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In this paper we present a general model of drug release from a drug delivery device and the subsequent

transport in biological tissue. The model incorporates drug diffusion, dissolution and solubility in the polymer

coating, coupled with diffusion, convection and reaction in the biological tissue. Each layer contains bound and

free drug phases so that the resulting model is a coupled two-phase two-layer system of partial differential

equations. One of the novelties is the generality of the model in each layer. Within the drug coating, our model

includes diffusion as well as three different models of dissolution. We show that the model may also be used

in cases where dissolution is rapid or not relevant, and additionally when drug release is not limited by its

solubility.Within the biological tissue, themodel can account for nonlinear saturable reversible binding,with lin-

ear reversible binding and linear irreversible binding being recovered as special cases. The generality of our

model will allow the simulation of the release from a wide range of drug delivery devices encompassing many

different applications. To demonstrate the efficacy of ourmodel we simulate results for the particular application

of drug release from arterial stents.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Local drug delivery devices (DDD) are now common in clinical

practice. Examples include drug-eluting stents [1], therapeutic contact

lenses [2], transdermal patches [3], and most recently drug-eluting

orthopaedic implants [4] (Fig. 1). By targeting the drug exactly at the

site where it is required and in a controlled manner, these devices

provide a significant advantage over more traditional forms of drug

release. For example, with targeted delivery, potentially higher doses

of drug can be administered, with less impact on the rest of the body

compared with, say, oral drug delivery. Furthermore, there is less

input required from the patient who need not worry about forgetting

to take their medication. Perhaps the biggest advantage is that the

release rate can be controlled, so that the correct dose can be delivered

over an extended period of time. From the manufacturing and clinical

point of view it is of interest to give careful consideration to the device

design so that therapeutic levels of drug are attained in the biological

tissue for the necessary period of time. Toxicity can arise if an excessive

amount is delivered, or if the drug is released too quickly. On the other

hand, the therapeutic action vanishes when the drug concentration

drops below a given threshold. The success of the DDD is therefore

dependent on the correct extent of drug elution, the rate of release,

partitioning, accumulation and binding within the tissue [5]. In this

respect, mathematical modelling provides a useful tool to understand

the combined action of these processes, and consequently to help devise

optimisation strategies for targeted drug delivery [6].

Despite being the subject of intense theoretical and applied research

over the past decades [7,8], it is still often unclear exactly what the

mechanism of drug release from the DDD is and, as a consequence,

even more difficult to predict the drug release kinetics. Nevertheless,

countless models have been proposed. Most commonly, diffusion is

cited as the dominant release mechanism [9] although dissolution also

features heavily in the literature [10]. Furthermore, for certain types of

coatings, swelling, erosion and biodegradation have been considered

[11,12]. Related to this difficulty is a lack of understanding of molecule

transport in the biological tissue, where the drug is targeted. Typically,

diffusion and drug binding occur in the tissue, sometimes made of a

multilayered structure [13], whilst in some cases there is convection as

a result of a pressure gradient across the tissue. In addition, most models

deal with the drug release process alone, whilst others consider only the

absorption in the tissue. Far fewer models attempt to fully couple a

mechanistic description of drug release with tissue absorption [14–19].

Focussing on DDD where the drug is contained within a durable

polymer, in this paper we attempt to revisit and classify, in a unifying

way, the most popular models and provide a general framework

of coupled drug release and tissue absorption. We describe all the dy-

namics of the drug through its journey from the polymeric coating
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where it encapsulated at the manufacture stage, to the cell receptors

where it eventually binds. As outlined elsewhere [20], we emphasize

here the importance of studying the coupled system, since the drug de-

livery starts from the polymer and undergoes a cascade of reactions and

kinetics as it is first released and then absorbed. Coupled layer systems,

together with nonlinear effects, can often produce unexpected results

that cannot be predicted by considering each layer alone, nor by

superimposing the effects of each layer. This paper is organized as fol-

lows. Firstly we provide a description of a general DDD. Then, we

focus on the drug coating and present a general model of diffusion–dis-

solution which includes solubility, before demonstrating a number of

special cases. We then proceed to consider the drug transport in biolog-

ical tissue. We present a general convection–diffusion-reaction model

which includes a nonlinear saturable reversible binding model, before

outlining how other bindingmodels may be recovered from the general

model. We then proceed to describe a suitable numerical method for

solving the resulting system of coupled partial differential equations.

Due to the contrast of material properties between the two layers, we

arrive at a stiff mathematical problem. The method we adopt involves

spatial discretization followed by solution of the resulting system of or-

dinary differential equations. Finally, we present simulated results for

one particular example of a DDD, the drug-eluting stent, and we dem-

onstrate that the coupled model is able to predict important character-

istics such as the correct duration of the release and the time-varying

mass of drug in the tissue.

The benefits of such a comprehensive model, we believe, are two-

fold. Firstly, it allows designers of DDD to better understand what are

the important processes governing the release of drug. Typically this

will not be known a priori, but the model provided here, when com-

pared with experimental data, can shed light on this. Secondly, when

the important processes have been identified, the model can either be

used in its full form (including all of themechanisms of transport if nec-

essary) or in a simpler form (depending on the particular device and tis-

sue) to predict the effect of varying the design parameters on the release

profile and on the drug levels in the biological tissue. Importantly, all of

this can bedonewithin the singlemodelling framework presented here,

rather than having to call upon multiple models.

2. The general drug delivery device

In its basic formulation, a DDD consists of a durable structure coated

with a thin layer of polymer containing the drug. The structure of the

device may be, for example, metallic or polymeric and is often made

from a material with markedly different properties to that of the coat-

ing. The reason for this is that the polymer coating is designed to control

the drug release whilst the device structure generally has another pur-

pose (e.g. to locate the delivery or to act as a scaffold). Whilst the

three-dimensional geometry of the device may vary widely (Fig. 1),

we can exploit the fact that the coating layer is usually thin relative to

its lateral dimensions, with the result being that the drug release

predominantly takes place in the direction normal to the device surface

[8,21]. This provides justification for an idealized one-dimensional

model. The drug coating layer is in contact with biological tissue,

where the drug is directed.

As displayed in Fig. 2, let the x-axis be normal to the layer surface and

oriented with the positive direction pointing away from the device.

Without loss of generality, let x0=0 be the interface between the

drug coating and the tissue layer, which have thickness l0 and l1, respec-

tively, with l1 ≫ l0. The layers are both treated from a macroscopic per-

spective so that they are represented as two homogeneous porous

media. In what follows, the subscripts 0 and 1 indicate parameters

and variables with respect to the polymeric matrix and the tissue

layer, respectively.

3. Modelling drug release from the polymer matrix

We consider coatings that contain a solid mixture of polymer and

drug. Initially the drug is immobile (encapsulated) and must dissolve

in some release medium before it can be released. When exposed to

biofluid, the polymer becomes wetted, initiating a dissolution process,

providing a means for the drug to be released from the device. It is

often favourable for the drug to be lipophilic, since this can assist with

drug retention in the tissue, but at the same time these drugs are typi-

cally poorly soluble. Thus the dissolution process is inherently depen-

dent not only on the rate of dissolution (β0), but also on the solubility

of the drug (S) in the release medium. Taking these two factors into ac-

count, the overall dissolution process potentially has an important influ-

ence on the rate of drug release.

Several different approaches to modelling the dissolution process

have been proposed in the literature. These models usually consider

the case of initial drug concentration in the coating (B) being higher

than the solubility (S) (otherwise the drug is readily dissolved and

available for diffusion— see Section 3.1) and can be roughly separat-

ed into two distinct classes. In the first approach, a moving boundary

problem is considered where drug dissolution occurs on a moving

front as fluid penetrates into the polymer coating. Ahead of the mov-

ing boundary the immobile drug remains in an encapsulated form

but behind the moving front dissolved drug is permitted to leave

the coating by diffusion. Dissolution is considered to be instanta-

neous, with the concentration on the moving front taken to be

equal to the drug solubility. This gives rise to a discontinuity of

drug concentration: ahead of the moving front the drug is in solid

form at concentration equal to its initial value, while behind the

moving front the concentration is lower than the solubility [22,23].

In the second approach, which we focus on in this paper, the encap-

sulated drug is treated as a continuously varying concentration

b0(x,t), and it is assumed that fluid penetrates the porous polymer

matrix instantaneously, making it fully wetted [8,14]. The drug dis-

solution and diffusion through the coating is then described by a

Fig. 1. Examples of DDD. From left to right: coronary stent, transdermal patch, therapeutic contact lens.
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system of coupled partial differential equations of the following

form:

∂b0
∂t

¼ −β0b
α
0 S−c0ð Þ in −l0;0ð Þ; ð3:1Þ

∂c0
∂t

¼ D0
∂
2
c0

∂x2
þ β0b

α
0 S−c0ð Þ in −l0;0ð Þ; ð3:2Þ

whereα=0,2/3 or 1, c0 (x,t) is the concentration of dissolved drug,D0 is

the effective diffusion coefficient of the drug through the porous poly-

mer and the dissolution rate β0 depends upon the porosity of the coat-

ing. In the classical Noyes-Whitney approach [24], the rate of

dissolution is considered to be proportional to the difference between

the drug solubility and the concentration of dissolved drug, yielding a

linear equation (α = 0). Later modifications by Hixson and Crowell

[25] attempted to account for the surface change of dissolving particles,

leading to a nonlinear model of dissolution (α= 2/3). The value of α is

likely to be influenced by the geometrical configuration and chemical

properties of drug, as well as the coating manufacture and the device

design. Taking this into account, for certain applications, other values

ofαmay in principle be suitable. Therefore, we additionally consider

the case of α = 1, representing the simplest nonlinear dissolu-

tion model that provides a coupling between the free and bound

phases.

The case of α = 2/3 has been considered in the context of drug-

delivery by Frenning [26], and later by Formaggia et al. [14], albeit in a

more complicated 2D formulationwhich includes the effects of polymer

degradation. The model (3.1)–(3.2) attempts to unify the dissolution

models proposed in the literature, the unit of β0 (1/(s ⋅(mol ⋅cm−3)α))

depending on the value of α. It is understood that the above

equations hold for the period during which dissolution is ongoing.

When all of the solid drug has dissolved (i.e. b0 reaches zero), the

source terms in Eqs. (3.1)–(3.2) are zero. In order to exclude

unphysical negative values, one could introduce a Heaviside function

as has been done in [8]. However, for clarity of notation we have

decided instead to implement this in the numerical algorithm

(Section 6).

3.1. Special cases of the diffusion-dissolution model

The model (3.1)–(3.2) accounts for the possibility that the dissolu-

tion rate, solubility and rate of diffusion are equally important in deter-

mining the rate of release. However, in certain circumstances, one or

more of these processes may be insignificant in comparison with the

others. For example, DDDwhich contain drugs with a very high solubil-

ity and/or a very low initial drug concentration will readily dissolve and

in these cases a pure diffusion model is more appropriate. To estimate

the relative magnitude of the competing processes, let us scale time

with the typical time-scale for diffusion t00 ¼ D0t=l
2
0 , and all concentra-

tions with B:

b
0
0 ¼ b0

B
; c00 ¼ c0

B
; S0 ¼ S

B
: ð3:3Þ

Then Eq. (3.1) becomes:

1

Da�0

∂b
0
0

∂t00
¼ − b

0
0

� �α
S0−c00
� �

; ð3:4Þ

where the nondimensional number Da0⁎=β0B
αl0
2/D0 (Damköhler num-

ber) is the ratio of the diffusion to the dissolution time-scale in the coat-

ing (we have used here the superscript * to distinguish this Damköhler

number from the corresponding one in Section 5). Immediately we see

that in the limit of rapid dissolution (i.e. Da0⁎≫1) then the left hand side

of (3.4) tends to zero and consequently b0→0 and/or c0→S. Therefore,

on the longer time-scale of diffusion, according to the solubility value,

two cases arise:

1) S'⩾1: All of the bound drug dissolves instantaneously, so that b0=0

and c0 = B. In this case the drug release is diffusion dominated and

the purely diffusive mechanism of release can be simulated by

selecting values of S and β0 such that S ≥ B and Da0⁎≫1.

2) S'b1: The free drug phase is saturated instantaneously (c0 = S), but

the bound drug concentration remains non-zero: as diffusion pro-

ceeds, more bound drug is permitted to dissolve until eventually

b0 = 0. In this case the rate of release is controlled by the solubility

and the diffusion and we may simply select a value of β0 such that

Da0⁎≫1.

3.2. Spatially independent model for dissolution

It is of interest to investigate the similarities and differences between

the models (3.1)–(3.2) for the three values of α. In this subsection we

focus on the dissolution kinetics alone and consider the corresponding

spatially independent models by neglecting the diffusive component.

We assume that initially we have b0(0)=BNS and c0(0)=0. In addition

we assume conservation of mass, that is, b0(t)+c0(t)=B. We adopt an

analytic approach to solving the model for each value of α. We scale all

concentrations as in Eq. (3.3) and time as t⁎=β0B
αt.

α=0: In this case themodel is linear and we obtain the solution for

the concentrations of encapsulated and dissolved drug:

b
0
0 ¼ 1−S0 1− exp −t�ð Þ½ �; c00 ¼ S0 1− exp −t�ð Þ½ �:

α = 1: For this case the model is nonlinear but it is still straightfor-

ward to get an exact solution for the concentrations:

b
0
0 ¼ S0−1

S0 exp S0−1
� �

t�
� �

−1
; c00 ¼ S0 exp S0−1

� �

t�
� �

−1
� �

S0 exp S0−1
� �

t�
� �

−1
:

Fig. 2. The geometrical configuration of the DDD. This consists of some durable structure (shaded grey) coated with a thin layer of polymer of thickness l0 containing the drug (red). The

polymer layer is in contactwith the biological tissue of thickness l1 (orange). The drug is transported from the polymer coating via dissolution and diffusion to the tissuewhere it is subject

to diffusion and advection in its free phase and may bind to drug binding sites. Diagram is not to scale. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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α = 2/3: When α = 2/3 we obtain an implicit expression for b0′:

ln
b
01=3
0 þ G

� 	

1−Gþ G2
� 	1=2

1þ Gð Þ b
02=3
0 −b

01=3
0 Gþ G2

� 	1=2

þ
ffiffiffi

3
p

arctan
1
ffiffiffi

3
p 2b0

1=3

0

G
−1

 !( )

− arctan
1
ffiffiffi

3
p 2

G
−1

� � �

( )

¼ −G2t�

ð3:5Þ

withG=(S′−1)1/3.We note that in this case the solution can be obtain-

ed numerically by using any standard nonlinear root-solver. We can

then get c0′ = 1−b0′.

From the analytic solutions for α=0 and α=1, it is evident that in

equilibrium (t→∞), c0′ = S′ and b0′ = 1−S′. Although not immediately

obvious from Eq. (3.5), the equilibrium values for the case of α = 2/3

are identical to those obtained for other values of α and the differences

occur in the transient only. In Fig. 3 we compare the three different

models by plotting normalized dissolved and encapsulated drug con-

centration profiles against normalized time.

The three profiles are virtually indistinguishable for small S' (not

displayed). However, as we increase S', the differences are magnified.

We observe that the linear model (α = 0) results in the quickest rate

of dissolution, while the nonlinear models result in slower dissolution

with increasing α, with α = 1 having the slowest dissolution rate. As a

consequence, the α = 0 case reaches equilibrium first, followed by the

α = 2/3 and α = 1 cases, respectively. It is also interesting to note

that as we increase S', not only does the equilibrium value of the dis-

solved drug increase, but also the time taken to reach equilibrium in-

creases. Although this analysis has neglected the spatial distribution of

drug, it is anticipated that the above trends will hold when diffusion is

included, albeit the dissolution will be quicker due to the continuous

clearance of drug from the coating.

4. Modelling drug dynamics and absorption in the biological tissue

Following the dissolution process, the now biologically available

drug diffuses through the polymeric layer and, due to a concentra-

tion jump, a mass flux is established across the interface and the

drug starts to be transferred to the adjacent release medium. For

the purposes of this paper we make the assumption that the biolog-

ical tissue comprises a single homogeneous layer exhibiting isotropic

diffusion properties. However, depending on the DDD, it may be

more appropriate to consider multiple tissue layers [13]. Within

the tissue the free drug (c1) undergoes diffusion, with a possible con-

vective flux due to a pressure gradient across the tissue. Finally, to

exert its therapeutic effect, a fraction of the free drug binds to bind-

ing sites (b1).

4.1. Drug binding models

Depending on the drug and the device application, the binding

model may be linear or nonlinear, saturable or non-saturable, re-

versible or irreversible. We start with the most general of these,

the nonlinear saturable reversible binding model, having its roots

in molecular cell biology [27]. The model describes the reversible

binding of ligands (free drugmolecules) with receptors (free binding

sites) to form complexes:

ligandþ receptor⇌
k f

1

k
r
1

complex;

where, k1
f is the association (forward) rate constantwhich characterizes

the velocity of the second-order interaction between the receptor and

ligand while k1
r is the dissociation (backward) rate constant and

characterizes the velocity of the first-order breakdown of the

receptor/ligand complex. The two rate constants depend upon the

porosity of the tissue and are related through the equilibrium dissocia-

tion constant, Kd=k1
r /k1

f (or the equilibrium association constant, Ka =

1/Kd). It is reasonable to assume a conservation condition for binding

sites, that is the number of occupied and free binding sites is equal to

the local density of binding sites, bmax. Adopting this model, we can

write an equation for the rate of change of bound drug, b1 [28]:

db1
dt

¼ k
f
1c1 bmax−b1ð Þ−k

r
1b1: ð4:1Þ

The above equation is well accepted to describe binding-unbinding

processes in biological media, and has been used by several other au-

thors in various contexts, including for drug release to the arterial wall

[28,15] and tumour drug delivery [28,29]. Loosely speaking, binding de-

scribes a phenomenon opposite to dissolution, and Eq. (4.1), with the

unbinding rate set to zero, is formally similar, except for the sign, to

the α = 1 dissolution model in Eq. (3.1).

4.2. Special cases

In order to demonstrate the generality of the proposed binding

model, we now show how three other binding models can be seen to

be special cases of Eq. (4.1).

Fig. 3. Comparison of the time evolution of encapsulated (top) and dissolved (bottom)

drug concentrations for α = 0, α = 2/3, α = 1 and S' = 0.9. As S' is reduced (not

shown), the equilibrium c0′ value is reduced and occurs sooner and the three curves be-

come closer together until they eventually overlap.
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(a) Nonlinear saturable irreversible binding

Thismodel is obtained from Eq. (4.1) by choosing k1
r =0 andmay be

appropriate in cases where drug bindswith sites to form a complex that

is retained on the time-scale of interest.

(b) Linear reversible binding

The linear bindingmodel assumes first order linear reaction kinetics,

where the rate of change of bound drug concentration is proportional

(via β1) to the distance from the equilibrium value (Ka times the free

drug concentration):

db1
dt

¼ β1 c1−
b1
Ka

� �

¼ β1c1−δ1b1: ð4:2Þ

Initially, the rate of uptake to theboundphase is rapid since b1=0at

t = 0, but this rate reduces with increasing b1 until the equilibrium is

reached, at which point the sign inside the brackets in Eq. (4.2) changes

and drug is released back into the free phase. An important difference

between this model and the general model (4.1) is that the former is

non-saturable. This first order reaction model is appropriate when the

drug uptake and release processes proceed at a rate that depends line-

arly on only one concentration (free and bound, respectively).

(c) Linear irreversible binding.

In this model the drug is irreversibly transferred from the free phase

at a rate of β1 and is lost from the system, i.e.:

db1
dt

¼ β1c1: ð4:3Þ

This model, neither reversible nor saturable, may be appropriate in

cases where drug is consumed (‘metabolized’) within the bound phase

or removed from the system via, for example, blood vessels in the arte-

rial wall.

It is easily shown that Eqs. (4.2) and (4.3) can be seen to be special

cases of Eq. (4.1). Firstly, let us rescale b1 as follows:

b1 ¼ b1
c�

; c1 ¼ c1
c�

where c⁎ is taken to be a representative drug concentration in the tissue.

Then Eq. (4.1) becomes

db1
dt

¼ k
f
1c1bmax 1−

c�

bmax
b1

� �

−k
r
1b1: ð4:4Þ

Immediately we see that if the density of binding sites is far greater

than the drug concentration they are exposed to, i.e. if

c�

bmax
≪1; ð4:5Þ

then Eq. (4.4) reduces to

db1
dt

¼ k
f
1bmaxc1 − k

r
1b1; ð4:6Þ

which is of the form Eq. (4.2). We note that condition (4.5) may be sat-

isfied for the duration of release in cases where the binding site density

is very large. However, even if the binding site density is relatively low

compared with the applied drug concentration, this condition may

well be satisfied at early times, when the tissue concentrations are still

sufficiently low. If, in addition to Eq. (4.5), the reverse reaction rate is

zero, then we return Eq. (4.3).

4.3. Drug tissue transport

Finally, the equations of drug transport in the tissue take account of

possible convection (of magnitude v1), diffusion (with diffusion coeffi-

cient D1) and the binding reaction as described by Eq. (4.1):

∂c1
∂t

¼ D1
∂
2
c1

∂x2
−v1

∂c1
∂x

−k
f
1c1 bmax−b1ð Þ þ k

r
1b1 in 0; l1ð Þ ð4:7Þ

∂b1
∂t

¼ k
f
1c1 bmax−b1ð Þ−k

r
1b1 in 0; l1ð Þ: ð4:8Þ

In principle, the specific drug under considerationmay bind tomore

than one component of the biological tissue (see e.g. [5]), resulting in

additional bound phases of drug. The result would be additional reac-

tion terms in Eq. (4.7) aswell as an additional binding reaction equation

of the form Eq. (4.8) for each bound phase. For details of how this may

be incorporated within the general model, we refer the reader to the

Appendix 0. It is recognized that for some applications, drug binding

may be rapid. In this case, if the resulting Damköhler number is so

large that binding is diffusion limited, the concentrations of free and

bound drug may exist in quasi-equilibrium and the model may be sim-

plified. For further details the reader is referred to [21,28]. It is noted,

however, that the low computational cost of the numerical method de-

scribed in this paper means that the solving of the full model (even if

binding is fast) does not significantly add to the computation time.

5. A coupled two-layer system

We now couple the general model for drug dissolution–diffusion in

the coating Eqs. (3.1)–(3.2), with the model of convection-diffusion

and nonlinear binding in thewall Eqs. (4.7)–(4.8) by introducing appro-

priate boundary, initial and interface conditions.

5.1. Boundary, interface and initial conditions

To close the two-layer two-phase mass transfer system

Eqs. (3.1)–(3.2) and Eqs. (4.7)–(4.8), a flux continuity condition has to

be assigned at the interface between the polymer coating and the tissue:

−D0
∂c0
∂x

¼ −D1
∂c1
∂x

þ vc1 at x ¼ 0:

Additionally, a concentration jump may occur:

−D1
∂c1
∂x

¼ P c0−c1ð Þ at x ¼ 0;

with P(cm/s) the overall mass transfer coefficient. The case of no con-

centration jump is obtained as a limiting case with P → ∞. In keeping

with the generality of the model, we assume a Robin-type boundary

condition at both x = − l0 and x = l1. We therefore have

−D0
∂c0
∂x

¼ γ0c0 at x ¼ −l0;

and

−D1
∂c1
∂x

þ v1c1 ¼ γ1c1 at x ¼ l1:

The constants γ0 and γ1 can be adjusted so that the fluxes match

experimentally observed conditions. For example, in the case of drug-

eluting stents, if significant amounts of drug are lost to the flowing

blood, then the parameter γ0 can be adjusted to account for this.

We note that zero flux and infinite sink conditions can be recovered

by letting γ0, γ1 tend to zero and infinity, respectively. The initial
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conditions are:

b0 x;0ð Þ ¼ B; c0 x;0ð Þ ¼ 0; c1 x;0ð Þ ¼ 0; b1 x;0ð Þ ¼ 0 :

5.2. Nondimensionalization

We introduce the typical nondimensionalization for a system of re-

action–diffusion-convection equations, leading to two relevant num-

bers: the Péclet (Pe) and the Damköhler number (Da). These

dimensionless groups define, respectively, the relative importance of

convection to diffusion, and of reaction to diffusion. By examining

their size, it is often possible to simplify the model by neglecting

parameters that are unimportant. For the coupled system we

nondimensionalize space and time with the parameters of layer 1:

x0 ¼ x

l1
; t0 ¼ D1t

l
2
1

:

and, following nondimensionalization in Eq. (3.3), we scale all the re-

maining concentrations with B:

b
0
1 ¼ b1

B
; c01 ¼ c1

B
; b

0
max ¼

bmax

B
:

Let us now define the following dimensionless parameters:

D ¼ D0

D1
; L ¼ l0

l1
; Da

αð Þ
0 ¼ β0B

α−1Sl
2
1

D1
; Γ0 ¼ γ0l1

D1
Π ¼ Pl1

D1

Pe ¼ v1l1
D1

; Da1 ¼ k
f
1l

2
1bmax

D1
; Bp ¼ bmax

Kd

; Γ1 ¼ γ1l1
D1

:

ð5:1Þ

Bp is referred to as the binding potential andmeasures the affinity of

a drug to a given receptor.

Summarizing, the governing equations (after dropping primes for

clarity) are the following:

∂b0
∂t

¼ −Da
αð Þ
0 b

α
0 1−

c0
S

� 	

in −L;0ð Þ; ð5:2Þ

∂c0
∂t

¼ D
∂
2
c0

∂x2
þ Da

αð Þ
0 b

α
0 1−

c0
S

� 	

in −L;0ð Þ; ð5:3Þ

∂c1
∂t

¼ ∂
2
c1

∂x2
−Pe

∂c1
∂x

−Da1 c1 1−
b1
bmax

� �

−
b1
Bp

� �

in 0;1ð Þ; ð5:4Þ

∂b1
∂t

¼ Da1 c1 1−
b1
bmax

� �

−
b1
Bp

� �

in 0;1ð Þ; ð5:5Þ

−
∂c0
∂x

¼ Γ0c0 at x ¼ −L; ð5:6Þ

−
D∂c0
∂x

¼ −
∂c1
∂x

þ Pe c1 at x ¼ 0; ð5:7Þ

−
D∂c0
∂x

¼ Π c0−c1ð Þ at x ¼ 0; ð5:8Þ

−
∂c1
∂x

þ Pec1 ¼ Γ1c1 at x ¼ 1: ð5:9Þ

6. Numerical solution

We proceed to solve the nondimensional system Eqs. (5.2)–(5.9)

numerically. Let us subdivide the interval (−L,0) intoN+1 equispaced

grid nodes x j ¼ ð j−NÞ h0; j ¼ 0;1; ::;N ; and the interval (0,1) with

M+1 equispaced points x j ¼ j h1; j ¼ 0;1; :::;M . Here, h0 and h1 rep-

resent the spacing in the coating and tissue layers, respectively. Let us

indicate by a superscript j the approximated value of the concentrations

at xj.

In each layer, we approximate the diffusive terms by considering a

standard finite difference of the second derivative at internal nodes xj:

∂
2
c0

∂x2

�

�

�

�

�

x j

≃
c j−1
0 −2c j0 þ c jþ1

0

h
2
0

j ¼ 1; :::;N−1 ; ð6:1Þ

∂
2
c1

∂x2

�

�

�

�

�

x j

≃
c j−1
1 −2c j1 þ c jþ1

1

h
2
1

j ¼ 1; :::;M−1 : ð6:2Þ

The reaction terms in Eqs. (5.3)–(5.4) do not contain any derivatives

and therefore are discretized pointwise. For example, Eq. (5.3) is

discretized at node xj as:

dc j0
dt

�

�

�

�

�

x j

¼ D
c j−1
0 −2c j0 þ c jþ1

0

h
2
0

þ Da
αð Þ
0 b

j
0

� 	α

1−
c j0
S

 !

: ð6:3Þ

At the boundary points x=−L and x = 1 we assume

Eqs. (5.2)–(5.5) hold, but the approximations (6.1)–(6.2) are modified

taking into account the boundary conditions (5.6) and (5.9).

6.1. Treatment of the interface

At the interface x=0,we potentially have a discontinuity in concen-

tration and two possibly different values, say ~cN0 and ~c01 (the tilde accent

indicates these special points), one for each interface side, need to be

determined (Fig. 4).

No derivative can be computed across the interface x = 0, due to a

possible discontinuity and approximations Eqs. (6.1)–(6.2) no longer

apply. An alternative procedure is needed to get ~cN0 for Eq. (6.1) for

j= N− 1 and ~c
0
1 for Eq. (6.2) for j=1. Their values are related through

the interface conditions (5.7)–(5.8):

−D
∂cN0
∂x

¼ −
∂c01
∂x

þ Pe~c
0
1

−D
∂cN0
∂x

¼ Π ~cN0−~c
0
1

� 	

: ð6:4Þ

Fig. 4. Illustration of grid nodes in the two layers and the interface points (in red and

green). They are computed a posteriori as a linear combination of the neighbouring grid

points (Eqs. (6.6)–(6.7)). (For interpretation of the references to colour in this figure leg-

end, the reader is referred to the web version of this article.)

332 S. McGinty, G. Pontrelli / Journal of Controlled Release 217 (2015) 327–336



Following the technique described by Hickson et al. [30], we take a

Taylor series expansion for c0
N−2 ,c0

N−1 ,c1
1 ,c1

2, and arrive at:

cN−1
0 ≈~c

N
0−h0

∂~c
N
0

∂x
þ h

2
0

2

∂
2
~c
N
0

∂x2

cN−2
0 ≈~c

N
0−2h0

∂~c
N
0

∂x
þ 2h20

∂
2
~c
N
0

∂x2

c11≈~c
0
1 þ h1

∂~c
0
1

∂x
þ h

2
1

2

∂
2
~c
0
1

∂x2

c21≈~c
0
1 þ 2h1

∂~c
0
1

∂x
þ 2h21

∂
2
~c
0
1

∂x2

:

ð6:5Þ

The two equations in Eq. (6.4) and the four equations in Eq. (6.5) form

an algebraic system of six equations that allows one to express ~cN0 ;~c
0
1 and

their first and second derivatives as a linear combination of the

neighbouring values. It can be shown that

~c
N
0 ¼ D 3þ 2h1 Πþ Peð Þ½ � 4cN−1

0 −cN−2
0

� �

þ 2h0Π 4c11−c21
� �

R
ð6:6Þ

~c01 ¼ 3Dþ 2h0Πð Þ 4c11−c21
� �

þ 2Dh1Π 4cN−1
0 −cN−2

0

� �

R
ð6:7Þ

where R=9D+6Π(Dh1+h0)+2h1Pe(3D+2h0Π).

After spatial discretization, the systemof PDEs reduces to a systemof

nonlinear ordinary differential equations (ODEs) of the form:

dY

dt
¼ A Yð Þ; ð6:8Þ

where Y=(b0
0, ..., b0

N−1,c0
0, ... ,c0

N−1,c1
1, ... ,c1

M,b1
1, ..., b1

M)T and A(Y) contains

the 2(N+M) discretized Eqs. (5.2)–(5.9). The system (6.8) is solved by

the routine ode15s ofMatlab based on a Runge–Kutta typemethodwith

backward differentiation formulas, and an adaptive time step [31]. The

interface free drug concentrations ~c
N
0 ;~c

0
1 are computed a posteriori

through Eqs. (6.6)–(6.7) and the corresponding bound concentrations

~b
N

0 ;
~b
0

1 are obtained by solving thefirst order ODEs (5.2) and (5.5) analyt-

ically. In principle, negative values of b0may occur, since Eq. (5.2) holds

only for the period during which dissolution is ongoing. We handle this

numerically by setting the source term in Eqs. (5.2)–(5.3) to zero when

b0b0.

In order to verify the correctness of the numerical code, it is useful to

compare the numerical solution to any available analytical solutions. Un-

fortunately, analytical solutions for the full model are not available due to

the complexity of the two-layer four-phase nonlinear model. However,

we have performed a number of checkswhich give confidence in our nu-

merical results. Firstly, we have checked the results of the code against an

analytically solvable diffusionmodel in compositemedia [32]. Secondly,

we have imposed zero flux conditions at x=−L and x = 1 and evalu-

ated the total mass of drug in the system with time to ensure mass

conservation.

7. A case study: The drug-eluting stent

To demonstrate the utility of the model we focus on the particular

application of drug-eluting stents (Fig. 1). Stents are tubular wire

mesh devices inserted into coronary arteries which have narrowed as

a result of a pathological condition called atherosclerosis. Besides the

mechanical support due to the scaffold-like array of struts, the purpose

of the drug-eluting stent is to deliver a local dose of anti-proliferative/

anti-inflammatory medication to counter the effects of restenosis [1].

For this application, diffusion, binding and convection all occur in the

arterial tissue, with the latter appearing as a result of the transmural

pressure gradient across the wall.

One of the great difficulties in the modelling of biological systems is

obtaining accurate estimates of the various parameters. In the case of

drug eluting stents, there exists a plethora of data in the literature. How-

ever, the degree of variability of the estimates of someof the parameters

is substantial. It is usual for them to be estimated based on experiments

with a small number of repetitions, and in some cases lumped diffusion

coefficients (which inherently include such effects as transmural con-

vection and binding) are calculated. Furthermore, the transport proper-

ties vary from species to species and may well vary substantially

between tissue samples of the same species. Therefore, for the purposes

of this paper, we have decided to provide an indicative range for the pa-

rameters where a unique value has not been reported. These are

displayed in Table 1 along with the actual values used in the simula-

tions. A full sensitivity study for a particular DDD is beyond the scope

of this work, which focuses on the presentation of a general model.

However, we have decided to select parameter values from the stated

ranges based on two criteria. Firstly, we wish to demonstrate that the

model can predict the correct duration of in-vivo release and secondly,

we seek qualitative agreement with experimentally observed mass of

drug in the tissue as a function of time.

The stent coating parameters are representative of a first generation

polymer coated drug-eluting stent (Cypher Stent), whilst the binding

parameters have been taken from Tzafriri et al. [28] (Table 1). We

note that in the absence of data on the parameter β0, we have chosen

a value such that diffusion is the slowest process. For the simulated pa-

rameter values, we are in the regimeof case 2) of Section 3.1. In addition

we choose the values of γ0 and γ1 such that we have a zero flux condi-

tion at the impermeable stent strut (x=− l0), and zero drug concentra-

tion at the extent of the tissue (x = l1).

Using the parameter values of Table 1, we simulate the concentra-

tion profiles for free and bound drug in both the coating and the tissue,

b0 ,c0 ,c1 ,b1. As described in Section 6, we solve the model numerically

Table 1

Dimensional parameter values used in the simulations for the case of the drug-eluting stent. The values chosen are representative of the extensive literature.

Parameter Indicative range Simulated value References

γ0 0 cm s−1 0 cm s−1 [16,17]

α 0−1 2/3 [8,26,14]

D0 Oð10−12Þ cm2 s−1 1.2 ⋅10−12 cm2 s−1 [16]

l0 Oð10−3Þ cm 10−3 cm [16]

β0 NND0/(B
αl0

2) s−1 (mol cm−3)−2/3 1 s−1 (mol cm−3)−2/3
–

B 10−4 mol cm−3 10−4 mol cm−3 [15]

S B/10 B/10 [21]

P 10−6 cm s−1 10−6 cm s−1 [17]

v 10−6
− 10−5 cm s−1 5.8 ⋅10−6 cm s−1 [5,16,17]

D1 Oð10−9Þ−Oð10−6Þ cm2 s−1 2.5 ⋅10−6 cm2 s−1 [5,15]

l1 4.5 ⋅10−2 cm 4.5 ⋅10−2 cm [33]

k1
f 2 ⋅106 (mol cm−3 s)−1 2 ⋅106 (mol cm−3 s)−1 [28]

k1
r 5.2 ⋅10−3 s−1 5.2 ⋅10−3 s−1 [28]

bmax 3.66 ⋅10−7 mol cm−3 3.66 ⋅10−7 mol cm−3 [28]

1/γ1 0 cm s−1 0 cm s−1 [5,15,16]
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by first spatially discretizing the equations and then employing the rou-

tine ode15s of Matlab which includes an adaptive time step. In order to

provide confidence in the numerical simulations we conducted a grid

refinement study. Briefly, we increased the number of grid nodes until

the resulting concentration values varied by less than 1%. As a result,

the final numerical code included 50 coating grid nodes and 200 tissue

grid nodes.

In Fig. 5, concentration profiles at 1 hour, 15 and 30 days are

displayed. Note the sharp boundary layer at early times. The free drug

phase in the coating is saturated rapidly (c0 = S= 0.1), but b0 remains

non-zero: as diffusion proceeds, more bound drug is permitted to dis-

solve. Even after 30 days, bound drug exists within the coating, albeit

situated near to the boundary between the coating and the strut. Drug

diffuses through the free phase in the coating and enters the biological

Fig. 6.Nondimensional drugmass in the coating (top) andwall (bottom) as a function of time. The plots on the right aremagnifications of the plots on the left over the first 24 hours. Only

the coating encapsulateddrugmass ismonotonically decreasingwhile all the other phases have a characteristic time atwhich the drugmass reaches a peak. Note the sharp gradient ofMb0

and Mc0 close to the initial time.

Fig. 5. Nondimensional concentration profiles at three times. In each layer, both bound and free concentrations are depicted.
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tissue, where the free and bound tissue drug concentrations rise to a

peak (not shown) before reducing with time as drug traverses through

the tissue and is absorbed at the far boundary. The values of b1 are typ-

ically two orders of magnitude higher than c1, owing to the strong bind-

ing potential. The result is that most of the drug in the tissue is

contained within the bound phase (Fig. 6).

The drug mass in each phase is easily computed as an integral of the

concentration over the corresponding layer:

M j tð Þ ¼
Z

j x; tð Þdx; j ¼ b0; c0; c1; b1: ð7:1Þ

Furthermore, the fraction of drug mass retained in each layer and

phase is computed as

θ j tð Þ ¼ M j tð Þ
Mb0 0ð Þ ; j ¼ b0; c0; c1; b1: ð7:2Þ

These are useful indicators of drug release, diffusion and absorption.

In Fig. 6 we plot the nondimensional mass in each phase as a function of

time, whilst in Table 2 we present the percentage of drug retained in

each phase for different times up to 30 days.

As a consequence of the rapid dissolution rate, we observe a sharp

gradient close to the initial time, where the free drug mass increases

very quickly from zero to saturation levels (Fig. 6, top). For the remain-

der of the 30 days simulated, the free drug stays at this saturated level,

indicating that the rate of release is being controlled by both the drug

solubility and the rate of diffusion in the polymer coating. Fig. 6 (bot-

tom) shows that both the free and the bound drug masses rise from

zero to a peak within 1 day. The peakmass of bound drug, substantially

higher than that of free drug, occurs when all of the binding sites be-

come saturated: after this time, we observe a slow decay of b1 as drug

unbinds into the free phase and diffuses out of the tissue.

We point out that for the simulated parameter values, themodel re-

produces a biphasic release profile with an initial burst followed by an

approximately linear profile for the duration of the 30 days (Fig. 6

(top)). The simulated duration of release (77.3% by 30 days, Table 2)

compares well with existing in-vivo experimental data (82.5% by

30 days) [5]. Additionally, when we compare the simulated results of

the variation in total mass of drug in the tissue with the corresponding

in-vivo experimental data (Fig. 7) we find good agreement.

8. Conclusions

Besides being a relevant bioengineering application, modelling drug

delivery from a DDD constitutes a challenging problem from a

mathematical and computational point of view. Any proposed model

should be founded on a balance between generality (flexible and able

to describe a number of different cases), reliability (able to capture the

qualitative behaviour) and simplicity (only include the important fea-

tures and be easy to use). The reality is that biological systems are ex-

tremely complex and some degree of simplification is necessary if

any progress is to be made. We believe that the proposed model rep-

resents a sufficiently good compromise between these modelling

requirements.

In this paperwe have presented a general and unifiedmodel of drug

release and tissue distribution that may be applied to a number of drug

delivery systems. Our model accounts for the combined effects of diffu-

sion, dissolution and solubility in the polymer coating and can model

several different types of binding in the tissue, ranging from nonlinear

saturable reversible to linear irreversible binding. By presenting the

case of a drug-eluting stent, we have been able to demonstrate that

the model can provide results which are consistent with in-vivo exper-

imental data, and moreover, provides added value over experiments in

that concentration profiles can be calculated for the drug in each phase -

this is virtually impossible to do by experiments alone. The proposed

model will be useful to better understand the drug release kinetics of

existing DDD, and in designing those of the future.
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Appendix 0

In this appendixwe outline howmultiple bound phases in the tissue

may be incorporated within the general model. The concentration of

drug that is bound to component i is given by b1
i whilst the density of

binding sites associated with that component is given by bmax
i and

the respective forward and backward rate constants are given by k1
i , f

and k1
i ,r. With n the total number of different components for which

drug can bind to, Eqs. (4.7)–(4.8) are then replaced by

∂c1
∂t

¼ D1
∂
2
c1

∂x2
−v1

∂c1
∂x

−
X

n

i¼1

k
i; f
1 c1 b

i
max−b

i
1

� 	

−k
i;r
1 b

i
1

n o

in 0; l1ð Þ ð8:3Þ

∂b
i
1

∂t
¼ k

i; f
1 c1 b

i
max−b

i
1

� 	

−k
i;r
1 b

i
1; i ¼ 1; : ::; n in 0; l1ð Þ: ð8:4Þ

Fig. 7. Comparison between model and experimental results [5] for total mass of drug in

tissue. Values have been normalized with respect to the mass at the first experimental

time point (day 1).

Table 2

Percentage of drugmass retained in eachphase at different times for the simulatedparam-

eters in Table 1.With the exception of the coating encapsulated phase, themass of drug in

all the other phases starts from zero and reaches a peak before decaying with time. The

negligible values of θc1 only serve to highlight that drug preferentially accumulates within

the bound phase in the tissue. The percentage of drug released by 30 days is calculated as

100−θb0−θc0 and is compared with in-vivo experimental data.

t (days) θb0 θc0 θc1 θb1

0.02 90.4 9.1 0.0 0.4

0.05 88.6 9.7 0.0 1.4

0.08 87.6 9.7 0.0 2.3

0.13 86.1 9.7 0.0 3.8

1.5 74.0 9.1 0.0 3.2

7.5 53.5 8.0 0.0 1.5

15.0 38.2 7.1 0.0 1.1

22.5 26.5 6.5 0.0 0.9

30.0 16.7 6.0 0.0 0.8

Model Experimental data [5]

% released by 30 days 77.3 82.5
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