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Abstract: 11 

Earthquake early warning systems (EEWSs) that rapidly trigger risk-reduction actions after a 12 

potentially-damaging earthquake is detected are an attractive tool to reduce seismic losses. One 13 

brake on their implementation in practice is the difficulty in setting the threshold required to trigger 14 

pre-defined actions: set the level too high and the action is not triggered before potentially-15 

damaging shaking occurs and set the level too low and the action is triggered too readily. Balancing 16 

these conflicting requirements of an EEWS requires a consideration of the preferences of its 17 

potential end users. In this article a framework to define these preferences, as part of a participatory 18 

decision making procedure, is presented. An aspect of this framework is illustrated for a hypothetical 19 

toll bridge in a seismically-active region, where the bridge owners wish to balance the risk to people 20 

crossing the bridge with the loss of toll revenue and additional travel costs in case of bridge closure. 21 

Multi-Attribute Utility Theory (MAUT) is used to constrain the trigger threshold for four owners with 22 

different preferences. We find that MAUT is an appealing and transparent way of aiding the 23 

potentially controversial decision of what level of risk to accept in EEW. 24 

Keywords: earthquake early warning (EEW), decision making, end-user preferences, bridges, 25 

thresholds, Multi-Attribute Utility Theory (MAUT) 26 
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1. Introduction 27 

In the past decade there has been increasing interest in earthquake early warning systems (EEWSs) 28 

as a tool to reduce seismic losses. An EEWS seeks to provide a warning of potentially-damaging 29 

shaking at a location (or locations) of interest at least a few seconds before this shaking arrives. For 30 

example, an EEWS is installed as part of the Shinkansen (the Japanese high-speed railway network) to 31 

bring trains to a controlled stop if seismic ground motions over a certain threshold are predicted. 32 

Such systems rely on the fact that damaging seismic waves (generally the S phase) travel at a speed 33 

that is relatively slow with respect to electronic signals that carry the warning. Consequently for 34 

locations beyond thĞ ͚ďůŝŶĚ ǌŽŶĞ͛ ĐůŽƐĞ ƚŽ ƚŚĞ ĞƉŝĐĞŶƚƌĞ ƚŚĞƌĞ ŝƐ ƐƵĨĨŝĐŝĞŶƚ ƚŝŵĞ ƚŽ ĚĞƚĞĐƚ ĂŶĚ 35 

characterise an earthquake and then estimate the ground motions at sites of interest (e.g. Allen, 36 

2012). A number of EEWS have been installed for testing around the world based on various software 37 

packages, e.g. ElarmS (Wurman et al., 2007), PRESTo (Satriano et al., 2011), UrEDAS (Nakamura and 38 

Saita, 2007) and Virtual Seismologist (Cua and Heaton, 2007). The development of: more reliable and 39 

faster procedures for detecting, locating and characterising earthquakes, and better methods to 40 

estimate expected ground motions at a site, continue apace. The question of how sure one needs to 41 

be before triggering a risk-reduction action, however, is less commonly considered. This is because 42 

end-user needs are often neglected during the conception and installation of EEWSs (Auclair et al., 43 

2015). This is the focus of this article, which provides a framework to account for the preferences of 44 

different people that could be affected by the decision of whether or not to trigger an action. After 45 

developing the mathematical background of the proposed approach, the procedure is applied to a 46 

hypothetical situation of a highway toll bridge in a seismically-active region. 47 

In currently-installed EEWSs in Mexico and Japan quite a low threshold is used, thereby passing all 48 

information on potential shaking at a site to the end user to decide how to react. This is appropriate 49 

when a system covers large area with many different types of end users, each with their own needs. 50 

For highly-seismic regions with a large set of observations it could be possible to calibrate the 51 

threshold level by trial-and-error. For example, the UrEDAS system used to stop Shinkansen trains 52 

was calibrated using observations of damage to railway embankments and bridges in previous 53 

earthquakes. Such an empirical approach is, however, not possible for regions of lower seismic 54 

hazard where information on how the system performs in practice is often lacking. 55 

There are various studies concerning the fixing of the appropriate threshold for EEWS using different 56 

mathematical approaches. For example, Zollo et al. (2010) propose to fix several thresholds within a 57 

two-parameter space (comprised of the average period of the P-wave signal and the peak 58 

displacement) but their approach is based on the hazard rather than by considering the potential 59 
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losses connected with a potential risk-reduction action. On the other hand, Wang et al. (2012) 60 

develop an approach that does consider losses but the loss model is simple and user preferences are 61 

not taken into account when setting the threshold. Iervolino et al. (2007) use a more sophisticated 62 

loss model but again the preferences of the user are not considered. The recent proposal by Wu et 63 

al. (2013) for an ePAD system allows consideration of whether a user is risk averse (i.e. is biased 64 

towards taking fewer risks even if this means missing out on some rewards) but its application is only 65 

shown assuming risk neutrality. User preference is incorporated through a cost model determined by 66 

the user, which includes a model for the lead time as well. Constructing a cost model requires 67 

translating often vague preferences into actual numbers, which is not easy. In addition, because it is 68 

based on cost-benefit analysis (CBA) it requires costing everything, including the monetary value of a 69 

life saved. In addition, all these previous studies consider that the EEWS has already been installed.  70 

This article differs from previous works in this domain by: using an approach to define the triggering 71 

threshold that allows preferences of the user to be taken into account (e.g. does the user accept a 72 

very low level of risk even if this means additional cost?), employing a technique that does not 73 

require assigning a monetary value to every aspect, and by considering whether the EEWS should be 74 

ŝŶƐƚĂůůĞĚ ďĂƐĞĚ ŽŶ ƚŚĞ ƵƐĞƌ͛Ɛ ƉƌĞĨerences. 75 

2. Participatory decision making in EEW 76 

Because of the short interval between the EEWS detecting a possibly-damaging earthquake in the 77 

vicinity and the arrival of the shaking only automatic actions (e.g. switching off of gas valves or 78 

stopping a train) can realistically be triggered by EEWSs. Therefore, before defining the criteria for 79 

making the automatic decision of whether to trigger, certain actions have to be decided on 80 

beforehand. In view of this, decision making in the pre-earthquake period for the calibration of EEWS 81 

is the focus of this article.  82 

Four distinctive roles can be defined within the context of decision making: the decision maker (or 83 

end user), who is the person or institution in charge of making the final decision on risk reduction 84 

(e.g. directors of a specific building); the stakeholders, who are the people impacted by the decision 85 

(e.g. workers in a specific building); the analysts, who provide guidance to the decision makers; and 86 

experts, who may help with specific aspects of the procedure. While the final decision is made by the 87 

decision maker only, it must gain acceptance from all stakeholders. Consequently we recommend 88 

that all stakeholders are involved within a participatory decision-making process, at least as suppliers 89 

of information and opinions. 90 



4 

 

The benefits and potential difficulties in using a participatory approach for decision making are 91 

discussed by Douglas et al. (2012) using various examples, generally from fields other than 92 

earthquake risk management. These benefits include: an improvement in the quality of the decision 93 

made because inputs from many parties are used; enhanced legitimacy of the decision because the 94 

views of all interested groups are considered; and, through the participatory process, the public 95 

becomes more aware of the problem and hence the risk is partially mitigated simply by greater 96 

awareness of the issues. The principal difficulties in this approach are its higher cost, additional 97 

complexity and the longer time required over a unilateral procedure. As noted by Douglas et al. 98 

(2012), however, in a democratic society some sort of participatory process is obligatory. Douglas et 99 

al. (2012) give examples of the success of participatory decision making in contexts ranging from the 100 

issuance of flood warnings to transport planning and the approval of new medicines. 101 

2.1. Proposed framework 102 

The overall framework for participatory decision making that we propose is based on and freely 103 

adapted from Participatory Integrated Planning (PIP) summarized by Castelletti and Soncini-Sessa 104 

(2006). This procedure was first developed for integrated water-basin management and is here 105 

adapted for EEW. Even though the context and the objectives of water-basin management and EEW 106 

are sometimes very different, we feel that the framework of the PIP is sufficiently broad so that it can 107 

encompass all aspects of EEWS (and earthquake risk management, in general). 108 

Figure 1 represents the various steps included in the decision-making procedure proposed for EEWSs. 109 

The goal of this procedure is to make the decisional framework clearer. Each step should be seen as a 110 

milestone where the analysts and the stakeholders need to communicate in both directions. This 111 

procedure is iterative, meaning that it is sometimes necessary to go back a few steps and reach a 112 

new agreement. To implement the full procedure is time-consuming and potentially costly but 113 

sometimes necessary if the decisions are to be shared. The apparent complexity of the procedure 114 

can always be adapted to the situation (and to the money and time available): in the case of a single 115 

decision maker and a single criterion, it can be rapidly completed. Again the goal here is to make 116 

visible all the decisions that are taken but very often in an implicit manner. 117 

Because of length constraints not all aspects of the proposed procedure are illustrated here to the 118 

same depth. In particular, we present certain parts of Multi-Attribute Utility Theory (MAUT), which is 119 

used as a basis of the main steps, in detail but we do not consider the compromise and reassessment 120 

of the alternatives. These aspects are covered in more depth in the project deliverable on which this 121 

article is based (Le Guenan et al., 2014). 122 
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3. Multi-attribute utility theory 123 

To structure the main steps of the proposed framework, we have chosen to use MAUT, although 124 

more familiar approaches such as CBA could be envisioned. As discussed below, MAUT has various 125 

advantages over CBA, although care has to be taken when it is implemented as its inputs require 126 

judgement and calibration. The foundations of MAUT were first developed by von Neumann and 127 

Morgenstern (1953). Here we use the terminology of Keeney and Raiffa (1993), to which the 128 

interested reader is referred for more details on the theory and further references. In MAUT all 129 

criteria of relevance to a decision are assessed using a utility function, which is normalised between 130 

zero (the least preferred value) and unity (the most preferred). These utility functions are 131 

constructed through elicitation of the decision makers, thereby enabling their preferences to be 132 

included. A global utility function is constructed by aggregating individual utility functions for each 133 

attribute.  134 

MAUT is used here because of the following reasons. Firstly, it provides a structure for the main steps 135 

of the general approach presented in Figure 1, namely: criteria and indicators definition, assessment 136 

of alternatives and evaluation. Secondly, it allows several criteria to be brought into the decision-137 

making process, thereby identifying trade-offs and comparing various objectives in a consistent 138 

manner. Thirdly, it explicitly accounts for uncertainties, which are predominant within EEW. Finally, it 139 

can take into account risk aversion (non-linear preferences). Specifically with respect to CBA, MAUT 140 

has two principal advantages. Firstly, it can account for any kind of indicator and not just monetary 141 

ǀĂůƵĞƐ͘ “ĞĐŽŶĚůǇ͕ ƚŚĞ ƉƌŽƉŽƐĞĚ ĐƌŝƚĞƌŝĂ ĂƌĞ ďĂƐĞĚ ŽŶ ƚŚĞ ĚĞĐŝƐŝŽŶ ŵĂŬĞƌ͛Ɛ ƉƌĞĨĞƌĞŶĐĞƐ͕ ǁŚĞƌĞĂƐ ŝŶ Ă 142 

rigorous CBA all costs and benefits should be included, even those that are not of concern to the 143 

decision maker. This can lead to difficulties within the context of a participatory approach since the 144 

entire society may have to be considered. 145 

Previous uses of MAUT within a risk management context are few. Kailiponi (2010) presents a use of 146 

MAUT for the ͚Evacuation Responsiveness by Government Organizations͛ project to help emergency 147 

managers faced with critical evacuation decisions (implying conflicting objectives as well as high 148 

levels of uncertainty). His illustrative model identifies risk thresholds at which evacuation actions 149 

should be taken by emergency managers in a storm surge scenario, with forecasts at 12 and 9-hour 150 

intervals. He defines four levels of actions: no action, advice, mild evacuation and urgent evacuation, 151 

and he uses three attributes: cost of life, economic cost and organizational cost. An additive utility 152 

function is used. 153 

4. EEWS for a hypothetical bridge 154 
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To test the feasibility of the proposed framework and MAUT, we consider a hypothetical case study 155 

of a toll bridge in a seismically-active region (ƚŚŝƐ ĐŽƌƌĞƐƉŽŶĚƐ ƚŽ ƚŚĞ ͚Context and objectives͛ ƐƚĞƉ 156 

indicated in Figure 1). The action that is considered here is to use an EEWS based on an existing 157 

regional network of sensors that would trigger a barrier at the entrance of the bridge, effectively 158 

stopping vehicles entering the bridge when strong shaking is anticipated. A decision needs to be 159 

made to ƐĞƚ ƵƉ ƚŚĞ ƐǇƐƚĞŵ ŝŶ ƚŚĞ ͞ďĞƐƚ͟ ǁĂǇ ƉŽƐƐŝďůĞ͕ ŝ͘Ğ͘ ĂĐĐŽƌĚŝŶŐ ƚŽ ƚŚĞ ĚĞĐŝƐŝŽŶ ŵĂŬĞƌ͛Ɛ 160 

preferences. The system can be tuned with a Critical Probability PC that the bridge is damaged to a 161 

level equal to or greater than Damage State (DS) 3 (out of five, where DS5 is complete damage) on 162 

the damage scale specified for bridges by FEMA (2003), i.e.: 163 

          ǣ ܲሺܵܦ ൒ ሻ͵ܵܦ ൐ ஼ܲ  (1) 

For this case study, the goal is to find the value of PC that will maximise the dĞĐŝƐŝŽŶ ŵĂŬĞƌ͛Ɛ ƵƚŝůŝƚǇ͘ 164 

Amongst all the possible values for PC, a probability of 1 means that the barrier is never lowered. 165 

Hence, this value represents the so-ĐĂůůĞĚ ͞ĂůƚĞƌŶĂƚŝǀĞ Ϭ͟ Žƌ ͞ďƵƐŝŶĞƐƐ ĂƐ ƵƐƵĂů͗͟ ƚŚĞ ĨŝŶĂů ĚĞĐŝƐŝŽŶ 166 

implied by this potential result is not to install or use the EEWS for the bridge (this is the 167 

͚Alternatives͛ ƐƚĞƉ ŝŶ Figure 1).  168 

To assess ƚŚĞ ͚ďĂƌƌŝĞƌ-ůŽǁĞƌŝŶŐ͛ action and to optimize its settings, the criteria or objectives of the 169 

EEWS must be defined. The first criterion is to reduce the seismic risk Žƌ ͞MĂǆŝŵŝǌĞ the safety of 170 

ƉĞƌƐŽŶƐ͟. This risk arises when there are vehicles on the bridge and there is a chance of the bridge 171 

being damaged by the earthquake. Consequently, a quantitative indicator corresponding to this 172 

criterion ŝƐ ƚŚĞ ŶƵŵďĞƌ ŽĨ ͞ǀĞŚŝĐůĞƐ Ăƚ ƌŝƐŬ͟ ĚĞĨŝŶĞĚ ĂƐ ƚŚĞ ŶƵŵďĞƌ ŽĨ ǀĞŚŝĐůĞƐ ŽŶ ƚŚĞ ďƌŝĚŐĞ ǁŚŝůĞ ƚŚĞ 173 

bridge is in a damage state higher or equal to DS3. This, however, cannot be the only objective or the 174 

consequence would be to always close the bridge as then the defined indicator would be certain to 175 

stay at null. Other objectives, linked to the service offered by the bridge must be added, i.e.: 176 

͞MĂǆŝŵŝǌĞ ƉƵďůŝĐ ƐĂƚŝƐĨĂĐƚŝŽŶ͟ ĂŶĚ ͞MŝŶŝŵŝǌĞ ƚŚĞ ĞĐŽŶŽŵŝĐ ĐŽƐƚ ĚƵĞ ƚŽ ĨĂůƐĞ ĂůĂƌŵƐ͟. Both of these 177 

criteria were represented by the same indicator: the number of false alerts in a five-year interval (see 178 

following discussion for the rationale of this indicator). For our case study, a false alert means that 179 

the action was triggered but DS3 was not reached. A fourth criterion is defined corresponding to the 180 

desire to keep the cost of the EEWS to a minimum, i.e.͗ ͞Lŝŵŝƚ ƚŚĞ ƌŝƐŬ ŵĂŶĂŐĞŵĞŶƚ ĐŽƐƚ͟. This 181 

criterion is also needed as the efficiency of the system could be improved with infinite resources 182 

(allowing installation of an infinite amount of sensors, for example). The related quantitative 183 

indicator is, hence, ƚŚĞ ͞AŶŶƵĂů ĐŽƐƚ ŽĨ ‘ŝƐŬ MĂŶĂŐĞŵĞŶƚ͟ ĂŶĚ ĐĂŶ ďĞ ĞǆƉƌĞƐƐĞĚ ĂƐ Ă ƉĞƌĐĞŶƚĂŐĞ ŽĨ 184 

the total budget for operating the bridge. A summary of the criteria and indicators for this case study 185 

are shown in Figure 2. Note that one indicator can represent several criteria or proxy-criteria. The 186 
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annual cost of risk management aůƐŽ ŝŶĚŝƌĞĐƚůǇ ĐŽƌƌĞƐƉŽŶĚƐ ƚŽ ͞ŵĂǆŝŵŝǌĞ ƉƵďůŝĐ ƐĂƚŝƐĨĂĐƚŝŽŶ͟ 187 

because if the cost is kept low then toll fees or taxes also remain low thereby satisfying the public. To 188 

͞ůŝŵŝƚ ƚŚĞ ŶƵŵďĞƌ ŽĨ ŵŝƐƐĞĚ ĂůĂƌŵƐ͟ ŵĞĂŶƐ ƚŚĂƚ ƚŚĞ ƐǇƐƚĞŵ ƐŚŽƵůĚ ǁŽƌŬ ĂƐ ƉůĂŶŶĞĚ ĂŶĚ ŚĞŶĐe 189 

ƐŚŽƵůĚ ͞ŵŝŶŝŵŝǌĞ ƚŚĞ ŶƵŵďĞƌ ŽĨ ĞŶĚĂŶŐĞƌĞĚ ǀĞŚŝĐůĞƐ͘͟ TŚĞ VĂ‘ ŝŶĚŝĐĂƚŽƌ ĂůƐŽ ƌĞƉƌĞƐĞŶƚƐ ƚŚĞ ƉƌŽǆǇ-190 

ĐƌŝƚĞƌŝĂ ͞ůŝŵŝƚ ƚŚĞ ŶƵŵďĞƌ ŽĨ ŵŝƐƐĞĚ ĂůĂƌŵƐ͘͟ 191 

It should be made clear that choosing appropriate criteria and associated indicators is critical to 192 

obtaining useful results. They need to be informative, i.e. they capture aspects that are useful to the 193 

decision maker, and exhaustive, i.e. all the criteria together should cover all the principal aspects that 194 

the stakeholders and the decision maker are interested in. Choosing different criteria and indicators 195 

could lead to different decisions being returned by MAUT as the most preferable. Here we have 196 

chosen indicators that appear appropriate for our case study but if this procedure was to be 197 

implemented for a real bridge then further effort should be spent on the choice of the criteria and 198 

indicators. The choice of criteria in particular should be made in a participatory way and remain 199 

transparent throughout the application of the method. The analyst can then help to choose an 200 

optimal set of indicators that can represent all the desired criteria. Keeney and Raiffa (1993) 201 

recommend that the set of indicators should be complete, operational, decomposable, non-202 

redundant and minimal. They also acknowledge that there can be several sets of indicators fitting the 203 

same problem. 204 

4.1. Bayesian network for loss assessment 205 

The next step is to build a model able to compute each indicator as a function of PC and of the 206 

various hypotheses made. The model should be able to simulate for a pre-defined temporal horizon a 207 

series of events and their corresponding consequences on the bridge, as well as the predictions 208 

made by the EEWS. There is a ĚŝĨĨĞƌĞŶĐĞ ďĞƚǁĞĞŶ ƚŚĞ ƐŝŵƵůĂƚĞĚ ƌĞƐƵůƚ ;ƌĞƉƌŽĚƵĐƚŝŽŶ ŽĨ ͞ƌĞĂů͟ 209 

events) and the predictions that form the basis for computing the losses (here, vehicles at risk) and 210 

the number of false alarms. As most relationships are probabilistic, we use a Bayesian network, 211 

which provides a powerful framework for performing inferences, by using the Markov Chain Monte 212 

Carlo (MCMC) technique (see e.g. Neapolitan, 2004, for details on Bayesian networks): this 213 

ĐŽƌƌĞƐƉŽŶĚƐ ƚŽ ƚŚĞ ƐƚĞƉ ͚Models͛ ŝŶ Figure 1. The complete Bayesian network developed for the case 214 

study is shown in Figure 3. 215 

We use a fixed temporal horizon of 50 years to compute the indicators but we actually computed a 216 

large number of possible horizons in order to account for rare events: the performance of the EEWS 217 

and hence the utility of the decisions are highly dependent on the events that the system will face. 218 
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For example, if no major events occur once the system is installed then all the operating costs and 219 

the possible false alarms are not justified. 220 

In Figure 3, ƚŚĞ ƚŽƉ ŶŽĚĞ ŝƐ ͞M͕ ‘͟, where M corresponds to the earthquake moment magnitude and 221 

R the source-to-site distance (here distance to the surface projection of the rupture). These are 222 

actually two different variables, but they represent the same event. As this node is the parent node 223 

of the entire graph, it is only characterized by its prior probability: P(M, R). In this study, for each 224 

event, its location is drawn randomly from the seismogenic zone (Figure 4), which is assumed to be 225 

of rectangular shape with dimensions 500 km x 50 km and with depth 20 km. The bridge is placed in 226 

the middle of one of the longest sides. R is the distance between the bridge and the location of the 227 

event and so P(R) can be easily estimated with a large number of drawn random locations. For P(M), 228 

the basic appoarch of probabilistic seismic hazard assessment studies (PSHA) is followed, i.e. it is 229 

assumed that the seismicity inside a source zone is a time-independent process characterized by a 230 

Poisson distribution. Thus, seismicity is defined using the Gutenberg-Richter relation: log N=a-b M, 231 

truncated at MMIN and MMAX. N is the average number of events where the magnitude is greater or 232 

equal to M. We assume the following parameters: a = 3.3; b = 0.74; MMIN = 3; and MMAX = 8, which 233 

roughly correspond to the situation near Istanbul (SHARE, Giardini et al., 2013). For each event, the 234 

IŶƚĞŶƐŝƚǇ MĞĂƐƵƌĞ ͞IM͟ ŶŽĚĞ ŝƐ ĐŽŵƉƵƚĞĚ ƵƐŝŶŐ Ă Őƌound motion prediction equation: P(IM|M,R), for 235 

which we used the model of Akkar and Bommer (2010). 236 

TŚĞ DĂŵĂŐĞ “ƚĂƚĞ ͞D“͟ ĐĂŶ ƚŚĞŶ ďĞ ĐŽŵƉƵƚĞĚ ƵƐŝŶŐ Ă fragility curve for the bridge: P(DS|IM). This 237 

curve is presented in Figure 5 (Taillefer et al., 2014).  238 

This path, P(DS|IM) × P(IM|M,R) × P(M,R), simulates the effect of future earthquakes on the bridge. 239 

The other part of the Bayesian network simulates how the EEWS reacts to the earthquakes.  240 

The EEWS makes a prediction of M and R: ͞ܯ෩ǡ ෨ܴ͘͟ FŽƌ ƐĂŬĞ ŽĨ simplicity, we assume that the error in 241 

location is negligible (Iervolino et al., 2009) and that the probability of the predicted magnitude 242 

follows a normal distribution with parameters µ=M and ʍ=0.5 (Allen and Kanamori, 2003), i.e.: 243 

 ܲ൫ܯ෩หܯ൯ ൌ ͳߪξʹߨ ݁ିሺெ෩ିெሻమଶఙమ  (2) 

 ෨ܴ ൌ ܴ (3) 

TŚĞ ŶŽĚĞ ͞A͟ ƌĞƉƌĞƐĞŶƚƐ ƚŚĞ ĂĐƚŝŽŶ ƚĂŬĞŶ ďǇ ƚŚĞ ƐǇƐƚĞŵ͘ It is a discrete variable: for A= 1, the action 244 

is performed; else A = 0 and the action is not performed. The action is defined using equation (1), but 245 

in the system, no real-time measurement of DS is made: only ܯ෩  and ෨ܴ  are estimated. Thus, we need 246 

to have a relationship in the form: ܲ൫ܣหܯ෩ǡ ෨ܴ൯. In order to determine this conditional probability, we 247 
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first use a subset of the Bayesian network (see Figure 6), allowing us to compute ܲ൫ܵܦหܯ෩ǡ ෨ܴ൯. Using 248 

the properties of Bayesian networks (see e.g. Neapolitan, 2004 for more details), we can use the law 249 

of total probability and the Markov condition in order to obtain: 250 

 ܲ൫ܵܦหܯ෩ǡ ෨ܴ൯ ൌ  න ܲሺܵܦȁܯܫሻ ൈ ܲሺܯܫȁܯ෩ǡ ෨ܴሻ݀ܯܫூெ  (4) 

 ܲ൫ܵܦหܯ෩ǡ ෨ܴ൯ ൌ  ඵ ሺܵܦȁܯܫሻ ൈ ܲሺܯܫȁܯǡ ܴሻ ൈ ܲሺܯǡ ܴȁܯ෩ǡ ෨ܴሻூெǡெǡோ ǡܯ݀ܯܫ݀ ܴ (5) 

Applying the Bayes theorem: 251 

 ܲ൫ܯǡ ܴหܯ෩ǡ ෨ܴ൯ ൌ ܲሺܯ෩ǡ ෨ܴȁܯǡ ܴሻ ൈ ܲሺܯǡ ܴሻ׬ ܲሺܯ෩ǡ ෨ܴȁܯǡ ܴሻ ൈ ܲሺܯǡ ܴሻெǡோ  (6) 

 252 

The integrals in the previous equations are then computed using the MCMC algorithm allowing 253 

computation of ܲ൫ܵܦหܯ෩ǡ ෨ܴ൯. This conditional probability is represented in Figure 7. So given ܯ෩ǡ ෨ܴ 254 

and PC, A is easily determined by using the graph in Figure 7: if the point corresponding to the 255 

estimated parameters lies below the curve corresponding to the fixed PC, then A = 1, otherwise, A = 256 

0. 257 

The ůĞĂĚ ƚŝŵĞ ͞ǻT͟ ŝƐ ŵŽĚĞůůĞĚ ďǇ Ă ĚĞƚĞƌŵŝŶŝƐƚŝĐ ƌĞůĂƚŝŽŶ ĚĞƉĞŶĚŝŶŐ ŽŶ ƚŚĞ ĚŝƐƚĂŶĐĞ ‘͕ ƚŚĞ “-wave 258 

speed VS and the latent period TW: 259 

 οܶ ൌ  ܴܸௌ െ ௪ܶ (7) 

TW corresponds to the time necessary for the system to estimate the earthquake parameters. We 260 

assumed: TW = 4 s and VS = 4 km/s. 261 

The loss module in Figure 3 is the part of the Bayesian network containing the indicators that were 262 

chosen for this study. The indicator related to the cost of risk management, CRM, is easily computed: 263 

either the system is installed, and the cost is C, or it is not installed, and the cost is 0: 264 

 ൜ܯܴܥ ൌ  Ͳ    ஼ܲ ൌ ͳܯܴܥ ൌ ஼ܲ    ܥ  ൏ ͳ (8) 

In this study, the cost C was arbitrarily chosen to be 500 ϬϬϬΦ ƉĞƌ ǇĞĂƌ͘ The two other indicators 265 

depend on the performance of the system. For each event, there are four possible outcomes, which 266 

are summarised in Table 1. 267 
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False alarms correspond to Type I errors, when the barrier is lowered while the event was not strong 268 

enough to create significant damage on the bridge. The indicator related to false alarms FA, is thus 269 

computed with the following relationship after each event (recalling that we are considering a period 270 

of 50 years and we are interested in the number of false alarms in five-year intervals): 271 

 

                 ݅ǣ ൜݂ܽ௜  ൌ ͳ    ܣ ൌ  ͳ     ܵܦ ൏ ௜݂ܽ͵ܵܦ ൌ Ͳ                                        ܣܨ ൌ෍݂ܽ௜ȀͳͲே
௜ୀଵ  

(9) 

With N being the total number of earthquakes that happened during the chosen time horizon. 272 

For the computation of the indicator VaR (see Taillefer et al., 2014), the number of vehicles at risk, 273 

these new parameters are introduced: 274 

- L: length of the bridge (km); 275 

- Q: average flow of vehicles on the bridge (number/hour); and 276 

- V: average speed of the vehicles on the bridge (km/h). 277 

Following the initial definition of VaR, when DS3 is not reached, there are no vehicles at risk. If there 278 

is a missed alarm (False Negative case), then all the vehicles on the bridge are at risk. If there is a 279 

True Positive, then this number of vehicles can leave the bridge during ǻT: 280 

 

                 ݅ǣ ۔ۖەۖ
௜ݎܽݒۓ ൌ Ͳǡ ܵܦ    ൏ ௜ݎܽݒ                                           ͵ܵܦ ൌ ܳ ൈ ܸܮ ǡ ܵܦ    ൒ ൌ ܣ     ͵  Ͳ               ݎܽݒ௜ ൌ ܳ ൈ ܸܮ െ ܳ ൈ οܶǡ ܵܦ    ൒ ܣ     ͵ ൌ ͳ  

ܸܴܽ ൌ෍ݎܽݒ௜ே
௜ୀଵ  

(10) 

For this case study, we assumed: L = 1 km; Q = 4167 vehicles/h (i.e. 100 000 vehicles/day); and 281 

V = 70 km/h. 282 

The decision-making model is thus completed. With the Bayesian network, each indicator can be 283 

computed for each alternative (i.e. a given value of PC). 284 

4.2. Application of MAUT 285 

Once the indicators are computed, the MAUT is used to combine them in a unique quantitative 286 

indicator, called the utility ݑ. A global utility function or score function is thus defined as: 287 ݑ௚௟௢௕௔௟  ൌ  ݂ሺܸܴܽǡ ǡܣܨ  ሻܯܴܥ
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To assess the applicability of the method to our case study, we considered four hypothetical decision 288 

makers (DMs) leading to four different utility functions. Following the process detailed by Keeney 289 

and Raiffa (1993), each decision maker was asked to answer a guided questionnaire that was 290 

constructed to elicit preferences and to weight each indicator in comparison to the others. The main 291 

result is the utility function but the process is designed in a way that the main hypotheses of the 292 

theory are checked, as well as the coherency of the answers of the DMs. As an example, a typical 293 

ƋƵĞƐƚŝŽŶ ƚŚĂƚ ĐĂŶ ďĞ ĂƐŬĞĚ ŝŶ ƚŚĞ ŐƵŝĚĞĚ ƋƵĞƐƚŝŽŶŶĂŝƌĞ ǁŽƵůĚ ďĞ͗ ͞WŽƵůĚ ǇŽƵ ƌĂƚŚĞƌ ƉůĂǇ Ă ůŽƚƚĞƌǇ 294 

ǁŚĞƌĞ ǇŽƵ ŚĂǀĞ Ă ϱϬй ĐŚĂŶĐĞ ŽĨ ǁŝŶŶŝŶŐ ϭϬϬΦ Žƌ ŶŽƚŚŝŶŐ͕ Žƌ ǁŽƵůĚ ǇŽƵ ƌĂƚŚĞƌ ŚĂǀĞ ϱϬΦ ;ƐƵƌĞ 295 

ǀĂůƵĞͿ͍͟ 296 

4.3. Description of the process 297 

The elicitation process is described here for one DM. For the others, only the results are shown. Le 298 

Guenan et al. (2014) present details for the other DMs. 299 

The first step in the process is to determine the ranges of possible values for each of the three 300 

indicators that are used (Table 2). Preliminary simulations of the Bayesian network helped assess 301 

these ranges. 302 

The next step, following Keeney and Raiffa (1993), is to check the relevant independence 303 

assumptions between the indicators. These assumptions allow us to use simplified aggregated form 304 

of the global utility function. Otherwise, the form can become too complicated and would require 305 

simplification. In order to test the hypothesis, one of the indicators is fixed to a certain value, and the 306 

DM is asked for preferences between lotteries and fixed values regarding another indicator. Then the 307 

value of the first indicator is changed and the DM is asked the same questions regarding the other 308 

indicator. If the answers are the same, the second indicator is said to be utility independent from the 309 

first indicator. The follow-up step is to confirm the form of the utility function as multiplicative or 310 

additive. To do so, the DM is asked to choose between two lotteries: <(VaR = 20; FA = 0); (VaR = 120; 311 

FA = 5)>
3
 or <(VaR = 20; FA = 5); (VaR = 120; FA = 0)>. The first lottery corresponds to the additive 312 

form, while the second corresponds to the multiplicative form. The DM chose the second lottery on 313 

the basis that the first lottery could lead to a worse result. In the second lottery there is a 314 

compensatory effect between the number of vehicles at risk and the number of false alarms. The 315 

score function is thus (Keeney and Raiffa, 1993): 316 

                                                             
3
 The notation <X; Y> designates lotteries with outcomes X or Y each with a 50% probability. 
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ͳ ൅ ݇ ൈ ሺܸܴܽǡݑ ǡܣܨ ሻൌܯܴܥ ሾͳ ൅ ݇ ൈ ݇௏௔ோ ൈ ௏௔ோሺܸܴܽሻሿൈݑ ሾͳ ൅ ݇ ൈ ݇ி஺ ൈ ሻሿൈܣܨி஺ሺݑ ሾͳ ൅ ݇ ൈ ݇஼ோெ ൈ  ሻሿܯܴܥ஼ோெሺݑ
(11) 

The next step is hence to determine the individual utility functions: ݑ௑೔ሺ ௜ܺሻ. 317 

We describe the process for the VaR indicator. The DM was first asked to confirm that the individual 318 

utility function is monotonically decreasing: low values of VaR correspond to high values of utility and 319 

vice-versa. Then, the preferences of the person between the lottery <0; 120> and the sure value of 320 

60 were investigated. The DM, who showed a risk-averse behaviour, chose the sure value in order to 321 

avoid the worst outcome of 120 VaR. Repeating the same process, for various values of x and h, the 322 

DM had to choose between lotteries <x-h; x+h> and the sure value x. This confirmed the risk aversion 323 

behaviour, with a slightly increasing tendency (i.e. the DM was shown to be more risk averse for high 324 

values of VaR than for low values of VaR). The points of the utility function are then captured by 325 

asking what the certainty equivalents of various lotteries are. The certainty equivalent of a given 326 

lottery is the sure value reached when the DM cannot state a preference between the lottery and 327 

the sure value. Results are shown in Table 3. 328 

An exponential form equation is then used to fit the points obtained. Exponential forms, e.g. 329 ͳ ൅ ܾሺͳ െ ݁௔ൈ௏௔ோሻ where a and b are positive constants, are appropriate for modelling constant risk 330 

aversion functions or increasing risk aversion functions (Keeney and Raiffa, 1993). Other functions 331 

could be used to fit the points, however. It was verified that the choice of the form of the function 332 

has negligible impact on results. The parameters were adjusted manually to fit the points (Figure 8): 333 

௏௔ோሺܸܴܽሻݑ  ൌ ͳ ൅ ͲǤͶ͵ͳ ൈ ሺͳ െ ݁௏௔ோൈ଴Ǥ଴ଵሻǢ א ܴܸܽ       ሾͲǢ ͳʹͲሿ (12) 

According to Keeney and Raiffa (1993), a limited number (typically five) of consistent points is 334 

generally sufficient to evaluate the utility functions. The model was then validated by asking the DM 335 

to give certainty equivalents of other lotteries. 336 

For FA, the DM judged that a maximum of five false alarms per year were still a reasonable number 337 

of interruptions. Consequently he chose a risk neutral attitude that led to a linear expression for the 338 

utility: 339 

 
൝ݑி஺ሺܣܨሻ ൌ ͳ െ ͷܣܨ Ǣ א ܣܨ      ሾͲǢ ͷሿݑி஺ሺܣܨሻ ൌ ͲǢ        ൐ ͷ  

 

(13) 

It was decided to avoid negative values and to consider that if the number of false alarms surpasses 340 

five, then the utility is still null. For CRM, the indicator is binary, hence the utility function is: 341 
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 ൜ݑ஼ோெሺܥሻ ൌ Ͳݑ஼ோெሺͲሻ ൌ ͳ (14) 

Those three individual utility functions should then be aggregated in the form of equation (11). 342 

Further questions are then asked to the DM to determine k, kVaR, kFA and kCRM. Prior to quantitative 343 

investigations, the DM is asked to express his preferences for several situations (Table 4). For each 344 

situation, the DM always preferred option A. In the first two situations, the most important aspect 345 

for the DM was to keep the VaR to a minimum. In the third situation, he privileged a reduction of 346 

false alarms over the cost of the system. From these results it can be deduced that: 347 

 ݇௏௔ோ ൐ ݇ி஺ ൐ ݇஼ோெ (15) 

In order to quantitatively assess the constants, the decision-maker is asked to choose between the 348 

options summarised in Table 5. 349 

For p = 10%, the DM chose Option B. For p = 99%, the DM chose Option A. By progressing step by 350 

step, the DM was not able to state a preference between the two options with p = 92%. It is thus 351 

possible to evaluate kVaR by first noticing that: 352 

ሺܸܴܽݑ  ൌ ͲǢ ܣܨ ൌ ͲǢ ܯܴܥ ൌ Ͳሻ ൌ ͳ (16) 

ሺܸܴܽݑ  ൌ ͳʹͲǢ ܣܨ ൌ ͷǢ ܯܴܥ ൌ ͷͲͲሻ ൌ Ͳ (17) 

Hence, the result of the situation of Table 5 is: 353 

݌  ൈ ͳ ൅ ሺͳ െ ሻ݌ ൈ Ͳ ൌ ሺܸܴܽݑ ൌ ͲǢ ܣܨ ൌ ͷǢ ܯܴܥ ൌ ͷͲͲሻ (18) 

ሺܸܴܽݑ  ൌ ͲǢ ܣܨ ൌ ͷǢ ܯܴܥ ൌ ͷͲͲሻ ൌ  (19) ݌

By substituting the result of (19) in (11), knowing the individual utility functions (12), (13) and (14), 354 

we can thus write: 355 

 ͳ ൅ ݇ ൈ ݌ ൌ  ሾͳ ൅ ݇ ൈ ݇௏௔ோ ൈ ͳሿ ൈ ሾͳ ൅ ݇ ൈ ݇ி஺ ൈ Ͳሿ ൈ ሾͳ ൅ ݇ ൈ ݇஼ோெ ൈ Ͳሿ (20) 

 ͳ ൅ ݇ ൈ ݌ ൌ ͳ ൅ ݇ ൈ ݇௏௔ோ  (21) 

Hence: kVaR = 0.92. The same process was used to estimate kFA = 0.18 and kCRM = 0.02. 356 

To evaluate k, we then need to solve the following second-degree polynomial equation: 357 

 ͳ ൅ ݇ ൈ ͳ ൌ ሾͳ ൅ ݇ ൈ ݇௏௔ோ ൈ ͳሿ ൈ ሾͳ ൅ ݇ ൈ ݇ி஺ ൈ ͳሿ ൈ ሾͳ ൅ ݇ ൈ ݇஼ோெ ൈ ͳሿ (22) 

We obtained k = -0.65. k is negative which is in good agreement with the observation that the person 358 

preferred a lottery with compensative effects. 359 

In summary, the global utility function is (see Figure 9 for a graphical representation of this function): 360 

 

ሺܸܴܽǡݑ ǡܣܨ ሻൌܯܴܥ  ሾͳ ൅ ݇ ൈ ݇௏௔ோ ൈ ௏௔ோሺܸܴܽሻሿݑ ൈ ሾͳ ൅ ݇ ൈ ݇ி஺ ൈ ሻሿܣܨி஺ሺݑ ൈ ሾͳ ൅ ݇ ൈ ݇஼ோெ ൈ ሻሿܯܴܥ஼ோெሺݑ െ ͳ݇  
(23) 
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The same process was repeated for three other DMs, with the following results (see Table 6). It can 361 

be noted in Table 6 that DM n°4 is the only DM that is not risk neutral towards false alarms. He 362 

actually shows a risk-prone attitude because he considered that the values are low enough to prefer 363 

lotteries rather than the certainty equivalents. 364 

5. Results 365 

The combination of the Bayesian network and the MAUT allows computation of a global utility for 366 

various PC. The main result is shown in Figure 10. 367 

The utility function of two of the DMs, DM n°1 and DM n°3, have a maximum that corresponds to a 368 

PC different than 1. This means that for them, the optimal solution is to implement the EEWS and the 369 

main parameter that will influence how the system behaves is the PC corresponding to the maximum 370 

in the utility function. For instance for DM n°1, the best setting would be PC = 0.05 (Figure 11). 371 

On the other hand, the PC that maximizes the utility for the other two DMs (DM n°2 and DM n°4) is 1, 372 

corresponding to not installing the EEWS. It appears that for them, the benefits brought by the 373 

system are not large enough to overcome the resulting costs of false alarms and the installation and 374 

operational costs of running the system. For instance, the utility function of DM n°4 is shown in 375 

Figure 12. 376 

These results show that the method allows not only to find the best threshold but also to evaluate 377 

whether the planned mitigation action actually improves the situation with respect to ͚business as 378 

usual͛. 379 

6. Discussions 380 

It is interesting to see the respective contributions of the utility of VaR versus the utility of FA (Figure 381 

13 and Figure 14). UVaR logically decreases as the warning threshold increases: the lower the 382 

threshold, the more sensitive the system, the lower the number of vehicles at risk and thus the 383 

higher the utility. Results are similar from one DM to another. The functions slightly decrease for 384 

refined settings, which means that below a certain level (~10
-3

), improving the sensitivity has a 385 

limited impact on reducing the number of vehicles at risk. The individual utility is around 0.87, which 386 

is because most simulations yield zero VaR due to the absence of earthquakes. Above 10
-2

, the slope 387 

of uVaR is higher: the setting has a large influence on the utility, which is because the number of 388 

missed alarms increases. UVaR values never decrease below 0.83, even if there is no EEWS. It should 389 

also be noticed that we decided to consider the number of VaR for each 50-year horizon, and to 390 

assign the maximum utility to uVaR in the absence of earthquakes. Since the return period of 391 
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damaging earthquakes in the simulation is around 125 years, two thirds of simulations have 392 

maximum utilities, not because of a perfectly functioning EEWS but because of the absence of 393 

earthquakes. 394 

UFA varies in the opposite sense to uVaR: when the system is very sensitive, the number of false alarms 395 

is higher, and thus the utility lower. For very small warning thresholds (below 10
-6

), the slope is very 396 

flat with utility close to null, which corresponds to more than five alarms per five-year period. The 397 

slope then becomes very steep for utilities near unity because for a warning threshold of unity (the 398 

barrier never lowers) there is no false alarm. Even for the risk-prone DM, the individual utility 399 

function of FA is not significantly modified. 400 

So while the individual utility functions do not vary much from one DM to other, the final results are 401 

quite different. It appears then that the main factor controlling the results is the relative weights 402 

given to these utility functions. A graph comparing those weights is shown in Figure 15. 403 

Even if all DMs agree that VaR should have the highest weight (between 0.8 and 0.97), the 404 

importance of the two other indicators is very different: a factor 40 between the lowest and the 405 

highest values of FA; and a factor 20 for CRM. For k, which measures the level of interaction 406 

(compensation effects) between parameters, it can also be seen that we obtain very different values; 407 

but since k is obtained by solving an equation that is directly dependent on three other highly-408 

uncertain constants, it would be difficult to reach conclusions on this value. To explain such 409 

ĚŝƐĐƌĞƉĂŶĐŝĞƐ͕ ǁĞ ĂƐƐƵŵĞ ƚŚĂƚ ƚŚĞ ǁĞŝŐŚƚƐ ĚŽ ŶŽƚ ŽŶůǇ ŵĞĂƐƵƌĞ ĞĂĐŚ DM͛Ɛ ƉƌĞĨĞƌĞŶĐĞƐ͕ ďƵƚ ĂůƐŽ 410 

reveal the assumptions that each DM formulated to complete the questionnaire. It would be 411 

interesting to carry out the same analysis with an actual problem, involving real stakeholders, to be 412 

able to distinguish which differences come from preferences and which ones arise from the fictional 413 

context.  414 

It should be remembered that the DMs for this case study were, in fact, BRGM staff and not real 415 

bridge managers. Therefore, their perceptions of risks versus costs were probably not comparable to 416 

those of real DMs for such a situation. In addition, the same DM may answer differently on another 417 

day or his interpretation of probabilities is biased so his answers do not reflect what his real 418 

preferences are. In order to overcome this, we suggest that the process of MAUT is used as a basis 419 

for discussions, between the analyst, the main DM, and risk management experts. The most 420 

important aspect is the respective weights of the ki.  421 

To determine the weights in the global utility function, the DM is explicitly asked his preferences by 422 

comparing the different indicators. 423 
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 VaR was easier to handle than human lives because of two things: the indicator was 424 

relatively easy to compute, and it was easy for the DM to appreciate: it is easy to imagine a 425 

car on a bridge during an earthquake, and it is not difficult to imagine the consequences. The 426 

main problem is that making a rational decision when human lives are at stake often proves 427 

difficult, as most decision makers in those case will not tolerate any trade-off. 428 

 We chose DS3 rather than DS5 in the definition of VaR because DS5 was a very rare event in 429 

this case study. This poses two problems. Firstly, a computational problem because of the 430 

way the Bayesian network works by performing Monte Carlo sampling. In order to catch rare 431 

events, the number of samples must be very high and so the computational time to solve the 432 

problem becomes long. The second issue is that it was difficult to create a useful utility 433 

function based on an indicator whose expected value is very close to null.  434 

 In the same way, it took several attempts before the indicator related to false alarms was 435 

fixed to the number of false alarms per five-year interval. False alarms may occur several 436 

times per year, and it is easier to make projections for a short-term horizon than for 50 years. 437 

In addition, using a shorter time horizon enables taking into account the fact that the 438 

decision maker may not be indifferent between one false alarm every five years during 50 439 

years and ten FAs during one year and none the other 49 years. 440 

 Lastly, we used an arbitrary value of CRM, but we did not try the same exercise with different 441 

values. We believe that the value of the various weights have more influence on the results 442 

than the actual figure, but this would require further testing in order to be certain of this 443 

assumption. 444 

 445 

7. Conclusions 446 

In this article, we have proposed an approach to help overcome one of the outstanding obstacles to 447 

wider consideration of EEWS as a possible element of a seismic risk-reduction programme. Namely, 448 

how can different views on acceptable risk be taken into account when deciding whether an EEWS is 449 

appropriate for a given application? and, if it is beneficial, how can the threshold to trigger an action 450 

be fixed taking account of its ͚ĐŽƐƚƐ͛ ĂŶĚ ͚ďĞŶĞĨŝƚƐ͛ ;ŝŶ ƚŚĞ ǁŝĚĞƐƚ ƐĞŶƐĞ ĂŶĚ ŶŽƚ ƐŝŵƉůǇ ŝŶ ƚĞƌms of 451 

monetary value)? The method was based on the combination of multi-attribute utility theory and a 452 

Bayesian network for earthquake loss assessment. This procedure could be a useful component of 453 

the wider framework for participatory decision making that is also proposed here. A participatory 454 

viewpoint is necessary in the case of EEWS because such systems can affect/and be affected by many 455 

different groups, e.g. infrastructure owners, elected officials and the local population. We believe 456 
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that the approach outlined here has the potential to help EEWSs fulfil their potential as a component 457 

of operational earthquake risk reduction plans.  458 
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Tables 522 

Table 1 : Classification of outcomes after each event 523 

 524 

Table 2 : Ranges of possible values for the three indicators 525 

Indicators 

VaR: Number of 

vehicles at risk 

(for 50 years) 

FA: Number of 

false alerts (per 

five years) 

CRM: Annual cost 

of Risk 

Management (in 

kΦ) 

Most preferred 0 0 0 

Least preferred 120 5 500 

 526 

Table 3: Quantitative assessment of the individual utility function for VaR. 527 

Lottery Certainty 

equivalent 

Meaning  VaR UVaR(VaR) 

<0,120> 75 UVaR(75) = 0.5  0 1 

<0,75> 43 UVaR(43) = 0.75  43 0.75 

<75,120> 100 UVaR(100) = 0.25  75 0.5 

Consistency check  100 0.25 

<43,100> X UVaR(X) = 0.5  120 0 

 528 

Table 4 : Questionnaire for hierarchizing the indicators 529 

Option A Option B 

VaR = 0; FA = 5; CRM = 500 VaR = 120; FA = 0; CRM = 500 

VaR = 0; FA = 5; CRM = 500 VaR = 120; FA = 5; CRM = 0 

VaR = 120; FA = 0; CRM = 500 VaR = 120; FA = 5; CRM = 0 

  530 

 DS ≥ DS3 DS < DS3 

A = 1: Barrier lowered Correct outcome:  

True Positive (TP) 

Type I error:  

False Positive (FP) 

A = 0 :Barrier not lowered Type II error:  

False Negative (FN) 

Correct outcome :  

True Negative (TN) 
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 531 

Table 5: Questionnaire for evaluating kVaR 532 

Option A Option B 

<( VaR = 0; FA = 0; CRM = 0); ( VaR = 120; FA = 5; CRM = 500); p>
4
 VaR = 0; FA = 5; CRM = 500 

 533 

Table 6 : Coefficients of the score function obtained for each DM 534 

Coefficients DM n°1 DM n°2 DM n°3 DM n°4 

k -0.650 -0.066 -0.340 -0.870 

kVaR 0.92 0.84 0.97 0.80 

kFA 0.18 0.08 0.01 0.40 

kCRM 0.02 0.09 0.035 0.40 

uVaR(VaR) 

for VaR א 
[0;120] 

1+0.431×(1-e
VaR×0.01

) 
1+0.564×(1-

e
VaR×0.0095

) 

1+0.365×(1-

e
VaR×0.011

) 
1+0.62×(1-e

VaR×0.008
) 

uFA(FA) 

for FA [5;0] א 
1-FA/5 1-FA/5 1-FA/5 0.055×(5-FA)

1.8
 

uCRM(0) 1 1 1 1 

uCRM(C) 0 0 0 0 

 535 

  536 

                                                             
4
 The notation <X ;Y ;P> designates lotteries with outcomes X with probability P or Y with probability (1-P). 
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Figures 537 

 538 

Figure 1: Proposed framework for participatory decision making in the context of EEW. 539 

 540 

Figure 2 : Synthesis of the criteria and indicators defined for the case study. 541 
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 542 

Figure 3 : Bayesian network used for the case study. 543 

 544 

Figure 4 : Diagram representing the seismogenic zone and the location of the bridge. 545 
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 546 

Figure 5 : Fragility curve for the hypothetical bridge (corresponding to DS3) (PSA: peak spectral acceleration; CDF: 547 
cumulative distribution function) 548 

 549 

Figure 6 : Subset of the Bayesian network. 550 



25 

 

 551 

Figure 7 : Graphical representation of ࡼ൫ࡿࡰหࡹ෩ ǡ  ෩൯. 552ࡾ

 

Figure 8 : Representation of the individual utility function of VaR. Left: Points captured. Right: Modelling by an 553 

exponential function. 554 

 555 

 

 

 

Figure 9: Graphical representation of the global utility function for DM n°1. 556 
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 557 

Figure 10 : Expected value of the score function depending on the warning threshold, with preferences from the four 558 

DMs (error bars correspond to the 95% confidence intervals). 559 

 560 

Figure 11 : Expected value of the global utility function depending on the warning threshold for DM n°1. 561 
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 562 

Figure 12 : Expected value of the global utility function depending on the warning threshold for DM n°4. 563 

 564 

Figure 13 : Expected value of UVaR depending on the warning threshold, with preferences from the four DMs (error bars 565 

correspond to the 95% confidence intervals). 566 
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 567 

Figure 14 : Expected value of UFA depending on the warning threshold, with preferences from the four DMs. The first 568 

three curves are identical (Error bars correspond to the 95% confidence intervals). 569 

 570 

Figure 15 : Comparison of the constants of the global utility function from the four interviews 571 

 572 


