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Abstract�This paper aims to describe methods to forecast wind 

speeds experienced around overhead lines (OHLs) in order to 

predict the wind cooling effect and thus the dynamic line ratings 

(DLRs) of OHLs. The wind speed at a particular OHL span is 

forecast through a kriging interpolation between the wind speed 

predictions produced by a vector auto-regressive (VAR) model 

for a limited number of weather stations at which observations 

have been obtained. A temporal de-trending method is used to 

ensure the stationarity of de-trended data from which model 

parameters are determined. A spatial de-trending method is 

adopted in a kriging model. The results show that the kriging 

model performs better than the inverse distance weighting 

(IDW) method and that the spatial de-trending makes the main 

contribution to the accuracy of interpolation. Furthermore, the 

VAR forecasting model is shown to give greater improvement 

over persistence than a simple auto-regressive (AR) model. 

Index Terms-- Dynamic line rating, Kriging, Vector auto-

regressive models, De-trending 

I. INTRODUCTION 

The dynamic thermal rating (DTR) or real-time thermal 
rating (RTTR) is the highest current at which a branch of a 
transmission or distribution network can be operated at safely 
and reliably at the time in question [1]. In the case of overhead 
lines (OHLs), RTTR is typically referred to as dynamic line 
rating (DLR) [2]. A DLR system can estimate or predict the 
line ampacity and offer evidence to network operators of the 
safe levels of power flow on network branches.  A number of 
techniques have been developed to quantify the DLRs of 
OHLs through direct measurement or inference of the span 
sag or conductor temperature [3]-[7]. In investment planning 
timescales, DLRs can be considered over a range of future 
operating conditions and offer a cost-effective means to deal 
with power generation and demand growth or distributed 
generation connections that reduce the need for network 
reinforcements. 

A weather model for DLR estimation using real-time 
meteorological data combined with a thermal model of 
overhead conductors [8]-[10] and an inverse distance 
weighting (IDW) interpolation method to infer weather 
conditions for each span of the OHL was successfully 

developed by Durham University [1], [11]. Building on 
Durham�s work, an enhanced weather model is being 
developed with the ability to not only provide real-time ratings 
but also forecasts of ratings so that system or wind farm 
operators have time to take action to mitigate the 
consequences of the limitations of power transfer or, 
alternatively and where possible, to exploit additional thermal 
capacity. Moreover, an informed judgment about risk may be 
made in advance if the DLR forecast is lower than the static 
ratings. 

IDW interpolation using a wind profile power law was 
applied in Durham�s work [11]. Spatial interpolation methods 
for wind speed including IDW, kriging and co-kriging, etc. 
were compared in [12]; co-kriging performed best due to the 
inclusion of elevations of the weather stations. As a substitute 
for co-kriging, a kriging model combined with a surface or 
spatial de-trending (SD) in terms of distance to ocean (DTO) 
and elevation is developed in this paper. 

An advanced spatio-temporal model making use of the 
vector auto-regressive (VAR) model and temporal de-trending 
to extract annual and seasonally varying diurnal trends [13] is 
adopted to forecast wind speeds at a limited number of 
weather stations at which historic observations are obtained. 

The 10-minute average wind speed data are provided by 
Scottish Power Energy Networks (SPEN) from their project of 
�Implementation of real-time thermal ratings� (LNCF 
SPT1001) in North Wales [14].  A map of the research area is 
shown in Fig. 1. 

 

Fig. 1. Map showing locations of 9 weather stations in North Wales. 

This project is funded by the Scottish �Energy Technology Partnership
(ETP)�, the University of Strathclyde, Scottish Power Energy Networks

(SPEN) and National Grid Electricity Transmission (NGET). 
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II. METHODOLOGY 

A. Temporal De-Trending 

Data applied to statistical models, like kriging and vector 

auto-regressive (VAR) models, are generally required to 

satisfy a weak or second order stationarity. That is, neither 

the mean nor the variance of the data should vary with time 

and the auto-covariance is dependent on the time lag only 

[15]. The inherent trends of non-stationary data may be 

misleading with regard to correlations among variables or the 

auto-correlation of a time series. Therefore, any trend implied 

in the non-stationary data should be removed before the 

applications of the kriging and VAR models. 

The annual trend and seasonally varying diurnal trends of 

wind speed data at each weather station are separately 

modelled by a Fourier series of a reasonable order of 喧 [16]: 

                     劇堅結券穴 噺 繋待 髪 デ 繋沈 sin岫件拳建 髪 砿沈岻椎沈退怠              (1) 

where terms 繋沈and 砿沈  are the Fourier coefficients of the 件痛朕 

harmonics. The term 繋待 is the offset of data and 拳 represents 

the frequency. The hourly wind speeds in the year 2006-2007 

measured at the British Atmospheric Data Centre (BADC) 

weather station Rhyl located in North Wales are used to 

illustrate the process of temporal de-trending. 

The annual trend is first well modelled by a Fourier series 

of order equal to six with the annual angular frequency 

of  に講 岫ぬはの 抜 にね岻エ , as shown in Fig. 2. Then, the fitted 

annual trend is subtracted from the original data of wind 

speed. 

 

Fig. 2. Modelling of annual trend at Rhyl. 

Previous work has found that the diurnal trend, especially 

at coastal locations, varies through the year [13]. As a 

consequence, the data without the annual trend are 

categorized into four groups according to four seasons, spring 

(March to May), summer (June to August), autumn 

(September to November) and winter (December to 

February). The diurnal trend in each season is then fitted to 

the data in the corresponding bin by a Fourier series of order 

equal to four with the diurnal angular frequency of に講 にねエ  

[13] as shown in Fig. 3. The diurnal trends in spring and 

summer are similar and more obvious than those in autumn 

and winter. 

 

Fig. 3. Modelling of diurnal trends in four seasons at Rhyl. 

Finally, the modelled diurnal trends in different seasons 

and the annual trend are all removed from the original data so 

as to obtain the de-trended data with a reasonable degree of 

stationarity. These de-trended data will be applied to 

determine the parameters of the kriging and VAR models. 

B. Inverse Distance Weighting and Kriging 

Inverse distance weighting (IDW) and kriging both infer 
the wind speed at a target location as a weighted sum of 
observations at surrounding sampled locations [17]: 

              検岫憲墜岻 伐 兼岫憲墜岻 噺 デ 膏沈岷検岫憲沈岻 伐 兼岫憲沈岻峅津岫通岻沈退怠           (2) 

where 検岫憲墜岻 and 検岫憲沈岻 are values at the target location 憲墜 and 
sampled location 憲沈 respectively. The terms 兼岫憲墜岻 and 兼岫憲沈岻 
are the expected values or trend components of 検岫憲墜岻  and 検岫憲沈岻. 券岫憲岻 is the number of sampled locations and 膏沈 is the 
weight assigned to the sampled location 憲沈. 

The IDW weights 膏彫帖調┸沈 are inversely proportional to the 

distances 穴沈┸墜between 憲墜 and 憲沈: 
                                膏彫帖調┸沈 噺 怠 鳥日┸任忍斑デ 岾怠 鳥日┸任忍斑 峇韮岫祢岻日転迭                                (3) 

where 圏 is a power parameter equal to 2 in [11]. 

The kriging weights 膏懲眺彫┸沈 are determined to minimize the 

variance of estimation errors. In addition to the distance 穴沈┸墜, 

kriging weights depend largely on the spatial relationships 
between variables at all locations [17]: 

                                     膏懲眺彫┸沈 噺 皐貸怠暫                                   (4) 

where 皐  represents the matrix of covariances between the 
sampled locations and 暫 is the vector of covariances between 
the target and sampled locations.  
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The elements in both 皐 and 暫 are estimated as a function 
in terms of distance which is fitted to the empirical semi-
variances 紘岫月岻 [18]: 

                紘岫月岻 噺 怠態津岫朕岻 デ 岷検岫捲沈岻 伐 検岫捲沈 髪 月岻峅態津岫朕岻沈退怠                (5) 

where 券岫月岻 is the number of pairs of observations 検岫捲沈岻 and 検岫捲沈 髪 月岻 which are a distance lag 月 apart. The semi-variance 
generally increases with the distance within a range. In our 
work a spherical model [18] is used to fit the empirical semi-
variances: 

        紘茅岫月岻 噺 畔ど                                                          月 噺 ど決 髪 潔 釆な┻の 岾朕銚峇 伐 ど┻の 岾朕銚峇戴挽    ど 隼 月 判 欠決 髪 潔                                                  月 伴 欠      (6) 

where the coefficient 決 is named as the �nugget� representing 
the spatially uncorrelated noises. The coefficient 欠  is the 
�range� at which the semi-variance just reaches the maximum 
value 岫決 髪 潔岻 known as the �sill� [18]. These coefficients are 
determined by the least squares fitting and the elements of 
covariance 系岫月岻 in 皐 and 暫 can be estimated via the equation: 

                                  系岫月岻 噺 鯨件健健 伐 紘茅岫月岻                            (7) 

The calculated covariance between two locations separated 
by a distance in excess of the �range� is zero, implying that 
they have no impact on each other. 

C. Spatial De-Trending 

Spatial de-trending (SD) is used to remove trend surfaces 
which are fitted to weather data in terms of the geographic 
variables of interest. These trend surfaces are then added back 
in the interpolations at the end of the IDW or kriging process. 
In this manner, the effects of these geographic variables on the 
spatial correlations can be mitigated [19]. 

Before modelling the trend surfaces, the wind speeds 懸銚津勅  
at the anemometers� heights 権銚津勅 are converted to a common 
reference level 権追勅捗  taking the ground roughness lengths 権墜 

into account through the equation [20]: 

                                懸追勅捗 噺 懸銚津勅 狸樽盤佃認賑肉 佃任エ 匪狸樽岫佃尼韮賑 佃任エ 岻                            (8) 

The IDW and kriging interpolations, as well as the 
subtraction and addition of trend surfaces are all done at the 
reference level. The interpolation results at the reference level 
are then converted back to the elevation of the target location. 

A reference height of 200m above ground level (AGL) is 
adopted in Durham�s work and 300m above sea level (ASL) is 
chosen in this paper as a comparison. In order to minimize the 
spatial variation further, the trend surfaces of wind speeds 懸追勅捗  at the reference level (300m ASL) are modelled in terms 

of DTO and elevation as shown in Fig. 4. The weather stations 
at higher elevations and closer to the coast are generally 
shown to have higher wind speed averages in this case, which 
is also discovered by Nawri [21] and Xue [22]. 

 

Fig. 4. The trend surface of corrected wind speeds at 300m ASL in terms of 

distance to ocean (DTO) and that in terms of elevation after removing the 
trend surface modelled in terms of DTO. 

D. Auto-Regressive and Vector Auto-Regressive Models 

The auto-regressive (AR) model of order 喧 estimates the 
forecast 権┘痛 as a linear combination of 喧 historical values at a 
target location and a random shock 結痛 [23]: 

                                 権┘痛 噺 デ 叶沈権┘痛貸沈椎沈退怠 髪 結痛                            (9) 

where 権┘痛 represents the deviation from the expected value or 
trend component and 叶沈 is the auto-regressive parameter. 

As an extension of a univariate AR model, the vector auto-
regressive (VAR) model of order 喧 offers a way of producing 
the forecast as a weighted sum of historical time series not 
only at the target location but also from its surrounding 
sampled locations [24]: 

                            燦風痛 噺 四 髪 デ 冊沈燦風痛貸沈椎沈退怠 髪 撮痛                      (10) 

where 燦風痛  is a 岫計 抜 な岻  vector consisting of 権┘痛  at 計  locations 

and 四  is a 岫計 抜 な岻vector of the non-zero means of 燦風痛 . 冊沈 
represents a 岫計 抜 計岻 matrix of coefficients at time lag 件 and 撮痛 is a 岫計 抜 な岻 vector of innovation process. 

燦風嗣 噺 頒権┘怠痛権┘態痛教権┘懲痛番    四 噺 頒憲怠憲態教憲懲番    冊沈 噺 崛畦怠怠沈 橋 畦怠懲沈教 狂 教畦懲怠沈 橋 畦懲懲沈 崑   撮痛 噺 頒結怠痛結態痛教結懲痛番 

The parameters in the AR or VAR model are estimated by 
using least squares fitting which is accomplished using 
MATLAB [25]. 

III. RESULTS AND DISCUSSION 

The accuracies of spatial interpolation methods are 
assessed by calculating and comparing their mean absolute 
(MA) errors and root mean squared (RMS) errors [26] when 
taking each weather station as the target location in a cross-
validation procedure. The MA errors and RMS errors of the 
forecasting models over a look-ahead period of 2 hours at the 
9 weather stations are compared with the errors of a 
persistence forecasting method which supposes that wind 
speeds in the future are equal to the present values [27]. 
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A. Inverse Distance Weighting and Kriging 

Four spatial interpolation methods are applied to the wind 
speed estimations: 

• IDW, with a reference level at 200m AGL, 
without surface de-trending (IDW, 2AGL, w/o 
SD) which was used in the Durham�s work; 

• IDW, with a reference level at 300m ASL, 
without SD (IDW, 3ASL, w/o SD); 

• IDW, with a reference level at 300m ASL, with 
SD (IDW, 3ASL, w SD); 

• Kriging, with a reference level at 300m ASL, 
with SD (KRI, 3ASL, w SD). 

The improvements in MA errors and RMS errors for wind 
speed interpolations over the Durham�s method for the other 
three methods are shown in Fig. 5 and Fig. 6 respectively. 

 

Fig. 5. Improvement in MA errors over Durham's method for other ones 

 

Fig. 6. Improvement in RMS errors over Durham's method for other ones 

Both figures show that 300m ASL is a better choice as the 
reference level in this case where weather stations are located 
in the mountainous terrain, especially the stations 6-9. 

Using the same reference level of 300m ASL and the IDW 
method, the additional application of spatial de-trending (SD) 
improves the accuracy of wind speed interpolation further. An 
exception is the improvement in MA error for weather station 
4. As can be seen from Fig. 1, station 4 is the one closest to 
the coast and off the main OHL route so that the value of the 
trend surface in terms of DTO at station 4 is extrapolated and 
overestimated when station 4 is the target location. 
Fortunately, the values of the trend surfaces at locations of 
overhead conductors are all interpolated. Therefore, the 
underestimation or overestimation caused by the extrapolation 
of trend surfaces will not happen when estimating wind speeds 
at the OHL spans. 

In addition, the kriging method performs just slightly 
better than the IDW method at most stations when both 
contain the SD. The limited improvement might be caused by 
the insufficient number and the distribution of weather 
stations. The limited number of stations results in the number 
of empirical semi-variance points not being enough to fit an 
accurate spherical model. That being said, the spatial 
correlation extracted from the finite empirical semi-variances 
is not reliable for a limited number of sampled locations. 

Besides the distances from the target location, kriging 
weights are dependent on the spatial correlations not only 
between the sampled and target locations but also between the 
sampled locations themselves. In an isotropic region, i.e. one 
that has the same characteristics in all directions, the sum of 
kriging weights assigned to the sampled locations within a 
cluster is generally similar to the weight assigned to an 
isolated sampled location if they have the same distances from 
the target location [17]. Therefore, the effect of clusters can be 
mitigated by the kriging process. However, the weather 
stations in the research area are fairly well distributed and 
there are no severe clusters so that kriging�s advantage of 
compensation for cluster effects is constrained. 

B. Auto-Regressive and Vector Auto-Regressive Models 

The parameters in the AR and VAR models are estimated 
based on the residuals after removing the temporal trends at 
each station. The wind speed prediction is constructed as a 
sum of the residual forecast and the corresponding fitted 
temporal trend at a given future moment. 

 The orders of the AR and VAR models can be confirmed 
through the inspection of partial autocorrelation functions [23] 
or the comparison of forecast errors for different model orders. 
The RMS errors of one-step-ahead forecasts at the station 6 
(St. Asaph) produced by the AR and VAR models of different 
orders 喧 as listed in Table I demonstrate that less than 0.5% 
improvements are achieved when orders are over 3. Therefore, 
wind speeds are forecast using the AR(3) and VAR(3) models. 

TABLE I.  RMS ERRORS OF AR AND VAR OF DIFFERENT ORDERS 

 喧 噺 な 喧 噺 に 喧 噺 ぬ 喧 噺 ね 喧 噺 の 

AR 0.4354 0.4195 0.4157 0.4140 0.4133 

VAR 0.4220 0.4112 0.4084 0.4070 0.4062 
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The improvements over persistence in MA errors and 
RMS errors of total wind speed forecasts for up to 2 hours 
ahead for the AR(3) and VAR(3) models are shown in Fig. 7 
and Fig. 8. 

 

Fig. 7. Improvement over persistence in MA errors for up to 2h ahead for 

AR(3) and VAR(3) forecasting models at four stations. 

 
Fig. 8. Improvement over persistence in RMS errors for up to 2h ahead for 

AR(3) and VAR(3) forecasting models at four stations. 

The VAR(3) forecasting model is shown to produce 
predictions with higher quality than the AR(3) model due to 
the additional capture of the inherent spatial correlations 
among the field data. In addition, the AR(3) or VAR(3) model 
usually has a more distinct improvement over persistence with 
the forecast horizon going further. Therefore, a VAR(3) 
forecasting model with the temporal de-trending is the better 
choice to forecast the wind speed in this case.  

IV. CONCLUSION AND FUTURE WORK 

This paper has described and assessed different spatial 
interpolation methods and forecasting models in preparation 
for the future work of predicting the wind speeds at a set of 
OHL spans.  

The kriging method with spatial de-trending and a 
reference level of 300m above sea level is a preferable 

approach for the wind speed interpolation compared with a 
reference level of 200m above ground and inverse distance 
weighting (IDW) used in previous work at Durham University. 
Using the new reference level and modelling trend surfaces 
makes the main contribution to the improvements in the 
qualities of interpolations. Kriging as an advanced 
interpolation method takes both the spatial correlations and 
distances between locations into consideration. However, only 
a slight enhancement in accuracy for kriging over the IDW 
method is obtained in this study. This seems to be due to the 
limited number of weather stations and their uniform 
distribution. It should be noted that it cannot be guaranteed 
that any particular spatial interpolation method will be suitable 
for all cases [28]. For different meteorological variables or 
study regions of interest, an appropriate spatial interpolation 
method in each case has to be obtained through many attempts 
of possible approaches. 

Temporal de-trending provides a way to generate the de-
trended data which satisfy a reasonable order of stationarity. 
VAR parameters calculated based on the wind speed residuals 
at each location could describe the spatio-temporal 
correlations between weather stations more reliably than a 
univariate AR model. Experiment results reveal that the 
VAR(3) forecasting model was preferred in this case. 

Future work will continue to establish the optimum models 
for forecasting meteorological data of air temperature, wind 
direction and solar radiation which also have an impact on the 
thermal behavior of an overhead conductor. Then, these 
forecasting models will be developed further to provide 
prediction percentiles describing the probability of particular 
OHL thermal ratings being exceeded.  
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