growth of the instability

The integral length of the mixing zone:

W =

∫

Vf

(

1− Vf

)

dx , (4.2)

where Vf is the volume fraction averaged over the y and z planes of the domain, is shown
in Fig. 3 both for the compressible and hybrid solutions. Furthermore, with reference to
Equation (2.3), the values of the growth exponent computed by the non-linear regression
(NLR) analysis are summarised and compared against published results in Table 2.
The growth exponent in the compressible simulation is found to be in good agreement
with both the experiments of Dimonte and Schneider (2000) and the numerical simula-
tions of Thornber et al. (2010). Excellent agreement is also found with Youngs (2004),
where θ = 0.243 was obtained from a long-time compressible simulation; the difference
between Youngs (2004) and our simulations is approximately 0.001. The hybrid simu-
lation generally predicts a lower exponent independently from the time interval across
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which W is interpolated. The value of θ obtained for 40 < τ < 500 slightly changes
when the interpolation time-window covers the entire simulated time, i.e. 40 < τ = 1500.
The differences between the present compressible simulation and the one by Thornber
et al. (2010) are attributed to the different discretisation methods used, specifically the
numerical dissipation embedded on the non-oscillatory schemes.

Further analysis on the estimation of θ, analogous to Dimonte et al. (2004) and
Ristorcelli and Clark (2004) methods applied to estimating the growth rate coefficient
for Rayleigh-Taylor mixing, is presented below. If we assume that the growth of the
Richtmyer-Meshkov mixing layer is modelled by power-law growth with a virtual time
offset

W = A(t− t0)
θ, (4.3)

then we can derive the parameters A, t0 and θ from numerical data using the time
derivatives of W . If t0 is assumed to be small, then we need only the first derivative

θ1 =
tẆ

W
, (4.4)

while if we allow for t0 6= 0, then

θ2 =
1

1−WẄ/Ẇ 2
. (4.5)

In order to generate these estimates of θ, the first and possibly second derivatives of
the layer thickness need to be found. Doing this by simple differencing of noisy data is
known to be a numerically unstable procedure. In order to mitigate this numerical noise,
we pass the layer width data through a Savitzky-Golay filter, with a weighting function
applied to smooth the edges of the filter window, and hence reduce the effect of sudden
changes as individual data points enter it. The results of the above analysis are shown in
Figure 4. The noisier method (θ2) depends on second derivatives, so suffers from noise at
late time. Overall, the above results seem to give pretty good evidence for convergence,
though the way the first-order curve starts to wallow at late time (and the second-order
version goes haywire) suggests that the dominant modes are starting to see the box size.

Comparing the hybrid solution with the various analytical theories, the results agree
with Barenblatt’s suggestion for θ = 2/3 − ν, where ν < 1 is a viscous correction. The
hybrid and compressible simulations give ν ≈ 0.45 and ν ≈ 0.42, which are within the
range proposed by Barenblatt et al. (1983). The compressible simulations of Thornber
et al. (2010) and Youngs (2004) are also within this range giving ν ≈ 0.41 and ν ≈ 0.42,
respectively. The values obtained here are significantly lower than the range proposed
by Zhou (2001), which predicts an upper value of 2/3. However, the agreement between
the numerical and the experimental results is good and confirms the (generally) accepted
viscous correction theory of Barenblatt et al. (1983).

Information about the self-similar growth of the mixing layer is obtained by plotting
the plane-averaged profiles of volume fraction at different instants in time (Figure 5). In
order to compare the solutions, the variable is normalised by the width of the mixing
layer at the time instant considered. The profiles of Figure 5 indicate that both for the
compressible and hybrid solutions the evolution of the bulk of the mixing layer tends
to become self-similar at τ ≈ 250, whereas the two extremes of the mixing layer require
more time to achieve this regime. The comparison is made clearer by plotting the quantity
Vf

(

1− Vf

)

in Figure 6. In the compressible simulations, the spikes do not become self-
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Figure 4: Analysis of RM exponent θ. Blue is θ1, eq. (4.4), (Dimonte et al. 2004), and green is θ2, eq.
(4.5), (Ristorcelli and Clark 2004).

(a) Compressible (b) Hybrid

Figure 5: Profiles of volume fraction, averaged on the x-planes, plotted against the direction of the
shock propagation normalised by the integral length of the mixing layer at different (dimensionless) times
for the fine grid.

similar by the end of the simulated time (τ ≈ 500). In the hybrid simulations, we found
that the profiles start to develop in a self-similar manner after τ > 500.
The differences in the the extremities of the mixing layer is caused by density differ-

ences and, in turn, by the momentum of bubbles and spikes. This makes the profiles of
the volume fraction asymmetric with respect to the centre of the mixing zone. The higher
momentum of the spikes generates coherent vortex rings that travel away from the inter-
face, which further breakdown and become part of the mixing layer only at later time in
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(a) Compressible (b) Hybrid

Figure 6: Profiles of Vf (1 − Vf ), averaged on the x-planes, plotted against the direction of the shock
propagation normalised by the integral length of the mixing layer at different (dimensionless) times for
the fine grid.

comparison with the bubbles. The evolution towards self-similarity as predicted by the
hybrid simulation is found in good agreement with the compressible analysis of Thorn-
ber et al. (2010) that obtained self-similar evolution for the centre of the mixing layer
at τ ≈ 238. In Thornber et al. (2010) a value for bubbles and spikes was not predicted
since the simulation ran up to τ = 500 and at that time it was found that although the
profiles were tending towards collapsing on top of each other, still self-similarity was not
yet clearly achieved. The above imply that a much finer grid resolution is necessary to
correctly capture the extremities of the mixing layer since the fine structures in this re-
gion of the domain make the results extremely sensitive to the dissipative characteristics
of the numerical scheme at high wavenumbers.

Visualisations of the evolution of the mixing layer are presented in Figure 7, where
the breakdown of the larger structures at late-time and the turbulent development of the
mixing layer, is shown. It should be mentioned that the mixing fraction parameter after
the transition remains the same by numerical construction, when using the volume frac-
tion to initialise the density field. The differences in the volume fraction contours between
compressible and hybrid simulations are attributed to the different inherent numerical
dissipation associated with the incompressible and compressible ILES. It appears that
the compressible solution is more dissipative than the incompressible one. This is similar
to the single mode case (Oggian et al. 2014), where the incompressible solver predicted
mushrooms with two roll-ups, whereas the compressible solver gave one roll-up. Although
investigation of the properties of ILES models is beyond the scope of the present study,
further research is required to analyse the dissipation and dispersion effects of different
ILES models.

Figure 8 shows the evolution of the molecular mixing fraction, Θ, and the mixing param-
eter, Ξ, defined as:
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(a) τ = 200

(b) τ = 500

(c) τ = 1500

Figure 7: Two-dimensional visualisations of compressible (left) and hybrid (right) Vf contour plots.
For τ = 1500 only hybrid visualisations are available. The plots are clipped to highlight the mixing layer.
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Figure 8: Time evolution of the molecular mixing fraction, Θ and the mixing parameter, Ξ, for the 512
cross-section grid.

Source Θ Ξ

Compressible (C) 0.87 0.87
Hybrid (H) 0.74 0.80
Thornber et al. (2010) (compressible) 0.84 0.84

Table 3: Values of the mixing parameters for compressible and hybrid simulations compared against
the compressible simulation from Thornber et al. (2010).

Θ =

∫

Vf (1− Vf ) dx
∫

Vf

(

1− Vf

)

dx

, Ξ =

∫

min(Vf , 1− Vf ) dx
∫

min
(

Vf , 1− Vf

)

dx

. (4.6)

The Θ and Ξ mixing parameters are measures of the total reaction rates for slow and
fast reactions, respectively. Both coefficients follow a similar trend but the compressible
simulations give higher values. The curves do not reach a plateau for the simulation
interval considered here but are characterised by a very low positive slope which decreases
with time. Table 3 summarises the asymptotic values and compare them against the
results of Thornber et al. (2010). The hybrid solution predicts less mixing, lower Θ and
Ξ, than the compressible solution, which is also evident from the volume fraction plots
in Figure 7. The Θ and Ξ as obtained from the present compressible simulations are
very similar to the compressible results of Thornber et al. (2010) despite the fact that
different numerical methods were used in the two compressible simulations. The above
results give confidence regarding the compressible ILES models but also suggest that
further investigation and comparison between incompressible and compressible ILES,
are required.
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4.2. Turbulent kinetic energy (TKE)

The TKE spectra for the hybrid and compressible simulations at various time instants
are shown in Figure 9. The spectra have been obtained by an averaging process over ten
slices of the domain along the x-direction, which is the direction of the shock propagation.
These slices are selected to be at the centre of the mixing layer.
Previous studies (Thornber et al. 2010; Zhou 2001) have shown that the spectra of

the narrowband layer prior to reshock takes a k−3/2 form. Immediately following reshock
(where the shock has moved fully clear of the layer) there is a k−5/3 range present in the
spectrum, however at the latest time where the flow tends towards a self-similar solution
the spectrum returns to a k−3/2 form but with more energy at lower wavenumbers than
in the pre-reshock case. As the growth rate of the mixing layer is essentially the integral
of the kinetic energy spectrum then the slight increase of the growth exponent is most
likely due to this increase in low wavenumber energy.
The above ranges are also observed in the present spectra, however, comparing with the

results of Thornber et al. (2010) the agreement is less clear in the present compressible
simulations due to the coarser resolution, 5122 cross section here vs 20482 in (Thornber
et al. 2010). The k−5/3 region in the hybrid simulations is also limited to a shorter range of
wave numbers compared to the compressible results. These discrepancies are attributed
to the scaling of the initial perturbation and the discretisation methods. The results
clearly show that the numerical dissipation has important effects on the flow physics and
considering that most practical simulations are under-resolved with respect to the grid,
this issue requires more investigation. Bearing the aforementioned uncertainties in mind,
the results further show that the energy peak progressively moves from an initial k/kmin ≈
0.6 at τ = 40 to k/kmin ≈ 0.1 at τ = 1500. At high wavenumbers (k/kmin > 3), the rate of
TKE decay increases, but at the very end of the spectrum, k/kmin ≈ 8, a slight turn-up of
the energy is observed. This part of the spectrum still represents the unknown since there
is no theory which describes the dissipative characteristics of shock-induced turbulent
mixing. The turn-up in the dissipation range of the compressible spectrum appears to
be more evident. The results obtained from both simulation approaches indicate that at
the end of the simulation there is no evidence of memory loss of the initial shock and the
mixing still behaves in an inhomogeneous and anisotropic manner.
The evolution of the TKE components defined by:

Kx =
1

2

∫

ρ(u− u)2 dV , Ky =
1

2

∫

ρv2 dV , (4.7)

where,

u =

∫

y,z

ρu dS

∫

y,z

ρ dS

. (4.8)

is shown in Figure 10. There is good agreement between the compressible and hybrid
simulations. At early times, Kx is an order of magnitude larger than Ky and Kz. As
time passes, the behaviour of the longitudinal and radial components follow different
trends. The former constantly decreases, whereas the latter presents an initial growth
until τ ≈ 40 and then it successively diminishes until the end of the simulation.
As it has been discussed in Thornber et al. (2010), given that the width of the mixing

layer scales with tθ, then the empirical relation ǫ ∝ u3/W can be used to check the
dissipation rate of kinetic energy. From dimensional analysis dK/dt ∝ K3/2/tθ, where K
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(a) Compressible solution. Spectra for τ = 50, 100, 150, 200, 250, 300,
350, 400, 450 and 500.

(b) Hybrid solution. Spectra for τ = 50, 100, 150, 200, 250, 300, 350,
400, 450, 500, 600, 700, 800, 1000 and 1500.

Figure 9: Compressible and hybrid spectra of radial turbulent kinetic energy averaged on y and z

planes in the bulk of the mixing layer for the 512 cross-section grid and k−3/2 guide-line analytically
predicted by Zhou (2001).
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(a) TKE components (b) TKEx/TKEy ratio

Figure 10: Evolution in time of the turbulent kinetic energy components and of the ratio Kx/Ky for
the 512 cross-section grid, both for the compressible and hybrid simulations

is the turbulent kinetic energy per unit mass, with a solution of the form K ∝ t2θ−2. This
is the decay rate of mean kinetic energy across the mixing layer. The decay of the total
fluctuating kinetic energy is proportional to the width of the mixing layer multiplied by
the mean kinetic energy, i.e. WK ∝ tθt2θ−2 ∝ t3θ−2. This result can also be gained by
assuming that the mean velocity in the mixing layer is proportional to the growth of
the mixing layer itself, giving

√
K ∝ dW/dt ∝ tθ−1, i.e. WK ∝ t3θ−2. Considering that

the hybrid solver returned a growth coefficient of θ = 0.213, the TKE is supposed to
scale with t−1.36. From Figure 10a, it is clear that the decay of K is consistent with the
prediction. As a consequence of the evolution of the TKE in time, the ratio of Kx to the
radial components decreases very quickly, until it reaches a minimum of 1.24 at τ ≈ 400,
followed by a slow increase. For 800 < τ < 1500, the ratio Kx/Ky is included in the
range 1.315± 0.015 with the tendency to increase.

The analysis of the TKE components is also consistent with the TKE spectra. Even
though the trend of these quantities results in a constant and basically equal decay at the
end of the simulation, e.g. at τ ≈ 250 the rate of decay for all components becomes almost
identical, there is no sign of loss of anisotropy in the flow field as the x component of the
TKE is higher than the radial contributions; this conclusion also agrees with Thornber
et al. (2010). The ratio Kx/Ky found in this study seemed to stabilise around the value
of 1.25 ± 0.02 at τ > 50. In comparison with the compressible simulations, the hybrid
approach gives a lower anisotropy at late times.

5. Conclusions

A computational approach for studying the late time development of the Richtmyer-
Meshkov instability was presented. The method utilises a compressible flow model at
early times and an incompressible one at later times. The proposed approach enables
longer times of the mixing development to be simulated at shorter computational time.
The results were found in good agreement with previous compressible simulations, theory
and experiments.

The simulations indicated that the spikes and bubbles start to converge towards self-
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similar behaviour at different time instants; approximately τ = 600 for spikes, and τ =
250 for bubbles. The mixing parameters of the present compressible simulations were
found in good agreement with the compressible flow results of Thornber et al. (2010). The
hybrid solution gives less mixing than the compressible solution. Furthermore, the k−3/2

region of the TKE spectra of the hybrid simulations is limited to a shorter range of wave
numbers compared to the compressible simulations. The discrepancies between different
ILES models and simulations are attributed to the scaling of the initial perturbation
and the discretisation methods. The numerical dissipation has significant effects on the
flow physics and this issue deserves further investigation. Contrary to what is assumed
in Zhou (2001), the TKE spectra indicated an anisotropic evolution even at late times.
In fact, although the averaged TKE components were found to decay at the same rate
of t−1.36, at late time the x-component exhibited an absolute value of about 1.31 times
higher than the same parameter along the y and z directions.
Although the results of the present study are promising with respect to the use of

hybrid compressible-incompressible methods for simulating late time RMI mixing, they
also suggest that further research is required to elucidate the physics of RMI (anisotropy
and self-similarity) and the effects of numerical methods, ILES in particular, on the simu-
lation results. The results suggest that although the time window of simulations has been
extended thanks to the hybrid method, the flow has not yet become fully self-similar. Ol-
son and Greenough (2014) suggested that the required number of grid points needed for a
DNS of RMI is about 4×1012, which exceeds the current capabilities of super-computing
resources. For an RM calculation with fixed small scales computed with an explicit hy-
drodynamics scheme, the computational cost to get to width W will be ∝ W 3W 1/θ,
where the first term is the number of cells required to resolve the mixing layer and the
second term is the number of timesteps required. Therefore, the computational time cost
expands roughly as the dynamic range (W/∆x)7. The easiest factor to address is the
W 1/θ, which an implicit calculation should be able to change to ∝ W or ∝ W log W .
Beyond that, there may be possible to gain extra factors, e.g., by de-refining fine scales
at late time. In summary, even two orders of magnitude higher resolution than the one
employed here would seem to require exclusive access to the largest HPC facilities cur-
rently available. Therefore, future research should justify what resolution is needed to get
reliable results (for relevant parameters, in relevant conditions) from an ILES calculation
with the particular numerical methods being used. Finally, part of our future research
will also be to use the hybrid method to examine the effects of different initial conditions
on late time mixing.
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