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We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical

maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representa-

tion of the covariance matrix which is then exploited to determine the condition for the complete positivity of

partial maps associated to arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski

representation and does not require optimization over states.

PACS numbers: 03.65.Yz, 03.65.Ta, 42.50.Lc

In recent years much effort has been devoted to the charac-

terization and quantification of non-Markovianity in the evo-

lution of open quantum systems (see e.g. Ref. [1] for a re-

cent review). Non-Markovian quantum evolutions may typ-

ically arise in the presence of structured environments, such

as in quantum biological systems [2–4] and in squeezed baths

of light with finite bandwidth [5]. Moreover, recent studies

suggest that properly engineered non-Markovian channels can

improve the efficiency of quantum technology protocols due

to the backflow of information from the environment to the

system [6–12]. Establishing whether noisy quantum evolu-

tions are non-Markovian and therefore preserve some mem-

ory on the story of the system is of capital importance in the

field of quantum cryptography [13].

Various approaches to the characterization and quantifica-

tion of quantum non-Markovianity have been introduced in

recent years [1, 14, 15]. Most of them are witnesses, and thus

rely on sufficient, but not necessary, conditions [1]. They usu-

ally are based on the non-monotonic behavior of certain quan-

tities in the presence of memory effects [16–21]. Moreover,

most of them rely on optimization over states.

Proper measures of non-Markovianity have also been in-

troduced for finite-dimensional systems. These measures in-

clude the amount of isotropic noise necessary to make the dy-

namics completely positive in every arbitrary short interval of

time [22] and the negativity of the decay rates appearing in

the generators of the time evolution, once the associated mas-

ter equation is expressed in canonical form [23].

A further necessary and sufficient criterion has been ob-

tained by Rivas, Huelga, and Plenio (RHP) by considering

the violation of the divisibility property, which expresses the

possibility of decomposing the evolution on a generic time

interval into two successive, independent completely posi-

tive maps. Non-Markovianity is then characterized by the

extent that the intermediate map violates complete positivity

(CP) [17]. These three necessary and sufficient criteria for

finite-dimensional systems have been shown to be completely

equivalent [23]; moreover, the criterion based on the isotropic

noise and the RHP criterion rely on positivity of the Choi-

Jamiołkowski states corresponding to the channels [24, 25].

Addressing the general characterization and quantification

of non-Markovianity in the infinite-dimensional case is an

important open question, given the great importance of, for

instance, Gaussian states and Gaussian channels in quantum

optics, quantum information, and quantum technologies. In-

spired by the RHP approach, in the present work we introduce

a necessary and sufficient criterion of non-Markovianity for

Gaussian evolutions. It is based on the violation of the divis-

ibility property directly at the level of the matrices defining

the channels, exploiting a powerful vectorial representation

for them and for the covariance matrix. As such, the criterion

does not require the use of the Choi-Jamiołkowski isomor-

phism between states and channels [26]. Moreover, it does

not require optimization over states, a challenging task both

for finite- and infinite-dimensional systems [27].

Based on such criterion, we introduce the corresponding

measure of non-Markovianity for Gaussian channels and il-

lustrate it for some paradigmatic examples. For the specific

channels considered, violation of divisibility turns out to be

equivalent to the negativity of the decoherence rates appear-

ing in the canonical form of the master equation.

Given a generic input state, its time evolution in a Gaussian

channel is defined according to the following transformation

on the input covariance matrix σ(0):

σ (t) = X (t)σ (0)X⊺ (t) + Y (t) , (1)

where (X,Y ) are 2N×2N real matrices; moreover Y is sym-

metric. It is possible to show that the CP requirement imposes

the condition [28]:

Y (t)−
ı

2
Ω +

ı

2
X (t) ΩX⊺ (t) ≥ 0 , (2)

where Ω is the symplectic matrix, and the symbol ⊺ denotes

matrix transposition.

Gaussian channels enjoy a semigroup structure. Given two

such channels corresponding, according to Eq. (1), to the

pairs (X1, Y1) and (X2, Y2), the resulting composed channel

is characterized as follows [29]:

(X1, Y1) · (X2, Y2) = (X1X2, X1Y2X
⊺

1 + Y1) . (3)
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Consider now a quantum evolution from time t0 to t2 de-

scribed, in general, by some family of trace-preserving linear

maps {E(t2, t1), t2 ≥ t1 ≥ t0}. The map is said to be divisi-

ble, or Markovian, if, for every t2 and t1 it holds that

E(t2, t0) = E(t2, t1)E(t1, t0), t2 ≥ t1 ≥ t0 , (4)

and the map E(t2, t1) is CP. An evolution is non-Markovian if

it violates the divisibility property, Eq. (4).

For Gaussian channels, we can reformulate the general di-

visibility condition, Eq. (4), in the following form. Let us first

introduce an auxiliary vectorial notation. In this notation the

elements of the covariance matrix σ form a vector according

to a lexicographical ordering, i.e. (~σ(t))k = σ(t)ij (where

k = N(i−1)+j and i, j = 1, . . . , 2N ), which in the more fa-

miliar Dirac notation can be written as 〈k|~σ(t)〉 ≡ 〈ij|~σ(t)〉 ≡
〈i|σ(t)|j〉. For convenience, we also add to ~σ an auxil-

iary vector entry of value 1. In this notation one can obtain

the following representation: [X(t)σ(0)X⊺(t)]ij =[(X(t)⊗
X(t))~σ(0)]k ≡ [Φ(t)~σ(0)]k, where Φ(t) = X(t) ⊗ X(t).
In Dirac notation, one has:

〈i|X(t)σ(0)X⊺(t)|j〉=
∑

n,m

〈i|X(t)|n〉〈n|σ(0)|m〉〈m|X⊺(t)|j〉

=
∑

n,m

〈ij|X(t)⊗X(t)|nm〉〈nm|~σ(0)〉=〈ij|X(t)⊗X(t)|~σ(0)〉,

where
∑

n |n〉〈n| is the identity resolution in some basis. One

can now reexpress Eq. (1) in terms of a vector by matrix mul-

tiplication:

(

~σ(t)
1

)

=

(

Φ(t) ~Y (t)
~0⊺ 1

)(

~σ(0)
1

)

, (5)

where ~0 = (0, . . . , 0)⊺ is the 2N -dimensional null vector and
~Y (t) is the vectorial form of the matrix Y (t). Vectorization is

an isomorphism, thus reversible: de-vectorizing Eq. (5) yields

exactly the standard representation, Eq. (1).

In vectorial notation, the channel composition law, Eq. (3),

is reexpressed by the following matrix multiplication form:

(

Φ2
~Y2

~0⊺ 1

)(

Φ1
~Y1

~0⊺ 1

)

=

(

Φ2Φ1 Φ2
~Y1 + ~Y2

~0⊺ 1

)

. (6)

Setting for ease of notation t0 = 0, t1 = t, and t2 = t + ǫ
for any instance of time t and ǫ, by the continuity of time the

dynamics can be split as [0, t+ ǫ] = [0, t] ∪ [t, t+ ǫ], and one

can obtain the vectorial expression for the intermediate map

in the interval [t, t + ǫ]. Let us comment on the invertibility

of the X(t, 0) matrix. Examples of Gaussian channels char-

acterized by a non invertible X matrix can be found based

on classification of one-mode Gaussian channels provided in

Ref. [30]. Up to Gaussian unitary equivalence, channels for

which X is non invertible include the completely depolaris-

ing channel which projects every input state on a thermal state,

and channels which transform the canonical quadrature Q and

P as: P → p, Q → Q + q, where p and q are thermal states.

However, non invertible cases do not impose any restriction

on our procedure, because one can always introduce the ma-

trix 1η+X(t, 0), determine its inverse, and evaluate the limit

η → 0, which is always non-singular [1, 31, 32].

De-vectorizing the intermediate Gaussian map, we obtain

its complete expression in terms of the X and Y matrices:

X(t+ ǫ, t)=X(t+ǫ, 0)X−1(t, 0) ,

(7)

Y (t+ǫ, t)=Y (t+ǫ, 0)−X(t+ǫ, t)Y (t, 0)X⊺(t+ǫ, t) .

Since the condition of divisibility is equivalent to CP of the

intermediate map, Eq. (7), from Eqs. (2), (4), and (7), the con-

dition for non-Markovianity at any given time t reads:

Y (t+ ǫ, t)−
ı

2
Ω +

ı

2
X (t+ ǫ, t) ΩX⊺ (t+ ǫ, t) < 0 . (8)

Given that Eq. (2) is necessary and sufficient for CP [28], it

follows that Eq. (8) is a necessary and sufficient criterion for

the non-Markovianity of Gaussian channels.

The necessary and sufficient condition, Eq. (8), allows to

introduce a proper measure of non-Markovianity for Gaussian

channels by quantifying the extent by which the intermediate

dynamics fails to be CP. This corresponds to the quantification

of the negative part of the spectrum of the symmetric matrix

appearing on the l.h.s. of Ineq. (8). Denoting the set of eigen-

values by {νk(t+ ǫ, t)}k=1,...,2N , the following functions

fk (t) =
1

2
lim

ǫ→0+
[|νk(t+ ǫ, t)| − νk(t+ ǫ, t)] (9)

quantify the negative contribution at time t given by the kth

eigenvalue. Therefore punctual non-Markovianity, quantified

by the negative part of the spectrum at a given time t, reads

F (t) ≡
2N
∑

k=1

fk (t) . (10)

Since F (t) > 0 if and only if the evolution is non-Markovian,

and F (t) = 0 otherwise, total non-Markovianity on a generic

time interval I is

N I ≡

∫

I

F (t) dt . (11)

It is important to note that, when the dynamics is described

by means of a master equation, the expression of the matrices

{X,Y } that define the channel are obtained directly, in the

phase space formalism, through Eq. (1), from the expression

of the characteristic function of the evolved Gaussian state.

The above divisibility-based necessary and sufficient crite-

rion is completely general: it holds for any Gaussian map,

independently of the existence of a generator. On the other

hand, as already mentioned, Hall, Cresser, Li, and Anders-

son have recently shown that in the finite-dimensional case,

for which, at variance with the infinite-dimensional case, all

processes always admit a generator, the necessary and suffi-

cient criterion for non-Markovianity based on divisibility is
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equivalent to the criterion based on the negativity of the de-

coherence rates appearing in the canonical form of the master

equation [23]. It is then tempting to conjecture that this equiv-

alence holds also in the infinite-dimensional case for channels

that admit a generator. we discuss two paradigmatic cases that

admit a representation in terms of canonical master equations,

pure damping and quantum Brownian motion, and show that

in such instances the equivalence indeed holds.

The simplest example we can begin with is the Lindblad-

type master equation describing the damping process for a

single field mode with a single decay rate:

dρ (t)

dt
= αγ (t)

[

aρa† −
1

2

{

a†a, ρ
}

]

, (12)

where α ≪ 1 is the coupling constant and γ(t) is the damping

rate. The evolution of a generic Gaussian state in this Gaus-

sian channel is described by the corresponding evolution of

the displacement and covariance matrices. From the latter, via

Eq. (1), one obtains the X and Y matrices:

X (t, 0) = e−
Γ(t)
2 1 , (13)

Y (t, 0) =
[

1− e−Γ(t)
]

1

2
, (14)

where Γ(t) = 2α
∫ t

0
γ(s)ds. Eqs. (13), (14) allow to ob-

tain, through Eqs. (7), the matrix appearing in the l.h.s. of

the CP condition, Ineq. (8). It is straightforward to ver-

ify that the eigenvalues of this matrix are negative when

exp(−Γ(t+ǫ, t)) < 1, where Γ(t+ǫ, t) = Γ(t+ǫ, 0)−Γ(t, 0).
Moreover, to first order in ǫ, we have Γ(t+ ǫ, t) ≈ 2γ(t)ǫ. As

a consequence, the evolution is non-Markovian if and only if

γ(t) < 0, showing that in this case violation of divisibility is

indeed equivalent to negativity of the decoherence rate. The

corresponding measure, through Eqs. (9) and (10) reads:

N I = −α

∫

I′

γ (t) dt , (15)

where I ′ are the sub-intervals of I in which γ(t) < 0.

We next consider Quantum Brownian Motion in the weak

coupling limit and under the secular approximation. It is de-

scribed in the interaction picture by the following Lindblad-

type master equation (see Ref. [33] and references therein):

dρ (t)

dt
=

∆(t) + γ (t)

2

[

2aρa† −
{

a†a, ρ
}]

+

∆(t)− γ (t)

2

[

2a†ρa−
{

aa†, ρ
}]

. (16)

The coefficients γ(t) and ∆(t), in general time-dependent, are

respectively the damping and diffusion coefficient, whose ex-

plicit expressions are obtained once one selects the explicit

form for the spectral density of the bath. The general solution

of Eq. (16) allows to obtain the evolution of the displacement

and covariance matrices for any input Gaussian state [33]. The

corresponding X and Y matrices read:

X (t, 0) = e−
Γ(t)
2 R (t) , (17)

Y (t, 0) = e−Γ(t)∆̃ (t) 1 , (18)

where Γ(t) = 2
∫ t

0
γ(s)ds, ∆̃(t) =

∫ t

0
eΓ(s)∆(s)ds, R(t) is

the rotation matrix by the angle ω0t, and ω0 is the system’s

characteristic frequency. These expressions and Eqs. (7) de-

termine the eigenvalues of the matrix in the l.h.s. of Ineq. (8):

ν1(t+ ǫ, t) =
1

2

[

e−Γ(t+ǫ,t) + 2∆̃ (t+ ǫ, t) e−Γ(t+ǫ,0) − 1
]

,

ν2(t+ ǫ, t) =
1

2

[

1− e−Γ(t+ǫ,t) + 2∆̃ (t+ ǫ, t) e−Γ(t+ǫ,0)
]

,

(19)

where Γ(t + ǫ, t) = Γ(t + ǫ, 0) − Γ(t, 0) and ∆̃(t + ǫ, t) =

∆̃(t+ǫ, 0)−∆̃(t, 0). To first order in ǫ, we have: e−Γ(t+ǫ,t) ≈
1 − 2γ(t)ǫ and ∆̃(t + ǫ, t) ≈ eΓ(t,0)∆(t)ǫ. Then, condition

Eq. (8) on the eigenvalues, i.e. the violation of the divisibil-

ity condition, implies ∆(t) < |γ(t)|. This is again equiv-

alent to negativity of the decoherence rates [∆(t) + γ(t)]/2
and [∆(t)− γ(t)]/2 appearing in Eq. (16). Finally, exploiting

Eqs. (19) and (9) we obtain the following expression for the

punctual measure of non-Markovianity:

F (t) =
1

2
[|∆(t)− γ (t) |+ |∆(t) + γ (t) |]−∆(t) . (20)

In order to investigate explicitly the behavior of non Marko-

vianity in the Quantum Brownian Motion, we need to spec-

ify the spectral density to obtain explicit expressions of the

damping and diffusion coefficients γ(t) and ∆(t). Consider-

ing the rather typical case of an Ohmic bath with an exponen-

tial cut-off ωc, the parameters that govern the dynamics are

the temperature T and the ratio between the cut-off frequency

of the bath and the characteristic frequency of the system

x = ωc/ω0. It is expected that, in the regime x ≪ 1 the dy-

namics should be non-Markovian, while Markovianity should

be recovered for x ≫ 1 [33]. It is also convenient to ex-

press the evolution in terms of the dimensionless reduced time

τ = ωct. Moreover, explicit analytic expressions of the diffu-

sion coefficient ∆(τ) can be obtained quite straightforwardly

in the high- and low-temperature regimes [34]. Considering

first the asymptotic values of the damping and diffusion co-

efficients in the large-time limit, τ → ∞, both in the high-

and low-temperature regimes, it is straightforward to verify

that the asymptotic punctual non-Markovianity F (∞) = 0: at

large times Markovianity is always recovered, independently

of the values of the parameters that govern the dynamics.

Considering now generic times, in Fig. (1a) we report the

behavior of the punctual non-Markovianity F , Eq. (20), as a

function of the reduced time τ at fixed values of the parame-

ter x = ωc/ω0 in the high-temperature limit. In this regime

∆(τ) ≫ γ(τ) [33], and the non-Markovianity of the dy-

namics depends essentially only on the diffusion coefficient:

F (τ) ≃ |∆(τ)| − ∆(τ). Hence, the time interval for which

the evolution is non-Markovian, F (τ) > 0, corresponds to

the negativity of the decoherence rate, ∆(τ) < 0. Non-

Markovianity is strongest in the regime x ≪ 1, corresponding

to the characteristic time of the bath being much larger than

the characteristic time of the system. When x increases, the

negative part of the oscillations and F (τ) quickly vanishes,

and one recovers the Markovian regime.
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FIG. 1: (color online) Non-Markovianity F (τ). a): High-

temperature limit for x = 0.1 (blue full line), x = 0.2 (red dot-

dashed line), and x = 0.3 (green dashed line). Inset: ∆(τ) for

x = 0.1 (blue full line), x = 0.2 (red dot-dashed line) and x = 0.3
(green dashed line). b): Low-temperature limit for x = 0.2 (blue full

line), x = 1.0 (red dot-dashed line) and x = 2.0 (green dashed line).

Inset: ∆(τ) (red dot-dashed line) and γ(τ) (blue line) for x = 0.1.

In the low-temperature regime, see Fig. (1b), the diffu-

sion and damping coefficients are comparable, and the non-

Markovianity F (τ) is given by the full expression, Eq. (20).

In this situation, a non-Markovian regime is observed also for

∆(τ) > 0, provided ∆(τ) < γ(τ), and even if the character-

istic times of the bath start to be comparable or smaller than

the characteristic times of the system, x & 1.

In these examples, the criterion based on the X and Y ma-

trices defining a Gaussian channel turns out to correspond to

the negativity of the decoherence rates. On the other hand, it

should be stressed that the criterion is much more general and

applies to any Gaussian evolution, including those that do not

admit a generator and hence cannot be described in terms of

master equations. Finally, it always allows, at least in prin-

ciple the experimental verification of the Markovianity of the

evolution. A further advantage is that such verification does

not require optimization over the set of input states, since it is

based directly on the characteristic matrices that define intrin-

sically the dynamical map. When the generator exists, so that

the dynamical map can be associated to a master equation, the

general quantifiers of non-Markovianity, Eqs. (9) and (11), re-

duce to simple functions of the decoherence rates, Eqs. (15)

and (20), which can be reconstructed experimentally [35].

Summarizing, checking for CP of the partial map in the

finite-dimensional case consists in verifying the positivity of

the corresponding Choi-Jamiołkowski state. The RHP mea-

sure of non-Markovianity is then defined in terms of the neg-

ative part of the spectrum of such state [1, 17]. One might

try to enforce the same criterion, in complete analogy with

the finite-dimensional case, by checking CP of the interme-

diate Gaussian map by checking the positivity of the corre-

sponding Choi-Jamiołkowski state. Indeed, for single-mode

CP Gaussian maps, it has been shown that a Kraus decompo-

sition can always be found, so that one can always construct

the corresponding Choi-Jamiołkowski state [26, 36]. Unfor-

tunately, the Kraus representation does not exists for non CP

Gaussian maps and the Choi-Jamiołkowski states correspond-

ing to these maps are to date not characterized. Therefore,

checking violation of CP for Gaussian maps using the Choi-

Jamiołkowski isomorphism is currently impossible.

We have succeeded in circumventing this stumbling block

by expressing the condition of CP of general Gaussian maps,

Ineq. (2), directly in terms of the X and Y matrices govern-

ing the evolution of the covariance matrix of input Gaussian

states. Concatenation of the maps in the finite-dimensional

case is expressed straightforwardly by matrix multiplication,

thanks to the superoperator representation of the quantum

channel. Immediate generalization of this method to general

Gaussian maps is not possible. Instead, we succeed in defin-

ing Gaussian state vectorization by a suitable vectorization of

the covariance matrix. This allows to introduce a matrix rep-

resentation also for Gaussian maps and generalize the RHP

method of characterizing non-Markovianity.

The specific form of the vectorization procedure that we

have introduced is suitably defined in such a way to preserve

the fundamental semigroup property of Gaussian channels, al-

lowing to investigate any Gaussian map in a compact and ele-

gant form.

Since our approach does not require optimization on the

set of input states, it can be especially helpful when consider-

ing multi-mode Gaussian channels, allowing in principle for a

systematic study of the interplay between non-Markovianity,

entanglement, and coherence. Furthermore, it can open the

way to the characterization of Gaussian quantum metrol-

ogy [37] in non-Markovian environments, extending to Gaus-

sian states of continuous-variable systems the investigations

pioneered in Refs. [38, 39].
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