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ABSTRACT

In this work, we consider a tracker spacecraft equipped
with a short-range vision system that must visually iden-
tify a target and determining its relative angular veloc-
ity and relative linear velocity using only visual informa-
tion from an onboard camera. By means of visual feature
detection and tracking across rapid, successive frames,
features detected in two-dimensional images are matched
and triangulated to provide three-dimensional feature
maps using structure-from-motion techniques. Triangu-
lated points are organized by means of orientation his-
togram descriptors and used to identify and track targets
over time. The state variables with respect to the camera
system are extracted as a relative rotation quaternion and
relative translation vector that are tracked by an embed-
ded unscented Kalman filter. Inertial measurements over
periods of time can then be used to determine the relative
movement of tracker and target spacecraft. This method
is tested using laboratory images of spacecraft movement
with a simulated spacecraft movement model.
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1. INTRODUCTION

Visual Pose Estimation technology has attracted a lot of
interest for spacecraft navigation as an enabling tech-
nology for rendezvous and docking manoeuvres. Guid-
ance and Control of a spacecraft has been studied exten-
sively, but in order for such systems to work effectively
between spacecraft close to each other, the relative po-
sition, attitude and and velocity between each spacecraft
must be robustly estimated. The desired result is that two
satellites will be able to reliably and autonomously ren-
dezvous with each other, but visual position estimation
for satellites in orbit is far from a solved problem.

Traditionally, RF radar trades off precision for wide range

of operation, and is not as suitable for uncooperative or
small targets. The TriDAR system used a LIDAR and
Iterative Closest Point system outside the ISS without
approach or autonomy [RLB12]. Recent automated ren-
dezvous and docking systems make use of optical, laser
ranging, and LIDAR systems [HCDS14] [PHAR12] and
visually-aided systems have been tested in proximity op-
erations with NASA’s Space Shuttle, JAXA’s ETS-VII
satellite [Oda00], and other satellites such as the DART
mission [RT04].

However, the complexity, size, and power requirements
of current LIDAR systems are still out of reach for small
satellites and nanosatellites, and there is great potential
in the use of multiple-view imaging and feature mapping
since only one camera may be necessary. Many pose es-
timation techniques have been proposed for this, and typ-
ically focus on shape tracking and recognition, feature
detection and triangulation [Sha14], or a combination of
shape and features [TBB11]. The SPHERES experiment
uses SURF feature matching with stereo vision for navi-
gation inside the ISS [TSSO+14].

In this work, we propose a different approach to the
monocular visual estimation problem: recognition and
tracking of features for ego-motion from a sequence of
images, which can then be inserted into a point cloud,
which in turn provides a way to recognize the position of
the target. This method is derived from structure-from-
motion computer vision methods used in robotics and in
photo-tourism reconstructions from large image sets, and
requires that only rigid transformations are present be-
tween images. To speed the development process and
minimize coding errors and complexity, we make use of
the open-source OpenCV (Open Computer Vision) and
PCL (Point Cloud Library) for most of the computer vi-
sion programming.



2. APPROACH AND TRACKING

To allow a tracker spacecraft to to identify and estimate
the movement of a target spacecraft, we approach this
problem as illustrated in Fig. 1 First, we build up a fea-
ture set of points located in three dimensions by triangu-
lation of keypoints on successive images of the target in
the “Approach” phase. We then locate the camera rel-
ative to the matched points by Perspective-n-Point (PnP)
solution during the “Track” phase. By projecting the key-
points into three dimensions, we build up a point cloud
of the target over many more images in the “Observe”
phase, which can then be matched in shape to a point
cloud model, and the pose of the model accurately ob-
tained by three-dimensional keypoint correspondences in
the “Identify” phase.

Feature-based vision methods reduce complete images to
a set of distinct, reproduceable “features” that are rep-
resented by small numerical sequences. We apply ORB
(Oriented FAST and Rotated BRIEF) point descriptors
for 2-D feature matching with high rotation invariance
[RRKB11]. We then use structure-from-motion methods
to triangulate these points in space.

2.1. System Overview

A flowchart of the process we propose is shown in Fig. 2,
with details on each step provided in the following sec-
tions. A sequence of images can be captured or cached,
features extracted using two-dimensional point descrip-
tors that are stored in memory and matched in pairs to
obtain a list of images with features, and also a list of
features tracked across images. This list of feature cor-
respondences is used to track the movement of keypoints
across several poses, and.if the triangulation is not good
enough, a more different pose containing those features
is selected. Using a pose solution, the points and cam-
era are projected into global coordinates. The resulting
scene point cloud can then be compared with a model
cloud to identify the target by choosing a set of keypoints
and extracting histogram descriptors for each with respect
to point normals. By matching descriptors between the
scene and model, the model and its pose can be found
within the scene. An OptiTrak Trio optical tracking sys-
tem is currently used as an external high-speed reference
for pose estimation. The pose estimates are then filtered
over time using an Unscented Kalman Filter to reduce
noise. Sensor fusion of the triangulation and correspon-
dence tracker-target measurements is planned, but has not
been implemented yet.

2.2. Keypoint Detection and Matching

A method of keypoint detection must be used to obtain
keypoints from a sequence of images. The FAST key-
point detector (Features from Accelerated Segment Test)
is frequently used for keypoint detection due to its speed,

and is used for quickly eliminating unsuitable matches in
ORB. Starting with an image patch p of size 31x31, each
pixel is compared with a Bresenham circle built 45 de-
grees at a time by x2

n+1 = x2
n − 2y(n) − 1. The radius

of the surrounding circle of points is nominally 3, but is 9
for the ORB descriptor, which expands the patch size and
number of points in the descriptor. If at least 75% of the
pixels in the circle are contiguous and more than some
threshold value above or below the pixel value, a feature
is considered to be present [RD05]. The ORB algorithm
introduces an orientation measure to FAST by computing
corner orientation by intensity centroid, defined as

C =

(

m10

m00

,
m01

m00

)

where mpq =
∑

x,y

xpyqI(x, y).

(1)

The patch orientation can then be found by θ =
atan2(m01,m10) and is Gaussian smoothed. ORB
then applies the BRIEF feature descriptor fn(p) =
∑

1≤i≤n 2
i−1τ(p; ai, bi), a bit string result of binary in-

tensity tests τ , each of which is defined from the intensity
p(a) of a point at a relative to the intensity p(b) at a point
at b by [RD05]

τ(p; a, b) =

{

1 : p(a) < p(b)
0 : p(a) ≥ p(b)

}

(2)

The descriptor is also steered according to the orienta-
tions computed for the FAST keypoints by rotating the
feature set of points (ai, bi) in 2xn matrix form by the
patch orientation θ to obtain the rotated set F [RRKB11].

F = Rf

(

a1 · · · an
b1 · · · bn

)

. (3)

The steered BRIEF operator used in ORB then becomes
gn(p, θ) = fn(p) ∨ (ai, bi) ∈ F . A lookup table
of steered BRIEF patterns is constructed from this to
speed up computation of steered descriptors in subse-
quent points.

Keypoints are then matched between two images in the
sequence by attempting to find a corresponding keypoint
a′ in the second image that matches each point a in the
first image, which can be done exhaustively by an XOR
operation between each descriptor and a population count
to obtain the Hamming distance. However, The FLANN
(Fast Library for Approximate Nearest Neighbor) search
algorithm built into OpenCV is used in current work as it
performs much faster while still providing good matches
[ML09].

The more features in common between these images,
the more potentially good matches Mf can be found,
but it is essential that matches be correct correspon-
dences or a valid transformation between the two im-
ages will be impossible. The matches Mf are first



Figure 1. Process of Ego-Motion and Target Pose Estimation

Figure 2. Flowchart of Optical Pose Estimation System



coarsely pruned of bad pairings by finding the maxi-
mum distance between points dmax and then removing
all matches that have a coordinate distance da of more
than half the maximum distance between features using
Mg = Mf (a)|da < dmax/2.

2.3. Three-Dimensional Projection

To obtain depth in a 3-D scene, an initial baseline for
3-D projection is first required using either stereoscopic
vision, or two sequential images from different angles..
The Fundamental Matrix F is the transformation matrix
that maps each point in a first image to a second image,
and the set of “good” matches Mg is used where each
keypoint ai in the first image is expected to map to a cor-
responding keypoint a′i on the epipolar line in the sec-

ond image by the relation a′Ti Fai = 0, i = 1, . . . , n
[LF95]. For three-dimensional space, this equation is lin-
ear and homogeneous and the matrix F has nine unknown
coefficients, so F can be uniquely solved for by us-
ing eight keypoints with the method of Longuet-Higgins
[LH87]. However, due to image noise and distortion, lin-
ear least squares estimation (i.e. minF

∑

i(a
′T
i Fai)

2) or
RANSAC [FB81] must be used to ensure that a “best”
solution can be estimated. We use RANSAC for its speed
to estimate F for all matches Mg and estimate the associ-
ated epipolar lines [FH03]while removing outliers more
than 0.1 from their epipolar line from Mg to yield a final,
reliable set of keypoint matches Mh. To perform a pro-
jection into un-distorted space, a calibration matrix K is
needed, either from calibration with a known pattern such
as a checkerboard [Har97], or estimated for a size w × h
image as

K =

(

max(w, h) 0 w/2
0 max(w, h) h/2
0 0 1

)

. (4)

A camera matrix is defined as C = K[R|t] with the ro-
tation matrix R and the translation vector t defining the
pose of the camera in space, and for two images, we de-
fine two camera matrices C1 and C2. To localize a point
in un-distorted space, we formulate the so-called essen-
tial matrix E = t×R = KTFK that relates two match-
ing undistorted points x̂ and x̂′ in the camera plane as
â′Ti Eâi = 0, i = 1, . . . , n [HS97]. In this way, E in-
cludes the “essential” assumption of calibrated cameras
[Shi12b], and is related to the fundamental matrix by E

After calculating E, we can find the location of a second
camera C2 by assuming for simplicity that the first cam-
era is uncalibrated and located at the origin (C1 = [I|0]).
We decompose E = t × R into its component R and t
matrices by using the singular value decomposition of E
[HZ04]. We start with the orthogonal matrix W and and
singular value decomposition (SVD) of E, defined as

W =

(

0 −1 0
1 0 0
0 0 1

)

SVD(E) = U

(

1 0 0
0 1 0
0 0 0

)

V.

(5)

The matrix W does not directly depend on E, but pro-
vides a means of factorization for E. Detailed proofs
can be found in [HZ04] and are not reproduced here,
but there are two possible factorizations of R, namely
R = UWTVT and R = UWVT, and two possi-
ble choices for t, namely t = U(0, 0, 1)T and t =
−U(0, 0, 1)T . Thus when determining the second cam-
era matrix C2 = K[R|t], we have four choices in total.

it is now possible to triangulate the original un-distorted
point positions in space with E and a pair of matched
keypoints [a = (ax, ay), b = (bx, by)] ∈ Mh using itera-
tive linear least-squares triangulation [HS97]. A point in
three dimensions x = (xx, xy, xz, 1) written in the ma-
trix equation form Ax = 0 results in four linear nonho-
mogeneous equations in four unknowns for an appropri-
ate choice of A4x4. To solve this, we can write the system
as Ax = B, with x = (xx, xy, xz), and A4x3 and B4x1

as defined by Shil [Shi12a]. The solution x by SVD is
transformed to un-distorted space by x̂ = KC1x, as-
suming that the point is neither at 0 nor at infinity. This
triangulation must be performed four times for each com-
bination of R and t and tested by perspective transforma-
tion with C1 and x̂z > 0 to ensure the resulting points pi
are in front of the camera.

2.4. Image Selection

Using adjacent pairs of images in a closely-spaced time
sequence allows feature points to be tracked more reli-
ably between images, as there is less chance of condi-
tions or change in angle causing a feature to change sig-
nificantly. However, the disadvantage of using closely-
spaced images for pose estimation is that a very small
angular difference between two images will prevent trian-
gulation solutions, like very distant points. Therefore, we
track, match, and store keypoints between closely-spaced
images, but only triangulate with images that are well-
separated that contain tracked keypoints between the two.
Unusable images in the matching process are most com-
monly due to:

• Not enough feature points being matched to obtain
F or triangulate

• Inaccurate estimates of rotation R and translation t

• Inaccuracy of the fundamental matrix F, preventing
decomposition to E, R, and t

If two few features are matched between image Pt at time
step t and Pt−1, the next image to be obtained Pt+1 is
used with Pt−1, if it fails then Pt+2 is used, and so on



until a predefined “reset” limit. Valid matches from the
new image Pt or later are added the the existing tracked
keypoint list to associate feature numbers across the se-
quence of images. When obtaining the fundamental ma-
trix F, only keypoints that have been associated between
both images are used.

2.5. Position Estimation

To finding the ego-motion of the tracker’s camera relative
to feature points represents the Perspective & Point (PnP)
problem. For this, we apply the OpenCV implementation
of the EPnP algorithm [MNLF07]. For the n-point cloud
with points p1 . . .pn, four control points ci define the
world coordinate system and are chosen with one point
at the centroid of the point cloud and the rest oriented to
form a basis. Each reference point is described in world
coordinates (denoted with w) as a linear combination of
ci with weightings αij . This coordinate system is con-
sistent across linear transforms, so they have the same
combination in the camera coordinate system (denoted
with c. The known two-dimensional projections ui of the
reference points pi are linked to these weightings by K
considering that the projection involves scalar projective
parameters wi, leading to the following.

pw
i =

4
∑

j=1

αijc
w
j , p

c
i =

4
∑

j=1

αijc
c
j ,

4
∑

j=1

αij = 1 (6)

Kpc
i = wi

(

ui

1

)

= K

4
∑

j=1

αijc
c
j (7)

The expansion of this equation has 12 unknown control
points and n projective parameters. Two linear equa-
tions can be obtained for each reference point to ob-
tain a system of the form Mx = 0, where the null
space or kernel of the matrix M2nx12 gives the solu-

tion x = [cc1
T , cc2

T , cc3
T , cc4

T ] to the system of equa-
tions, which can be expressed as x =

∑m

i=1
βivi. The

set vi is composed of the null eigenvectors of the prod-
uct MTM corresponding to m null singular values of M.
The method of solving for the coefficients β1 . . . βm de-
pends on the size of m, and four different methods are
used in the literature [MNLF07] for practical solution.

Let the translation and rotation in world coordinates
of the previous pose be tw(t − 1) and Rw(t − 1),
and that of the current pose be tw(t) and Rw(t), for
which we need to find the current camera matrix in
world coordinates Cw(t). The relative transformation
between the camera positions t(t) and R(t) is used
to incrementally advance the current pose (assumed
to be attached rigidly to the camera) as Cw(t) =
[Rw(t− 1)R(t)|R(t) (t(t) + tw(t− 1))] ., and feature
points are incrementally projected into world coordi-

nates with x′ = (Rw(t− 1)R(t))
T
x + Rw(t −

1) (t(t) + tw(t− 1)). Orientation is stored as a quater-
nion from the elements rij of Rw.

q =







w
x
y
z






=











√
1+r00+r11+r22

2
r21−r12

2
√
1+r00+r11+r22

r02−r20
2
√
1+r00+r11+r22

r10−r01
2
√
1+r00+r11+r22











(8)

3. OBSERVATION AND IDENTIFICATION

The PnP solution across a sequence of images allows us
to track the pose of the tracker spacecraft relative to fea-
tures on the target spacecraft. However, in most cases
it is necessary to identify what the actual orientation of
the target is with respect to a known geometric model,
or to identify specific parts of the target for interaction
or analysis. For this task, we use the positional corre-
spondences of three-dimensional keypoints selected from
the constructed point cloud with respect to keypoints se-
lected from a reference model point cloud that can be ob-
tained in advance or on-line from another sequence of
images with known relative pose. Model recognition is
done on a per-pose basis with accumulated points in the
point cloud once a sufficient number of images has been
acquired during the “Observation” phase. This makes it
possible to match parts of a structure without requiring
the entire structure to have keypoints, for example if the
target is in partial shadow. We use an Unscented Kalman
filter (UKF) for reducing noise over time for pose esti-
mates. Separate filtering is performed for the pose esti-
mates obtained from PnP solutions and target pose esti-
mation, both translation and quaternion rotation, using a
fast embedded UKF implementation with adaptive statis-
tics [LPL13].

3.1. Object Pose Estimation

A set of three-dimensional keypoints are chosen from
both the scene and the model by picking individual points
from the cloud separated by a given sampling radius.
Normals are calculated for these keypoints relative to
nearby points so that each keypoint has a repeatable ori-
entation. The keypoints are then associated with three-
dimensional SHOT (Signature of Histograms of Orien-
Tations) descriptors [STDS14]. SHOT descriptors are
calculated by grouping together a set of local histograms
over the volumes about the keypoint, where this volume
is divided into by angle into 32 spherically-oriented spa-
tial bins. Within a given radius of the keypoint, point
counts from the local histograms are binned as a cosine
function cos(θi) = nu · nvi of the angle θi between the
point normal within the corresponding part of the struc-
ture nvi and the feature point normal nu. This has the
beneficial effects of creating a general rotational invari-
ance since angles are relative to local normals, accumu-
lating points into different bins as a result of small differ-



ences in relative directions, and creating a coarse parti-
tioning that can be calculated fast with small cardinality.

Comparing the scene keypoint descriptors with the
model keypoint descriptors to find good correspon-
dence matches is done using a FLANN search on a k-
dimensional tree (k-d tree) structure, similarly to the
matching of image keypoints. Additionally, the BOrder
Aware Repeatable Directions algorithm for local refer-
ence frame estimation (BOARD) is used to calculate local
reference frames for each three-dimensional SHOT de-
scriptor [PDS11] to make them independent of global co-
ordinates for rotation and translation invariance. Once a
set of nearest correspondences and local reference frames
is found, clustering of correspondences to given clus-
ter sizes is performed by pre-computed Hough voting to
make recognition of shapes more robust to partial occlu-
sion and clutter [TDS10].

Evidence of a particular pose and instance of the model
in the scene is initialized before voting by obtaining the
vector between a unique reference point CM and each
model feature point FM

i and transforming it into lo-

cal coordinates by the transformation matrix RM
GL =

[LM
i,x, L

M
i,y, L

M
i,z]

T from the local x-y-z reference frame

unit vectors LM
i,x, LM

i,y , and LM
i,z . This precomputation

can be done offline for the model in advance and is per-
formed by calculating for each feature a vector V M

i,L =

[LM
i,x, L

M
i,y, L

M
i,z] · (C

M − FM
i ). For online pose estima-

tion, Hough voting is performed by each scene feature
FS
j that has been found by FLANN matching to corre-

spond with a model feature FM
i , casting a vote for the po-

sition of the reference point CM in the scene. The trans-
formation RMSL that makes these points line up can then
be transformed into global coordinates with the scene ref-
erence frame unit vectors, scene reference point FS

j and

scene feature vector V S
i,L as V S

i,G = [LS
j,x, L

S
j,y, L

S
j,z] ·

V S
i,L+FS

j . The votes cast by V S
i,G are thresholded to find

the most likely instance of the model in the scene, al-
though multiple peaks in the Hough space are fairly com-
mon and can indicate multiple possibilities for model in-
stances. Due to the statistical nature of Hough voting, it
is possible to recognize partially-occluded or noisy model
instances, though accuracy may be lower.

3.2. Processing Times

To profile the processing requirements of the described
algorithms on a system that could potentially be embed-
ded into a satellite, the algorithm was run on a 667MHz
ARM Cortex-A9 processor with pre-defined images of a
CubeSat engineering model in VGA resolution and pre-
computed point clouds, and raw timing statistics gathered
for the processing time of each algorithm. Tests 1 and 2
were performed with 6524 model points and 5584 scene
points from 220 images, and tests 3 and 4 were performed
with 6524 model points and 1816 scene points from 32
images. Tests 1 and 3 were performed with a descriptor
radius of 0.05 and cluster size of 0.1, and Tests 2 and 4

Table 3. Correspondences and Error resulting from vary-
ing Descriptor Radius and Cluster Size

Estimate
Descr.
Radius

Cluster
Size

Corresp-
ondences

Trans.
Error

Rotation
Error

1 2.0 1.0 507 1% 2%

2 2.0 0.1 507 7% 3%

3 0.5 1.0 45 3% 4%

were performed with a descriptor radius of 0.1 and cluster
size of 0.5. Tab. 1 and Tab. 2 show the timing informa-
tion obtained for each of the described algorithms in these
cases.

3.3. Identification Accuracy

To illustrate the accuracy of pose estimation while vary-
ing the descriptor radius and cluster size and therefore
processing times, a set of pose estimation tests were per-
formed using a CubeSat engineering model as a target for
pose identification. In three examples of target identifica-
tion shown in Fig. 3, Fig. 4, and Fig. 5, high-density
model points are in yellow with selected keypoints in
green, and low-density scene keypoints are shown in
blue. The model instance found in the scene is over-
laid in red from a high-density model composed of 26339
points, while the scene is composed of 1960 points trian-
gulated from 52 images. The number of keypoints was
reduced by radius to 2042 in the model and 1753 in the
scene. The descriptor radius and cluster size for these
estimates, with the resulting number of correspondences
and rounded cumulative errors in translation and rotation
are shown in Tab. 3.

As more scene points are added over time, accuracy can
increase, but only if they are consistent with the exist-
ing scene. We can see from these results that increasing
the size of the SHOT descriptor will increase the number
of keypoints available and result in better accuracy and
higher likelihood of identifying a shape, but also will re-
quire longer processing times. Cluster sizes must be set
appropriately for the point cloud size, as a cluster size too
small or too large will prevent valid instances from being
found, and result in decreased accuracy.

4. CONCLUSIONS

In this work, we have described a feature-based visual
identification system that allows a tracker spacecraft to
track relative movement to a target and ultimately ac-
quire pose estimates using point cloud techniques. Us-
ing projective geometry, we perform three-dimensional
reconstruction of features on the target from a sequence
of images taken with a single camera. The patent-free



Table 1. Timing for Features, Triangulation and PnP

Test
Number

Feature
Detect.

Feature
Matching

Feature
Selection

Fundam.
Matrix

Essential
Matrix

Triangu-
lation

PnP
RANSAC

Ego-
Motion

Total
Time

1-2 0.12 0.058 0.015 0.083 0.0017 0.038 0.0033 0.0005 0.32

3-4 0.12 0.061 0.010 0.048 0.0014 0.025 0.0026 0.0004 0.27

Table 2. Timing for Correspondence and Identification

Test
Number

Model
Normals

Scene
Normals

Model
Sampling

Scene
Sampling

Model
Keypoints

Scene
Keypoints

FLANN
Search

Cluster-
ing

Total
Time

1 0.17 0.15 0.027 0.020 1.26 0.84 107.7 0.92 112.1

2 0.17 0.15 0.029 0.024 3.37 2.19 118.0 2.00 127.2

3 0.17 0.043 0.031 0.0083 3.31 0.37 42.5 0.63 48.4

4 0.17 0.041 0.031 0.0078 3.31 0.37 42.6 1.36 49.1

Figure 3. Pose Correspondence for Estimate 1, Descriptor Radius 2.0, Cluster Size 1.0

Figure 4. Pose Correspondence for Estimate 1, Descriptor Radius 2.0, Cluster Size 0.1

Figure 5. Pose Correspondence for Estimate 1, Descriptor Radius 0.5, Cluster Size 1.0



ORB algorithm that combines FAST keypoint detection
and BRIEF feature descriptors provides good tolerance
to rotation and scaling of features for this purpose. For
useful reconstruction, it is important to identify as many
features as possible, so target spacecraft with many col-
ors, edges, and shapes generally provide the best results
for feature-based systems such as this. It is important to
note that this method of motion estimation provides best
solutions through post-processing of results. The more
images that are included when creating the structure, the
better triangulation will be. If processing power and stor-
age is available to include a large number of recent im-
ages, such as by observing the target through multiple
rotations, a better solution for motion will be obtained.
To additionally decrease the processing time if desired,
the camera image can be lowered in resolution, or pixels
can be under-sampled by choosing only every 2nd pixel
or every 4th pixel in a staggered pattern over the image
for feature matching [AZK09].

It is intended that even small spacecraft such as
nanosatellites with a single camera could take advantage
of this system. Work is underway to scale this system to
a level suitable for nanosatellite use, which could provide
a technology demonstration with a minimum of cost and
risk. As the performance of feature tracking depends very
heavily on the design of the feature descriptor and method
of matching, further comparison of descriptor types for
both two-dimensional and three-dimensional matching is
warranted. Future work also includes the validation of
these methods on a variety of models, and under a broader
set of varying conditions to evaluate the robustness of
feature-based systems. A wide variety of applications for
this technology is also available, including robotic uses
and planetary rover navigation and sensing.
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