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Abstract

In 2000, Babson and Steingrimsson introduced the notion of what is now known as a
permutation vincular pattern, and based on it they re-defined known Mahonian statistics
and introduced new ones, proving or conjecturing their Mahonity. These conjectures were
proved by Foata and Zeilberger in 2001, and by Foata and Randrianarivony in 2006.

In 2010, Burstein refined some of these results by giving a bijection between permutations
with a fixed value for the major index and those with the same value for STAT, where STAT is one
of the statistics defined and proved to be Mahonian in the 2000 Babson and Steingrimsson’s
paper. Several other statistics are preserved as well by Burstein’s bijection.

At the Formal Power Series and Algebraic Combinatorics Conference (FPSAC) in 2010,
Burstein asked whether his bijection has other interesting properties. In this paper, we not
only show that Burstein’s bijection preserves the Eulerian statistic ides, but also use this fact,
along with the bijection itself, to prove Mahonity of the statistic STAT on words we introduce
in this paper. The words statistic STAT introduced by us here addresses a natural question on
existence of a Mahonian words analogue of STAT on permutations. While proving Mahonity
of our sTAT on words, we prove a more general joint equidistribution result involving two
six-tuples of statistics on (dense) words, where Burstein’s bijection plays an important role.

1 Introduction

In [1], the notion of what is now known as a wvincular pattern' on permutations was introduced,
and it was shown that almost all known Mahonian permutation statistics (that is, those statistics
that are distributed as INV or as MAJ to be defined in Section 2) can be expressed as combina-
tions of vincular patterns. The authors of [1] also introduced some new vincular pattern-based
permutation statistics, showing that some of them are Mahonian and conjecturing that others
are Mahonian as well. These conjectures were proved later in [4, 5], and recently, alternative
proofs based on Lehmer code transforms were given in [8].

!Such patterns are called generalized patterns in [1].



Three statistics expressed in terms of vincular pattern combinations in [1] (namely, MAK,
MAD and DEN) are known to be Mahonian not only on permutations, but also on words (see [3,
Theorem 5)); more precisely, for any word v, the three statistics are distributed as INv on the
set of rearrangements of the letters of v.

One of the statistics defined and shown to be Mahonian in [1] is STAT. Generalizing a result
in [4], Burstein [2] shown the equidistribution of STAT and MAJ together with other statistics by
means of an involution p on the set of permutations. At the Formal Power Series and Algebraic
Combinatorics Conference (FPSAC) in 2010, Burstein asked whether p has other interesting
properties.

In this paper, we not only show that p preserves the Eulerian statistic ides (which is not
preserved, e.g. by the bijection ® on words [3] mapping MAD to INV), but also use this fact, along
with p itself, to prove Mahonity of the statistic STAT on words introduced in Subsection 2.2
(see relation (3)). The words statistic STAT introduced by us in this paper addresses a natural
question on existence of a Mahonian words analogue of STAT on permutations. While proving
Mahonity of our STAT on words, we prove a more general joint equidistribution result involving
two six-tuples of statistics on (dense) words, where the bijection p plays an important role (see
Theorems 1 and 2 in Section 5).

2 Preliminaries

We denote by [n] the set {1,2,...,n}, by &, the set of permutations of [n], and by [g]" the set
of length n words over the alphabet [¢]. Clearly &,, C [¢]" for ¢ > n > 1. A word v in [¢]"
is said to be dense if each letter in [¢] occurs at least once in v. Dense words are also called
multi-permutations.

2.1 Statistics

A statistic on [¢]™ (and thus on &,,) is an association of an integer to each word in [g]". Classical
examples of statistics are:

INvo =card {(i,7) : 1 <i<j<n,v >0},

MAJ v = E 1,

1<i<n
Vi >Vi41

desv=card{i : 1<1i<n,v;>vi1},

where v = vjvy... v, is a length n word. For example, INV(31425) = 3, MAJ(3314452) = 8, and
des(8416422) = 4.

For a word v and a letter a in v, other than the largest one in v, let us denote by next,(a)
the smallest letter in v larger than a. With this notation, we define

idesv = card {a : there are i and j,1 < i < j < n, with v; = next,(a) and v; = a}.

Clearly, when v is a permutation, idesv is simply desv™!, where v~! is the inverse of v. For
example, ides(144625) = 2, and the corresponding values for a are 2 and 5.



For a set of words S, two statistics ST and sT' have the same distribution (or are equidis-
tributed) on S if, for any k,

card{v € S:sTv =k} =card{v € S:sT'v =k},

and it is well-known that INv and MAJ have the same distribution on both, the set of permutations
and that of words.
A multi-statistic is simply a tuple of statistics.

2.2 Vincular patterns

Let 1 <r <gand1<m<n,and let v € [r]™ be a dense word. One says that v occurs as a
(classical) pattern in w = wywsy - - - wy, € [g]™ if there is a sequence 1 < i1 < i < -+ < iy <1
such that w; w;, - --w;,, is order-isomorphic to v. For example, 1231 occurs as a pattern in
6214562, and the three occurrences of it are 2452, 2462 and 2562.

Vincular patterns were introduced in the context of permutations in [1] and they were ex-
tensively studied since then (see Chapter 7 in [6] for a comprehensive description of results on
these patterns). Vincular patterns generalize classical patterns and they are defined as follows:

e Any pair of two adjacent letters may now be underlined, which means that the correspond-
ing letters in the permutation must be adjacent?. For example, the pattern 213 occurs in
the permutation 425163 four times, namely, as the subsequences 425, 416, 216 and 516.
Note that, the subsequences 426 and 213 are not occurrences of the pattern because their
last two letters are not adjacent in the permutation.

e If a pattern begins (resp., ends) with a hook® then its occurrence is required to begin
(resp., end) with the leftmost (resp., rightmost) letter in the permutation. For example,
there are two occurrences of the pattern [213 in the permutation 425163, which are the
subsequences 425 and 416.

The notion of a vincular pattern is naturally extended to words. For example, in the word
6214562, 645 is an occurrence of the pattern 312, and 262 is that of 121].

For a set of patterns {p1,p2,...} we denote by (p1 + p2 + ...) the statistic giving the total
number of occurrences of the patterns in a permutation. It follows from definitions that

MAJU = (132 + 121 + 231 + 221 + 321 + 21) v. (1)

A vincular pattern of the form wvz, with {u,v,2} = {1,2,3}, is determined by the relative
order of u, v and z. For example, 213 is determined by v < u < x, and 321 by z < v < u.

An extension of a vincular pattern uvz, {u,v,x} = {1,2, 3}, is the combination of the vincular
patterns obtained by replacing an order relation involving u (possibly both of them if there are
two) by its (their) weak counterpart. For example,

e the unique extension of 132 is (132 + 121); and

e the three extensions of 231 are:

2The original notation for vincular patterns uses dashes: the absence of a dash between two letters of a pattern
means that these letters are adjacent in the permutation.
3In the original notation the role of hooks was played by square brackets.



(231 + 121),
(231 + 221), and
(281 + 121+ 221).

An extension of a vincular pattern uvx is defined similarly, and an extension of (p1 +p2+...)

is the statistic obtained by extending some of p;’s.
With these notations, the definition of MAJ in (1) is an extension of MAJ defined on &,

MAJu = (132 + 231 + 321 + 21) v. (2)

The statistic STAT on permutations was introduced and shown to be Mahonian in [1], i.e.
distributed as MAJ; STAT is defined as:

STATT = (213 + 132 + 321 + 21) 7.
An extension of STAT to words, where repeated letters are allowed, is to extend:
e 213 as (213 + 212), and
o 132 as (132 + 121),
and thus to define the statistic STAT on words as:
STATv = (213 + 212 + 132+ 121 + 321 + 21) v. (3)

In what follows, we will use this definition which seems to be sporadic and not any better than
any other possible extension of STAT from permutations to words. However, a consequence of
Theorem 2 is that this extension has the same distribution as MAJ on words, and experimental
tests show that no other extension (in the sense specified above) does so.

3 The bijection p on G,

Now we present the involution on &,, introduced in [2] which maps a permutation with a given
value for MAJ to one with the same value for STAT, and show that among other statistics, it
preserves ides.

For three integers a < x < b, the complement of x with respect to the interval {a,a+1,...,b}
is simply the integer b — (z — a).

Foram=mmy...m, € ©,, let us define

o 7' € &, by 7} = m, and for i > 2, 7} is the complement of 7; with respect to
— {7['1 +1,m +2,...,TL}, if m; > w1, and
- {1,2,...,m — 1}, if m; < 75

o "€, by n{ =7 =m and 7] =7, _; .

Clearly, the map 7 — 7 is a bijection on &,,. In fact, p is an involution, that is p(p(7)) = 7.
See Figure 1 for an example.

Also, in [2] is proved that, for any 7 = mymy ... 7, € &, the 5-tuple (adj, des, F, MAJ, STAT) 7
is equal to (adj, des, F, STAT, MAJ) p(7), where



Figure 1: The permutations: (a) 7 = 452631, (b) 7’ = 462513, and (¢) 7" = p(7) = 431526.

o adjm =card{i : 1<i<n,7m =mj, + 1}, where 7’ = 70, and

e FT =Ty.

Below, we will use the following result.
Lemma 1. For any m = mma... 7y € S, idesm = ides p(m).

Proof. An integer a is an occurrence of an ides in 7 if there are i < j such that m; = a + 1 and
mj = a. Clearly, if 7y > 1, then m — 1 is an occurrence of an ides in both 7 and o = p().
And a # m — 1 is an occurrence of an ides in 7 if and only if so is the element in position
n—m"1t(a+1)+2in o, where 7~ (a + 1) is the position of the element a + 1 in 7. O

The following lemma, to be used later, follows directly from the proof of Lemma 1.

Lemma 2. The number of ides in the interval {1,2,...,m — 1} is the same for m and p(m).

4 Interval partitions

In this section, we define the notions of interval partitions of sets, permutations and words. We
also define the notion of a word expansion.

4.1 Interval partition of a set

An interval partition of a set {1,2,...,n} = [n] is a partition of this set, where each part is an
interval (i.e., a set consisting of successive integers), and the size of an interval partition is the
number of its parts. For example, {{1,2,3},{4,5},{6,7}} is an interval partition of size 3 of the
set [7].

For two interval partitions R and P of [n], we say that R is a refinement of P, denoted by
R C P, if each part of R is a weak subset of a part of P. In particular, P is a refinement of itself.
For example, R = {{1,2},{3},{4,5},{6},{7}} is a refinement of P = {{1,2,3},{4,5},{6,7}}.

Note that any refinement R of size k+ j of an interval partition P of size k& can be encoded by
an increasing sequence of j numbers. For the last example, R can be encoded by (2,4) because
when creating the refinement, we scanned P from left to right and have broken parts in the
second and forth possible places. For the same interval partition P = {{1,2,3},{4,5},{6,7}},
the encoding (1,3,4) would give the refinement R = {{1},{2,3},{4},{5},{6},{7}}. In general,
for a partition of size k of {1,2,...,n}, we have n — k possibilities to break a part and one
possibility not to break anything. Thus, breaking parts, which gives refinements, can be encoded
uniquely by a possibly empty subsequence of increasing integers in {1,2,...,n — k}.



Let I,, denote the set of all interval partitions of [n], and for P € I,,, we let
I.|P={Rel,: RC P}
Now, for two same size interval partitions P, S € I,,, we define a map
Yps : In|P — I,|S,

which sends a refinement R in I,,|P to the refinement 7" in I,|S such that R and 7" have the
same encodings. It is straightforward to see that 1p g is a bijection, and its inverse is g p.

Example 1. If R = {{1},{2,3},{4},{5,6}}, P = {{1},{2,3},{4,5,6}} and S = {{1,2},{3},{4,5,6}},
then T' = ¢P,S(R) = {{L 2}? {B}a {4}> {57 6}}

4.2 Interval partition of permutations

The interval partition of a permutation m € &,,, denoted ppart(w), is the interval partition of
[n] defined by: a and a 4 1 belong to the same part of ppart(r) if and only if a occurs to the
left of a + 1 in 7. Thus, the partition of a permutation is given by its maximal increasing
subpermutations of consecutive elements. For example, if ¢ = 14235 and © = 45123, then

ppart(m) = ppart(0) = {{1,2,3},{4,5}}.
Since an ides in 7 is a value a such that a + 1 occurs to the left of a in 7, it follows that the
size of ppart(7) is equal to ides7 + 1, and the next corollary is a consequence of Lemma 1.

Corollary 1. For any m € &,,, the interval partitions of m and that of p(m) have the same size.

4.3 Interval partition of words

The interval partition of a word v € [g|", denoted by wpart(v), is the interval partition

{p17p27 e ’pq}

of [n] where the cardinality of each part p; is equal to the number of occurrences of the symbol
i € [q] in v, and empty parts, if any, are omitted. Formally, p; is given by

pi={a+1,a+2,...,b},
with
a=[v|1+ ]2+ + |v[i1, and b= a+ |v];,
and the number of occurrences of each letter in v determines wpart(v). For example, if v = 12112
and w = 33111, then wpart(v) = wpart(w) = {{1,2,3},{4,5}}. In particular, when v is a
permutation in &, wpart(v) = {{1},{2},...,{n}}. See also Figure 2 for other examples.

4.4 Words expansion

For v € [¢]", the ezpansion of v, denoted exp(v), is the unique permutation = € &,, with m; < 7;
if and only if either v; < v;, or v; = v; and ¢ < j. In particular, if v is a permutation, then
exp(v) = v. For example, exp(12112) = 14235 and exp(22111) = 45123. We refer to Figure 2 for
some other examples. The following fact is easy to check.
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T = 452631

Figure 2: The permutation m = 452631 € G4 in Figure 1(a) is the expansion of each of u, v
and w. We have that wpart(u) = {{1},{2,3},{4,5,6}}, wpart(v) = {{1},{2, 3}, {4}, {5,6}} and
wpart(w) = {{1},{2}, {3},{4,5,6}}; also, ppart(m) = {{1},{2,3}, {4,5,6}}.

Fact 1. If v is a dense word in [¢]" and 7 = exp(v), then wpart(v) is a refinement of ppart().

Actually, exp is a function from [¢]" to &,,, which is surjective if ¢ > n, but not injective
(again, see Figure 2). However, one can see that the following fact holds.

Fact 2. The dense word v is uniquely determined from exp(v) and wpart(v).

If P is a refinement of ppart(w), we denote by flatp(m) the unique word v with exp(v) = 7 and
wpart(v) = P, and so exp(flatp(7)) = 7. Also, we will use the following fact which follows from
the definitions of MAJ and STAT given in relations (1) and (3).

Fact 3. For any word v, we have MAJv = MAJ (exp(v)) and STAT v = STAT (exp(v)).

5 Extension of p to words

In this section, we show that the statistic STAT on words defined by us in Section 2 is equidis-
tributed with the statistic MAJ on words, and thus our STAT is Mahonian. In fact, we show a
more general result on joint equidistribution of six statistics on words: see Theorem 1 for the
case of dense words, and Theorem 2 for the case of arbitrary words.

To this end, we extend the bijection p from permutations to words, which is roughly done by
the following three steps: For a word v, we apply the expansion operation (exp defined above) in
order to obtain a permutation 7, then apply the bijection p on permutations to obtain o = p(7),
and, finally, apply the inverse of the expansion operation to o. The resulting word w is the
image of v by the extension of p to words. The main difficulty consists in the third step, since
with no additional constraints, the expansion operation is not invertible. The main ingredient
to overcome this, is the bijection ¥ defined in Section 4.1, which works due to a consequence of
Lemma 1 expressed in Corollary 1.



5.1 Dense words

Here we will extend the bijection p : &,, — &,, to length n dense words over [¢]. For a dense
word v we construct a dense word w, and show that the transformation v — w is a bijection
which preserving certain properties of p.

Let v be a dense word in [q]", R = wpart(v), and 7w and o be the permutations defined by:

e 7w = exp(v) with P = ppart(r), and
e 0 = p(m) with S = ppart(o).

Now let w = flaty (o) with T'= ¢ p 5(R).
Clearly, when v is a permutation, then w = ¢ = p(w), and so the restriction of the mapping
v — w to permutations is equal to p, and by a slight abuse of notation we denote this mapping

by p.

Example 2. Let v = 342421 as in Figure 2, with R = wpart(v) = {{1},{2,3},{4},{5,6}}.
Then

o m=exp(v) = 452631 (see also Figure 1(a)) and P = ppart(7) = {{1},{2,3},{4,5,6}};
e 0 = p(m) = 431526 is the permutation in Figure 1(c), and S = ppart(o) = {{1,2},{3},{4,5,6}}.

With the previous values, T' = ¢ps(R) = {{1,2}, {3}, {4}, {5,6}} (see Example 1) and p(v) =
w = flaty(o) = 321414. 1t is routine to check that STATv = MAJw = 7, and STATw = MAJv = 11.
Notice that, w is not a rearrangement of v.

The following theorem is a words counterpart of Theorem 2.1 in [2] endowed with ides
statistic. In that theorem, adj is extended to dense words as follows: for a word v, adjv is the
number of positions i, 1 < ¢ < n, in the word v" = v0 such that v; = vj,; + 1, and i is the
leftmost position where the letter v} occurs in v/, while 7 + 1 is the rightmost position where the
letter vj ; occurs in v'.

Theorem 1. The function p is a bijection from length n dense words over [q] into itself, and
the 6-tuple (adj, des, ides, F, MAJ, STAT) v is equal to (adj,des,ides, F, STAT,MAJ) p(v), for any dense
word v € [g]".

Proof. First, since p : 6, — &, is an involution, and the inverse of ¥pg : I|P — I,|S is
Ysp : IS — I,|P, it follows that p(p(v)) = v for any dense words in [g|", and so p is an
involution (and thus a bijection).

Let now v be a dense word in [¢]", w = p(v), 7 = exp(v) and o = p(=), as in the definition
of the transformation p on words. It follows that o = exp(w), and by Fact 3, that sTATv =
STAT T = MAJo = MAJw. Also, since p is an involution, we have MAJv = STAT w.

In the word v, v; is a descent if and only if 7; is a descent in 7, and analogously for w and
0. Since p preserves the number of descents on permutations, so it does on words.

Similarly, in the word v, v; is an occurrence of an ides if and only if m; is an occurrence of
an ides in 7, and analogously for w and o¢. By Lemma 1, p preserves the number of ides’s on
permutations, and thus so does on words.

The proof is similar for adjv = adjp(v).

By the definition of ppart and the construction of p, ppart w and ppart o are both refinements
of {{1,2,...,m — 1},{m,...,n}}. In addition, by Lemma 2, the number of ‘sub-parts’ of



{1,2,...,m — 1} of ppartm and of pparto are the same. Since wpartv is a refinement of ppart
having the same encoding as the refinement wpartw of pparto, it follows that the number of
‘sub-parts’ of {1,2,...,m — 1} of wpartv and of wpartw are the same, and so v; = wy, that is
Fv=Fuw. O

5.2 General words

For a word v = vjva...v, € [g|", we let red(v) denote the word obtained from v in which the
ith smallest letter in v is substituted by 7. For example, red(162414) = 142313.

Clearly, the function red produces a dense word and it is a bijection between the set of words
over the alphabet from which v is constructed and the set of dense words of the same length as
that of v. Thus, to find the pre-image of red(v), we need to know the alphabet from which v is
constructed.

Since red and p are bijections and red preserves the order on [g], we have the following
generalization of Theorem 1, where by a slight abuse of notation, we denote by p the function
red™! o pored, where red™! uses the alphabet of the input word. Also, in the following theorem,
we slightly abuse notation to denote by adj the composition adj o red. That is, to calculate the
value of statistic adj on a given word v € [g]", one should first turn v into the dense word red(v),
and then calculate the value of adj using the definition state right before Theorem 1.

Theorem 2. The function p is a bijection from [q]™ into itself, and the 6-tuple
(adj, des, ides, F, MAJ, STAT) v

is the same as (adj, des, ides, F, STAT, MAJ) p(v), for any word v € [g]|".

6 Final remarks

It is worth mentioning that our bijection p does not preserve the number of occurrences of letters,
while our computer experiments made us believe that such a bijection exists, and we invite the
reader to find it. Also, it would be of interest to explore the property of being a Mahonian
statistic on words for other Mahonian statistics on permutations defined in [1].

Finally, a C implementations of the bijection p is on the web site of the second author [9].
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