
Strathprints Institutional Repository

Post, Mark (2015) An embedded implementation of Bayesian network

robot programming methods. In: IMA Conference on Mathematics of

Robotics, 2015-09-09 - 2015-09-11, University of Oxford, St Anne's

College. ,

This version is available at http://strathprints.strath.ac.uk/54286/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42591691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

1

An Embedded Implementation of Bayesian
Network Robot Programming Methods

By Mark A. Post

Lecturer, Space Mechatronic Systems Technology Laboratory.
Department of Design, Manufacture and Engineering Management.

University of Strathclyde, Glasgow, United Kingdom.

Abstract

A wide variety of approaches exist for dealing with uncertainty in robotic reasoning,
but relatively few consider the propagation of statistical information throughout an entire
robotic system. The concept of Bayesian Robot Programming (BRP) involves making de-
cisions based on inference into probability distributions, but can be complex and difficult
to implement due to the number of priors and random variables involved. In this work,
we apply Bayesian network structures to a modified BRP paradigm to provide intuitive
structure and simplify the programming process. The use of discrete random variables
in the network can allow high inference speeds, and an efficient programming toolkit
suitable for use on embedded platforms has been developed for use on mobile robots.
A simple example of navigational reasoning for a small mobile robot is provided as an
example of how such a network can be used for probabilistic decisional programming.

1. Introduction

One of the most pressing problems in mobile robotics is that of how to quantify and
propagate certainty and uncertainty measures when making decisions for control. It is
desirable for the rover itself to be able to deal with uncertainties probabilistically, since
this gives a robot the ability to appropriately handle unexpected and uncertain circum-
stances. Bayesian Networks (BN) are well-suited for handling uncertainty in cause-effect
relations, and handle dependence/independence relationships well provided that the net-
work is constructed using valid relational assumptions. Some drawbacks of this method
are that the variables, events, and values available must be well-defined from the begin-
ning, and the causal relationships and conditional probabilities must be available initially
Kjrulff, 2008.
We approach the problem of probabilistic robotics using the Bayesian Robot Pro-

gramming (BRP) methodology developed by Lebeltel, Bessiere et al Bessiere et al., 2000
Lebeltel et al., 2000 Lebeltel et al., 2004, which provides a quite comprehensive framework
for robotic decision-making using inference. We add to this method by formally using
Bayesian networks as a knowledge representation structure for programming, which adds
clarity of representation, a practical structure for constructing joint distributions dynam-
ically, and reliance on a proven probabilistic methodology. Also, the use of recursive in-
ference in a Bayesian network avoids the need to manually partition and decompose large
joint distributions, which greatly simplifies the programming process. Our approach to
using Bayesian networks for robotic programming is detailed in the dissertation by Post,
2014, and a summary of the approach is given here.

Embedded Bayesian Network Robot Programming Methods 2

2. Probabilistic Concepts

The fundamental concept of a probability p is a real positive number between zero and
1 (denoting 100%) that is used to assign quantitative measures of confidence to a given
result or set of results of that event from result space Ω. These principles are formalized
in the concept of a random variable that assigns a value to each outcome o ∈ Ω and maps
from the events o ∈ O to real probability values p within a probability distribution P . In
numerical terms, this means that for a countable number of events o1 . . . oN , the distri-
bution P must at least provide N mappings p1 . . . pN . Each mapping is described using
functional notation such as p = P(x). We denote random variables with an uppercase
letter such as X, while a specific value that the random variable can take is denoted in
lowercase such as x like any other scalar. Hence, the statement X = x refers to a specific
value x within the variable X. We refer to a specific value P(X = x) with the simple
form P(x), and the whole distribution by P(X). Also, when dealing with several random
variables, P ((X = x) ∩ (Y = y)) is written as P(x, y).
In the field of robotics, conditional probabilities can be used to calculate conjunc-

tions of events such as (X = x) ∩ (Y = y). For an example of an obstacle sensor, we
can define the Boolean events Y = y := “An obstacle is detected′′ and X = x :=
“An obstacle is actually present′′, so that P ((X = x) ∩ (Y = y)) represents the event
that an obstacle is detected correctly, with priors such as P(Y = y) = 0.3 being necessary
to calculate such probabilities. We quantify a conditional probability distribution that
takes these priors into account, usually abbreviated to P(x|y), as

P(X = x|Y = y) =
P(Y = y ∩X = x)

P(Y = y)
. (2.1)

The chain rule for conditional probabilities generalizes the conditional probability
P(X1 ∩X2) = P(X1)P(X2|X1) to incorporate n events as a product of conditional dis-
tributions

P(X1 ∩X2 ∩ . . . ∩XN) = P(X1)P(X2|X1) . . .P(XN |X1 ∩ . . . ∩Xn−1). (2.2)

Because the conjunction operator is commutative, we can replace P(Y = y ∩X = x)
with P(X = x ∩ Y = y) = P(Y = y|X = x)P(X = x) in Equation 2.1 to express the
conditional distribution entirely in terms of event distributions and conditionals. This
is the form of Bayes’ Rule, which is the foundation of all Bayesian inference systems,
including Markov chains and Kalman filtering Engelbrecht, 2002.

P(Y |X) =
P(X|Y)P(Y)

P(X)
=

(likelihood) · (prior)
(evidence)

. (2.3)

We can consider P(Y = y|X = x) as the likelihood of getting a sensor reading if
an object to be sensed is present, and P(X = x) as the probability of an object being
present prior to the reading being made. The sensor reading itself is the evidence given
that points to object presence, and becomes a certainty of P(Y = y) = 1 after a reading
is made, but is generally estimated as 0 < P(Y = y) < 1 in the absence of a positive
sensor reading. In this way, the process of finding P(X = x|Y = y) is known as Bayesian
Inference.
The use of joint probability distributions as a basis for modelling relationships and

making predictions is a very powerful concept, but calculating all joint and conditional
distributions for all but the simplest systems is an intractable problem. The key to
solving this problem is the use of independence between random variables to greatly

PROBABILISTIC CONCEPTS 3

decrease the number of values that must be stored in a joint distribution. Returning to
the collision-detection sensor example, we can define X as the random variable of object
detection with, and Y as the random variable of object actual presence. Rather than
having to measure the specific distribution P(X,Y) directly, only the probability of object
detection and the accuracy of the sensor are needed. Assuming marginal independence
P � (W ⊥ Y |X), We can write a conditional joint distribution with three random
variables as

P(W,Y |X) =
P(W |Y)P(X|Y)P(Y)

P(X)
. (2.4)

In “naive” Bayes models such as this, we can generalize the factorization of a joint
distribution of M variables X1 . . . XM that are marginally independent but dependent
on a condition Z to

P(X1, . . . , XM , Z) = P(Z)

M
∏

m=1

P(Xm|Z). (2.5)

For us to be able to properly organize and represent a large set of joint distributions
using factorization in this way, we need a method of clearly associating random variables
that are dependent on each other, in the case of our sensor example the association
of W and X with Y . A Bayesian network with random variables as nodes provides
a compact way to encode both the structure of a conditional factorization of a joint
distribution, and also (equivalently) the independence assumptions about the random
variables included in the distribution. Independent random variables have no parents,
while marginally dependent or conditional random variables have parents connected as
in the case of (W ⊥ X|Y). Hence, the Bayesian network can serve as a framework for
formalizing expert knowledge about how the world works. Applying the chain rule to
all nodes in a Bayesian network, the probability distribution over a given network or
subnetwork of nodes ℘ = {X1 . . . XM} can be said to factorize over ℘ according to the
dependencies in the network if the distribution can be expressed as a product Koller and
Friedman, 2009

P({X1 . . . XM}) =
M
∏

m=1

P(Xm|Pa(Xm)). (2.6)

Due to the dependency structure of the network, the conditional posterior probability
of a given node X depends on all its parents Pa(X), so queries are a recursive operation
through all parent nodes Y ∈ Pa(X) to determine their probability distributions, then
multiplying them by the probability distributions of each parent node Y such that

P(X = x) =
∑

Y ∈Pa(X)

P(X = x|Y = y)P(Y = y). (2.7)

For single-parent random variables this is effectively a matrix multiplication, but for
multiple parents, each combination of probabilities leading to a given value must be
considered. Representing probability distributions by matrices, the distribution P(X|Y)
will be an L+1-dimensional matrix for L parents, with the major dimension of size N for
N random variable values in V(X). A given parent Y is assumed to have a distribution
of size M , so that the distribution P(Y) is a N × 1 matrix. Each element of the matrix
represents the probability of a given combination of values from parents occurring, so to

Embedded Bayesian Network Robot Programming Methods 4

calculate the conditional distribution for X, all probability products of each combination
leading to a given outcome are added together, as in Equation 2.7. This results in an
N×1 matrix that is stored as a temporary posterior distribution estimate for P(X) which
avoids frequent recalculation for determining the conditional distributions of children
Ch(X) while traversing the network. This process is graphically illustrated in Figure 1
for a set of single parents (a) and for multiple parents (b).
In this way, any node in a Bayesian network can be queried to obtain a probability

distribution over its values. While exact inference as described into a Bayesian network
is widely understood to be an NP-hard problem Wu and Butz, 2005, it is still much more
efficient than the raw computation of a joint distribution, and provides an intuitive,
graphical method of representing dependencies and independences. It is easy to see how
any system that can be described as a set of independent but conditional random variables
can be abstracted into a Bayesian network, and that a wealth of information regarding
the probability distributions therein can be extracted relatively efficiently.

3. Bayesian Programming

A Bayesian program has been defined by Lebeltel et al. as a group of probability dis-
tributions selected so as to allow control of a robot to perform tasks related to those
distributions. A “Program” is constructed from a “Question” that is posed to a “De-
scription”. The “Description” in turn includes both “Data” represented by δ, and “Pre-
liminary Knowledge represented by π. This “Preliminary Knowledge π consists of the
pertinent random variables, their joint decomposition by the chain rule, and “Forms”
representing the actual form of the distribution over a specific random variable, which
can either be parametric forms such as Gaussian distributions with a given mean and
standard deviation, or programs for obtaining the distribution based on inputs Lebeltel
et al., 2000.
It is assumed that the random variables used such as X are discrete with a count-

able number of values, and that a logical proposition of random variables [X = xi] is
mutually exclusive such that ∀i 6= j,¬(X = xi ∧ X = xj) and exhaustive such that
∃X, (X = xi). All propositions represented by the random variable follow the Conjunc-
tion rule P(X,Y |π) = P(X|π)P(Y |X,π), the Normalization rule

∑

X P(X|π) = 1, and
the Marginalization rule

∑

X P(X,Y |π) = P(Y |π) Bessiere et al., 2000. Rather than
unstructured groups of variables, we apply these concepts to a Bayesian network of M
random variables ℘ = X1, X2, . . . , XN ∈ π, δ, from which an arbitrary joint distribution
can be computed using conjunctions. It is assumed that any conditional independence of
random variables in π and δ (which must exist, though it was not explicitly mentioned by
Lebeltel et al.) is represented appropriately by the Bayesian network, thus significantly
simplifying the process of factorization for joint distributions. The general process we use
for Bayesian programming, including changes from the original BRP, is as follows:

(a) Define the set of relevant variables. This involves identifying the random
variables that are directly relevant to the program desired. In a Bayesian network, this is
implicit in the edges between nodes that represent dependencies. Usually, a single child
node is queried to include information from all related nodes.
(b) Decompose the joint distribution. The original BRP methodology explicitly

partitioned a joint distribution of M variables P(X1, . . . , XM |δ, π) into subsets, each one
a conjunction, and then used the product of the factorization of each subset, a process
called decomposition Lebeltel et al., 2004. We make use of the properties of the Bayesian
network for implicitly including information in parent nodes when queried and apply

BAYESIAN PROGRAMMING 5

(a) Single-parent (a multiplication) (b) Multiple Parents (total probability)

Figure 1. Matrix calculations for querying a discrete random variable

the factorization rules in Equation 2.5 to reduce P(X1, . . . , XM |δ, π) to a product of
conditional distributions which are queried recursively

P(X)
M
∏

m=1

P(Xm|δ, π). (3.1)

(c) Define the forms. For actual computations, the joint and dependent distributions
must be numerically defined, which is done by inserting discrete values into each node.
The most common function to be used, and the function used for continuous distributions
in this work, is the Gaussian distribution with parameters mean x̄ and standard deviation
σ that define the shape of the distribution, commonly formulated as

P(X = x) =
1

σ
√
2π

e−
(x−x̄)2

2σ2 . (3.2)

A uniform distribution can also be set with P(X = x) = k, having the same probability
regardless of value. Finally, because continuous distributions are programmed as function
calls, a distribution that is a function into some arbitrary external process such as a map
can be used.
(d) Formulate the question. Queries into a BRP system traditionally involve par-

titioning the random variables in ℘ into three sets: a searched set Se ⊂ ℘ for variables
that contain information we want to determine, a known set Kn ⊂ ℘ for variables that
contain an observed state so that P(X = x) = 1 for X ∈ Kn, and unknown variables
Un ⊂ ℘ that are only stochastically estimated. Under these sets, a “question” is formu-
lated as the posterior probability distribution P(Se|Kn, π), which makes intuitive sense
because in any query we want to obtain the probability distribution over a given random
variable based on all the distributions that affect it. Although many methodologies can

Embedded Bayesian Network Robot Programming Methods 6

be used to determine the “final” answer to the question, namely a specific probability
value in this distribution, we will generally use marginal MAP queries to obtain the value
of highest probability taking into account the dependencies in Un, making the form of
the question

argmax
Se

∑

Un

P(Se, Un|Kn, δ, π). (3.3)

The use of a Bayesian network formalizes the relationships of these sets, so that a query
into a common child node of Se incorporates information from parents Kn and Un of Se.
It is important to note that a “question” is functionally another conditional distribution,
and therefore operates in the same way as an additional node in the Bayesian network.

(e) Perform Bayesian inference. To perform inference into the joint distribution
P(X1, . . . , XM |δ, π), the “Question” that has been formulated as a conjunction of the
three sets Searched (Se), Known (Kn), and Unknown (Un) is posed to the system
and solved as a Bayesian inference that includes all relevant information to the set Se.
For our Bayesian network implementation. The “Answer” is obtained as a probability
distribution, and a specific maximum or minimum value can be obtained using a value
from the set Se and a Maximum A Posteriori (MAP) query as

MAP(X|Y = y) = argmax
x

∑

Z

P(X ∩ Z|Y). (3.4)

The last step in Bayesian programming is the actual inference operation used to deter-
mine the probability distribution for the variable or set of variables in question. Obtaining
the joint distribution P(Se|Kn, π) is the goal, and requires information from all related
random variables in {Kn,Un, π}, which in the Bayesian network are visualized as parents
of Se. This distribution can always be obtained using Lebeltel and Bessière, 2008

P(Se|Kn, δ, π) =
1

Σ

∑

Un

P(Se, Un,Kn|δ, π) (3.5)

where Σ =
∑

{Se,Un} P(Se, Un,Kn|δ, π) acts as a Normalization term. To complete the

inference calculation, we only need to reduce the distribution
∑

Un P(Se, Un,Kn|δ, π)
into marginally independent factors that can be determined. We assume that indepen-
dence is denoted by the structure of the Bayesian network, so we only need be concerned
with the ancestors of Se and do not need to scale by Σ. Given that inference into a
Bayesian network typically involves querying a single node, we will assume that Se is the
singleton Se = {X}. This can also be accomplished if Se is larger by making X a parent
of all nodes in Se.

Applying the chain rule again to Bayesian networks, we can walk the Bayesian network
backwards through the directed edges from X, determining the conditional distribution
of each node from its parents as we go, and therefore breaking down the determination of
the joint distribution into smaller, separate calculations. Considering Z to be the parents
of each ancestor node Y and following the method of Equations 2.6, and Equation 2.7,
and Equation 3.5, a general expression for the factorization of P(Se|Kn, δ, π) through
the Bayesian network is

P(Se|Kn, δ, π) =
∑

Y ∈{X,An(X)

∏

Z∈Pa(Y)

P(Y |Z)P(Z)

 . (3.6)

BAYESIAN NETWORK IMPLEMENTATION 7

4. Bayesian Network Implementation

For our Bayesian network implementation, with the random variables in Se, Kn, and Un

internally linked together as nodes and edges. Nodes associated with actions to be taken
typically have conditional distributions that act as “questions” regarding their opera-
tional state. If for example, the question is asked what should the right-side motors do?,
the network nodes related to obstacle presence and mapping, and in turn, prior sensor
data, will have to be traversed to obtain the Answer, which is a posterior probability
distribution that is used to select a particular value of motor speed. Unlike most Bayesian
network implementations, our implementation is unique in that it uses fixed-point math
for storage and calculation and is programmed in C for better portability and calculation
efficiency on small-scale embedded systems that do not have a floating-point arithmetic
unit Lauha, 2006.
At minimum, a random variable with N possible values will have a 1×N distribution

matrix. A parent node with M values will create at most M additional distributions, and
in general, if each parent has a distribution Nl values in size, and there are L parents,
then the number of distributions M possible in the child node are M =

∏L

l=1 Nl, so the
storage size of the node scales roughly as NL. This can be mitigated to make processing
more efficient by designing a deeper graph with more nodes and less parents per node.
A parent node with an Ml ×Nl distribution matrix, regardless of the number of parents
and the size of Ml, will still only contribute Nl values to its child nodes. A given node X
will then have to store a table of size |V(X ∪Pa(X))|. Total probability requires that all
values in each row m sum to 1. The joint distribution P of probability values associated
with a given random variable is the content actually stored.
Because the dimensionality of data stored in the node changes with number of parents,

we use a single array for storing the distribution and index it with a linear index that is a
function of the parent numbers of the node. To create the index, we model the array as an
L+ 1-dimensional matrix for L parents and calculate an index i. For a two-dimensional
row-major-order matrix with row (m) and column (n) indices, i = n + m ∗ columns.
By recognizing that each additional dimension must be indexed by multiplying past
the sizes of all preceding dimensions, we can set index i using matrix indices m1 for
dimension 1 of size M1 (we choose columns here for consistency), m2 for dimension 2 of
size M1(we choose rows here for consistency), and m3,m4, . . . and above for additional
matrix dimensions of size M3,M4, . . . respectively, obtaining

i = m1 +m2M1 +m3M2M1 + . . .+mL+1

L
∏

l=1

Ml =

L+1
∑

n=1

(

mn

n−1
∏

l=1

Ml

)

. (4.1)

5. Sensory Reasoning Example

To test the concepts and implementation detailed above, a simple six-node network was
set up which is graphed with base probabilities as shown in Figure 2, consisting of three
nodes representing obstacle sensors with states {Clear,Obstacle} angled 30 degrees apart
in front of a mobile robot, a sensor fusion node that uses Gaussian distributions to
estimate the detection angles of the three sensors, and two motor nodes for control of left
and right side motors. A MAP query is used to determine the most appropriate state of
the motors from {Forward,Reverse} given inference into the sensor data.

It is assumed that each obstacle sensor has only a 20% prior probability of seeing an
obstacle in practice and 80% probability of no obstacles, but this is updated when the

Embedded Bayesian Network Robot Programming Methods 8

LeftSensor
~0.800, 0.200,

FusedSensor
~0.003, 0.006, 0.010, 0.016, 0.022, 0.027, 0.030, 0.031, 0.030, 0.027, 0.024, 0.022, 0.022, 0.021, 0.018, 0.014,

MiddleSensor
~0.800, 0.200,

RightSensor
~0.800, 0.200,

LeftMotor
~0.600, 0.400,

RightMotor
~0.600, 0.400,

Figure 2. Simple Bayesian Network for Obstacle Avoidance Program

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-15 -10 -5 0 5 10 15

P
ro

b
a

b
ili

ty

Obstacle Angle

Angular Probability

Obstacle to Left
Obstacle Mid Left

Obstacle in Middle
Obstacle Mid Right

Obstacle to Right
Inferred Distribution

(a) No obstacles detected

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-15 -10 -5 0 5 10 15

P
ro

b
a

b
ili

ty

Obstacle Angle

Angular Probability

Obstacle to Left
Obstacle Mid Left

Obstacle in Middle
Obstacle Mid Right

Obstacle to Right
Inferred Distribution

(b) Obstacle detected to right (90%)

Figure 3. Sensor Fusion Probability Priors and resulting Inferred Distributions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-15 -10 -5 0 5 10 15 20 25 30

P
ro

b
a

b
ili

ty

Obstacle Angle

Left Motor Movement Probability

Motor Forward
Motor Reverse

Inferred Probability Forward
Inferred Probability reverse

(a) Left motor movement

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-15 -10 -5 0 5 10 15 20 25 30

P
ro

b
a

b
ili

ty

Obstacle Angle

Right Motor Movement Probability

Motor Forward
Motor Reverse

Inferred Probability Forward
Inferred Probability reverse

(b) Right motor movement

Figure 4. Priors for Motor Movement and Probabilities of Obstacle Avoidance for Obstacle
Detected to Right (90%)

sensor actually detects an obstacle. The sensor fusion node is pre-loaded with a set of six
Gaussian functions representing an approximate likelihood of the direction of an obstacle
given the six possible states of the three two-state obstacle sensors. Figure 3 shows the
angular probabilities of these Gaussian functions and the resulting inferred distribution
(denoted with markers) for (a) no obstacles detected, and (b) an obstacle detected by
the right-hand sensor with 90% probability.
The motor nodes are defined with a high probability of reverse movement for obstacles

detected on the opposite side to cause obstacle avoidance behaviour, but generally a
higher probability of forward movement to keep the robot moving forward if obstacles
are unlikely. The functions used are shown in Figure 4 for the right and left motors
This function could be constructed in any way desired to reflect the response of the

motors to likelihood of an obstacle, but a simple function is used in this case to illustrate
that the system still works. The presence of an obstacle increases the inferred “prob-

CONCLUSIONS 9

ability” of the left motor reversing, which in this context would be contextualized as
“probability that reversing will avoid an obstacle”, and the motor will reverse when a
MAP query is applied. Optimal priors can be determined by expert knowledge or by
statistical learning methods which will be a focus of future work. Graphing the priors
used for inference at each node shows a notable similarity to fuzzy functions, and the
process of inference into discrete values that of fuzzification, but there are still fundamen-
tal differences. A random variable is expected to have a single outcome while fuzzy sets
represent multiple outcomes, or alternately imprecise degrees of belief. This imprecision
is reflected in the extension to fuzzy sets of possibility theory, which can be seen as a
form of upper probability theory Zadeh, 1999.

6. Conclusions

We have described a method for making decisions using the Bayesian Robot Programming
paradigm using Bayesian networks for organization of data and efficient algorithms for
storage and inference into discrete random variables. This method has been implemented
as a novel, efficient, structured framework for practical use of Bayesian networks and
probabilistic queries on an embedded system with fixed-point arithmetic, leading to an
efficient and intuitive way of representing robotic knowledge and drawing conclusions
based on statistical information encapsulated in the network.
The applicability of these methods to robotic programming and control is very wide,

and many future applications are expected, as this method can be extended to much
more complex systems simply by adding networked random variables for sensor and
actuator quantities, so long as they can be probabilistically characterized. Future work
includes implementations for new applications, determination of network structure and
optimal priors from existing hardware data, and the implementation of statistical learning
methods to improve performance of the system while it operates.

REFERENCES

Bessiere, P., Lebeltel, O., Lebeltel, O., Diard, J., Diard, J., Mazer, E., and Mazer, E. (2000).
Bayesian robots programming. In Research Report 1, Les Cahiers du Laboratoire Leibniz,
Grenoble (FR, pages 49–79.

Engelbrecht, A. P. (2002). Computational Intelligence: An Introduction. John Wiley & Sons.
Kjrulff, U. B. (2008). Bayesian Networks and Influence Diagrams: A Guide to Construction and

Analysis. Springer Science.
Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models, Principles and Techniques.

MIT Press, Cambridge, Massachusetts.
Lauha, J. (2006). The neglected art of fixed point arithmetic. Presentation.
Lebeltel, O. and Bessière, P. (2008). Basic Concepts of Bayesian Programming. In Probabilistic

Reasoning and Decision Making in Sensory-Motor Systems, pages 19–48. Springer.
Lebeltel, O., Bessière, P., Diard, J., and Mazer, E. (2004). Bayesian robot programming. Au-

tonomous Robots, 16(1):49–79.
Lebeltel, O., Diard, J., Bessiere, P., and Mazer, E. (2000). A bayesian framework for robotic

programming. In Twentieth International Workshop on Bayesian Inference and Maximum
Entropy Methods in Science and Engineering (MaxEnt 2000), Paris, France.

Post, M. (2014). Planetary Micro-Rovers with Bayesian Autonomy. PhD thesis, York University.
Wu, D. and Butz, C. (2005). On the complexity of probabilistic inference in singly connected

bayesian networks. In Slezak, D., Wang, G., Szczuka, M., Dntsch, I., and Yao, Y., editors,
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, volume 3641 of Lecture
Notes in Computer Science, pages 581–590. Springer Berlin Heidelberg.

Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst., 100:9–34.

