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Demographic Stochasticity in the SDE SIS
Epidemic Model

D. Greenhalgh1, Y. Liang1, X. Mao1

1 Department of Mathematics and Statistics,
University of Strathclyde, Glasgow G1 1XH, U.K.

Abstract

In this paper we discuss the stochastic differential equation (SDE) susceptible-
infected-susceptible (SIS) epidemic model with demographic stochasticity. First we
prove that the SDE has a unique nonnegative solution which is bounded above.
Then we give conditions needed for the solution to become extinct. Next we use the
Feller test to calculate the respective probabilities of the solution first hitting zero
or the upper limit. We confirm our theoretical results with numerical simulations
and then give simulations with realistic parameter values for two example diseases:
gonorrhea and pneumococcus.

Key words: SIS epidemic model, demographic stochasticity, extinction, Feller test,
stochastic differential equations, Brownian motion.

1 Introduction

Epidemics of infectious diseases have been a constant threat towards our society. In the
past, Europe suffered from 25 million deaths out of a population of 100 million due to
the Black Death [6]; Russia suffered from about 25 million cases of typhus with a death
rate of about 10 percent, whilst smallpox wiped out half of the population of the Aztecs
of three and a half million in 1520 [5]. Although in the 21st century, diseases such as
smallpox no longer pose a threat towards mankind, there is still a high proportion of the
population that is under threat of diseases such as malaria and HIV (e.g. [6, 12]).

As a result mathematical models have been constructed in order to predict the be-
haviour of a disease and help to control a particular epidemic. Epidemics can be modelled
by compartmental models such as SIS and SIR models where each individual has been
assigned to a different subgroup representing a specific stage of disease. In 1927, Kermack
and McKendrick [22] constructed the Susceptible-Infected-Removed (SIR) model to de-
scribe the behaviour of diseases such as chickenpox and measles [17]. A typical individual
starts off susceptible, at some stage catches the disease and after a short infectious period
becomes completely immune. However, there are many diseases such as tuberculosis and
meningitis [17] where a recovered individual will immediately become susceptible again,
in other words individuals do not become immune to these diseases. For such a disease,
a Susceptible-Infected-Susceptible (SIS) model would be more suitable. There has been
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previous work done on the SIS epidemic model, for example Hethcote [17] studied the SIS
epidemic model involving different factors such as disease mortality and migration. The
SIS epidemic model is the simplest possible epidemic model and has been widely studied.

An epidemic of an infectious disease can be modelled by using either the deterministic
model or the stochastic model. The deterministic model is often formulated as a system of
differential equations where its solution is uniquely dependent on the initial value. On the
other hand a stochastic model is a stochastic process with a collection of random variables
where its solution is a probability distribution for each of the random variables. There has
been much work done on deterministic models already, however there are some limitations
in using these in analysing infectious diseases. A deterministic model is more appropriate
when we are dealing with a large population. However, if we consider an epidemic outbreak
in a small community such as school, a stochastic model would be more appropriate as
the element of variability would become significant [6, 7, 9]. In addition, the real world
is not deterministic, and there are many factors that can influence the behaviour of a
disease and thus it is not always possible to predict with certainty what would happen.
Consequently, a stochastic model is introduced to compensate for this problem. There
are also many properties that are unique to the stochastic epidemic model which could
enhance our understanding towards the behaviour of a particular disease. For example, the
probability that an endemic will not occur, the final size distribution of an epidemic and
the expected duration of an epidemic [2]. Clearly, we can see that introducing stochasticity
into an epidemic model will provide some additional information that will improve the
realism of our results compared to the deterministic approach.

There are three different types of stochastic models commonly used in population
biology, namely the discrete time Markov chain (DTMC), continuous time Markov chain
(CTMC) and stochastic differential equations (SDEs) [2, 3]. In a DTMC model, the time
and the state space variables are discrete. In a CTMC model, the time is continuous
but the state variables are discrete, while the SDE is based on a diffusion process where
both the time and the state variables are continuous [2]. These three stochastic models
all consider the random behaviour occurring within the birth and death process of an
individual [2, 3]. Allen and Allen [3], made a thorough comparison between these three
epidemic models with respect to the persistence time. They found that, when consistently
formulated, the three stochastic models produced similar results for the mean and variance
in persistence time.

In this paper, we shall focus on working with the SDE SIS epidemic model with
demographic stochasticity.

The stochastic aspects of the SIS model for infectious diseases have been studied
by many authors. In [10], Cavender considered the SIS model as an example of a birth
and death process, which is a stochastic population model used to model demographic
stochasticity [8]. Norden [32] described the stochastic SIS model as a stochastic logistic
population model and aimed to investigate the distribution of the extinction times both
numerically and theoretically. Kryscio and Lefévre [23] also looked at the stochastic SIS
logistic model (also known as the stochastic SIS model). They extended and combined
the results mentioned by Norden and Cavender. Kryscio and Lefévre obtained the ap-
proximations of the quasi-stationary distribution by studying two approximations of the
process as well as the approximation to the mean time to extinction for the stochastic
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SIS logistic model. Furthermore, Clancy and Pollett [11] also considered the SIS logis-
tic model as a birth and death process with a different death/recovery rate, µi = µi,
than the one mentioned in [23], namely µi = µ(i − 1). By using Theorem 1 mentioned
in Clancy and Pollett’s paper, they have managed to prove one of the conjectures men-
tioned by Kryscio and Lefévre which Kryscio and Lefévre did not prove in their paper
[23], namely q ≺ST m, where q and m represent the quasi-stationary distribution and
the stationary distribution of the process respectively. The notation ≺ST represents the
concept of stochastic ordering where it denotes the idea of one random variable bigger
than another random variable. In other words, if A ≺ST B where A and B are random
variables then it means that P(A > x) ≤ P(B > x) for all x and P(A > x) < P(B > x)
for some x, and that A is stochastically strictly less than B (e.g. [34]). Ovaskainen [33]
looked at the other aspect of the quasi-stationary distribution of the stochastic SIS model
with a different infection rate of susceptible individuals, λi = λi(N − i), than the conven-
tional one mentioned in most papers, namely λi = (λ/N)i(N − i) [2, 11, 23], where N
denotes the total population size. This is because by scaling λ by N , it implies that the
number of contacts per person is independent of the population size while the one used
by Ovaskainen [33] will take into account that there are more contacts per person in a
large population than in a small population. Ovaskainen improved on previous approxi-
mation formulae and obtained a rigorous mathematical formula for the quasi-stationary
distribution as N → ∞. Nasell [28] showed that for the stochastic SIS model with no
demography, both the quasi-stationary distribution and the expected time to extinction
from quasi-stationarity have three qualitatively different behaviours as a function of N
and R0 where R0 is the basic reproduction number which determines whether or not a
disease will die out or persist. Other than the papers we have mentioned above, there are
still many other papers that dealt with the stochastic SIS model [4, 29, 30, 37].

There are several ways that stochasticity can be introduced into the SIS epidemic
model, one of which is introducing the random effects of the environment into how the
disease spreads. This is known as environmental stochasticity. Dalal et al. [12] introduced
environmental stochasticity into the disease transmission term of a deterministic model
and looked at the effect of condom use on the spread of HIV amongst a homosexual
population. In a similar way, Gray et al. [14] introduced stochasticity via perturbation
of the disease transmission parameter in the standard SIS epidemic model. Moreover,
inspired by Takeuchi et al. [13], Gray et al. [15] introduced the effect of telegraph noise,
which is an example of environmental noise, into the SIS epidemic model by using a
Markov switching process where the parameters switch between two or more regimes of
environment and the switching is memoryless.

However, in this paper we shall introduce stochasticity into our SIS epidemic model
by demographic stochasticity. This is when we introduce births and deaths into the pop-
ulation and derive a stochastic model. This is described as a set of differential equations
for pi(t), the probability that there are exactly i susceptible individuals at time t. From
these equations we can then derive the stochastic differential equations satisfied by the
number of susceptible and infected individuals. Nasell [27] mentioned that an SIS model
without demography is based on the assumption that an individual will live forever and
is clearly unrealistic. So adding demography makes the SIS model more realistic and
stochasticity makes the SIS model more realistic in a different way by adding random
fluctuation in the population size, as the birth and death of an individual is a discrete
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and probabilistic event [26]. Some of the literature has dealt with the stochastic SIS model
with demographic stochasticity, for example Lindenstrand and Andersson [24] looked at a
two dimensional Markov process and analysed the behaviour of the model close to quasi-
stationarity and the time it took for the system to become extinct with the help of a
diffusion approximation. On the other hand, Nasell [27] focused on finding approxima-
tions of the quasi-stationary distribution and the time to extinction for his SIS model of
the form of a bivariate Markov population process with appropriate transition rates. In
addition, Nasell also derived an approximation for the expected time to extinction in the
stochastic SIR model with demography, where he looked at two SIR models which each
vary with a different demographic force.

The SDE SIS model with demographic stochasticity that we shall look at in this
paper has been derived fully in details in [1] with the model given in section 2. For this
model, we have assumed that an infected individual who dies is immediately replaced
by a susceptible individual and thus the population size is kept constant. This SDE SIS
model is an approximation to the continuous time Markov Chain model (CTMC). The
SDE model is preferred over the CTMC model when it comes to computing numerical
simulations to illustrate the behaviour of the model [3], which we will do later on in this
paper. In order to get a good estimation of the probability distribution for the CTMC
model, computational costs can be very high. The SDE model is especially useful in
situations where there are several random variables and several interacting populations
[3]. As far as we know there have not been any detailed analyses on this model and we
hope to fill this gap by providing a thorough analytical and numerical investigation of the
model in this paper. Furthermore, other useful stochastic properties such as extinction
will also be proven for this SDE SIS model with demographic stochasticity, in the hope to
further enhance our knowledge on the impact of demographic variability on an epidemic.

The paper is organised as follows. In the next chapter we shall describe the basic
model. In the following section we shall show the existence of a unique nonnegative
solution. In section 4, we shall look at conditions for extinction and in section 5 we shall
look at the Feller test which gives probabilities of hitting the top and bottom limits. In
section 6 we perform some simulations with theoretical parameter values to verify the
results and simulations with realistic parameter values for gonorrhea and pneumococcus.

2 Demographic stochasticity for the SDE SIS epi-

demic model

Throughout this paper, we let (Ω, F , {Ft}t≥0, P) be a complete probability space with
filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increasing and right continuous
while F0 contains all P-null sets). Let us consider the following deterministic SIS model
with two populations S(t) and I(t)

dS(t)

dt
= −βI(t)S(t) + γI(t) + µN − µS(t), (2.1)

dI(t)

dt
= βI(t)S(t)− (µ+ γ)I(t).
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Here, S and I denote two populations representing respectively the number of susceptible
and infected individuals in the population. N is the total size of the population, β is
the disease transmission coefficient and β = λ/N where λ is the disease contact rate
for each individual, that is the rate at which susceptible individuals come into contact
with infected individuals. µ is the per capita death rate and γ is the rate at which an
infected individual becomes cured. By looking at the interaction occurring between the
two populations, Allen [1] constructed a list of possible changes with their corresponding
probabilities pi(t), i = 1, 2, 3 . . . . In order to introduce demographic stochasticity into
the deterministic SIS model (2.1), the mean change E(∆x) and the covariance matrix V
for the time interval ∆t are calculated [1]. The stochastic SIS model has the form:

dx = µ(t, S, I)dt+B(t, S, I)dW(t), (2.2)

with x = (S, I)T , x(0) = (S(0), I(0))T ,

µ = E(∆x)/∆t =

[

−βIS + (µ+ γ)I
−(µ+ γ)I + βIS

]

,

B = V1/2 =

[

βIS + (µ+ γ)I −βIS − (µ+ γ)I
−βIS − (µ+ γ)I βIS + (µ+ γ)I

]

/
√

2(βIS + (µ+ γ)I)

and W(t) is the two dimensional Wiener process, namely W(t) = (W1(t),W2(t))
T . In

other words:

dS(t) = (−βSI + (µ+ γ)I)dt+
√

βSI + (µ+ γ)I
(dW1 − dW2)√

2
, (2.3)

dI(t) = (βSI − (µ+ γ)I)dt−
√

βSI + (µ+ γ)I
(dW1 − dW2)√

2
.

If we write B = (W1 − W2)/
√
2 then B is a Wiener process so the SDE SIS model

with demographic stochasticity becomes:

dS(t) = [−βI(t)S(t) + γI(t) + µN − µS(t)]dt−
√

βI(t)S(t) + (µ+ γ)I(t)dB, (2.4)

dI(t) = [βI(t)S(t)− (µ+ γ)I(t)]dt+
√

βI(t)S(t) + (µ+ γ)I(t)dB.

In fact if in equations (5.8) and (5.9) on p.147 of [1] we replace γ by (µ + γ) and α by
βN then equations (5.10) and (5.11) on p.148 of [1] are our equations (2.4). By using
S(t) + I(t) = N , we can combine the two SDEs shown in (2.4) into one SDE for I(t),
namely:

dI(t) = [βI(t)(N − I(t))− (µ+ γ)I(t)]dt+
√

βI(t)(N − I(t)) + (µ+ γ)I(t)dB. (2.5)

The corresponding deterministic SIS model to the SDE SIS model (2.5) is given by:

dI(t)

dt
= I(t)[βN − βI(t)− µ− γ]. (2.6)

An alternative derivation of equation (2.5) based on (2.6) is given by Allen [2] who applies
the procedure outlined above to (2.6). Equations (2.4) then follow from S+ I = N . Note
that the diffusion coefficient of the SDE SIS model (2.5) vanishes when I(t) = N + µ+γ

β
.

It is appropriate to take an initial value I(0) = I0 ∈ (0, N). For the rest of the paper,
we shall focus on analysing the SDE SIS model with demographic stochasticity (2.5).
Throughout this paper, unless stated otherwise, we shall assume that the unit of time is
one day, and the population sizes are measured in units of one million.
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3 Existence of unique nonnegative solution

In order to prove the existence and uniqueness of the solution to the SDE SIS model (2.5),
let us denote

λ(x) = βx(N − x)− (µ+ γ)x,

σ(x) =
√

βx(N − x) + (µ+ γ)x,

where λ(x) and σ(x) are the drift and diffusion coefficients of the SDE SIS model (2.5)
respectively and x ∈ [0, N + µ+γ

β
]. We shall now extend the domain of our SDE SIS

model (2.5) into the whole domain, i.e. λ(x), σ(x): R → R by considering the following
equations:

λ(x) =











0, for x < 0,

λ(x), for 0 ≤ x ≤ N + µ+γ
β

,

λ(N + µ+γ
β

), for x > N + µ+γ
β

,

(3.1)

and

σ(x) =











0, for x < 0,

σ(x), for 0 ≤ x ≤ N + µ+γ
β

,

0, for x > N + µ+γ
β

.

(3.2)

As this SDE is a special case, the standard existence and uniqueness theorems on SDEs
are not applicable here (e.g. [25]) and other methods [14] do not adapt here as well. We
are now ready to prove the existence and uniqueness of the solution for the SDE SIS model
(2.5) by using the following lemma which is mentioned in [20] (Theorem 3.2 of Chapter
IV).

Lemma 3.1 Suppose σ(x) and λ(x) are bounded. Then there exists a strong pathwise
unique solution to the scalar SDE

dx(t) = λ(x(t))dt+ σ(x(t))dB(t) (3.3)

if (i) |λ(x)−λ(y)| ≤ κ(|x−y|), where κ(u) is a strictly increasing function on [0,∞) such
that κ(0) = 0 and

∫

0+
κ−1(u)du = ∞ for all x, y ∈ R,

(ii) |σ(x)−σ(y)| ≤ ρ(|x−y|), where ρ(u) is a strictly increasing function on [0,∞) such
that ρ(0) = 0 and

∫

0+
ρ−2(u)du = ∞ for all x, y ∈ R.

Theorem 3.2 For any initial value x(0) = x0 ∈ [0, N + µ+ν
β

], the SDE (3.3) with its

coefficients defined by (3.1) and (3.2) has a strong pathwise unique solution.

Proof. We shall split the proof into two sections by showing condition (i) is satisfied
first.

(i) The first derivative of equation (3.1) is defined as:
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λ′(x) =











0, for x < 0,

−2βx+ βN − µ− γ, for 0 < x < N + µ+γ
β

,

0, for x > N + µ+γ
β

.

(3.4)

For x, y ∈
(

0, N + µ+γ
β

)

, by the Mean Value Theorem we have that for some ξ ∈ (x, y)

|λ(x)− λ(y)|
|x− y| = |λ′(ξ)| ≤ M = sup

ξ∈(0,N+µ+γ
β

)

|λ′(ξ)|,

since λ′(ξ) is a continuous function in (0, N + µ+γ
β

). Letting x → 0+, y → (N + µ+γ
β

)−,

we deduce that the same result is true if x, y ∈ [0, N + µ+γ
β

]. It is easy to see that the

result follows for x, y in (−∞,∞). Therefore, condition (i) is satisfied with κ(u) = Mu
for some constant M for all x, y ∈ R and that λ(x) is Lipschitz continuous.

We will now complete the proof by looking at the second condition:

(ii) From equation (3.2), it is clear that the Mean Value Theorem does not apply in
this case. In addition, if we are able to show condition (ii) is satisfied for x, y ∈ [0, N+ µ+γ

β
]

then the rest will follow. In other words, if we could find a constant L such that

|σ(x)− σ(y)|
√

|x− y|
≤ L, (3.5)

for x, y ∈ [0, N + µ+γ
β

], then condition (ii) is proved. By choosing ε = 1
4
(N + µ+γ

β
)

and considering separately the regions ε ≤ x ≤ N + µ+γ
β

− ε, ε ≤ y ≤ N + µ+γ
β

− ε,

0 < x, y ≤ ε, N + µ+γ
β

− ε ≤ x, y ≤ N + µ+γ
β

, N + µ+γ
β

− ε < x ≤ N + µ+γ
β

and 0 < y < ε

and N + µ+γ
β

− ε < y ≤ N + µ+γ
β

and 0 < x < ε, it is straightforward to show that (3.4)

holds. As a result, condition (ii) is satisfied with ρ(u) = L
√
u for some constant L for

all x, y ∈ R. In other words, σ(x) is Hölder continuous with exponent 1/2. Moreover, by
definitions (3.1) and (3.2) both λ(x) and σ(x) are bounded so the theorem follows from
Lemma 3.1.

�

Note that by Theorem 2.4 of Chapter IV of [20], since σ(I(t)) and λ(I(t)) are bounded,
the solution to the SDE SIS model (2.5) will not explode. Hence, we have shown that a
unique strong pathwise non-explosive solution does in fact exist for our SDE SIS model
(2.5).

All we have left to show now is the non-negativity of our solution. Note that in order
for this SDE SIS model (2.5) to make sense, the term inside the square root has to be
nonnegative. We consider the SDE (3.3). We show that provided that I0 ∈ (0, N) then
I(t) ∈ [0, N + µ+γ

β
].

Theorem 3.3 For any given initial value I(0) = I0 ∈ (0, N), the probability that the
SDE (3.3) has a unique and nonnegative solution I(t) ∈ [0, N + µ+γ

β
] for all t ≥ 0 is one,

i.e.,

0 ≤ I(t) ≤ N +
µ+ γ

β
, (3.6)
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almost surely for all t ≥ 0.

Note that this result is slightly unusual as based on biological considerations we would
have expected I(t) ∈ (0, N). This is the result of introducing stochasticity into the model
using the technique mentioned in [1] and this SDE SIS model (2.5) is a well-established
model. In section 6, we shall show that although it is theoretically possible for I(t) to
exceed N for simulations carried out with realistic parameter values, in practice I(t) never
went over N .

Proof. The following proof for Theorem 3.3 is established based on the framework of
the “Square Root Process” illustrated in [25]. We shall divide this proof into two parts.
First of all, we shall prove the left hand side inequality, I(t) ≥ 0 and by using a similar
strategy we shall prove the right hand side inequality and thus complete the proof. Let
a0 = 1 and ak = e−k(k+1)/2 for every integer k ≥ 1. Note that

∫ ak−1

ak

du

u
= k.

Let Ψk(u) be a continuous function such that its support is contained in the interval
(ak, ak−1) where

0 ≤ Ψk(u) ≤
2

ku
,

and Ψk(ak−1) = Ψk(ak) = 0

∫ ak−1

ak

Ψk(u) = 1.

It can be shown that such a function exists. Define ϕk(x) = 0 for x ≥ 0 and

ϕk(x) =

∫ −x

0

dy

∫ y

0

Ψk(u)du, for x < 0. (3.7)

It is easy to see that ϕk ∈ C2(R,R). Furthermore,

ϕ′
k(x) = −

∫ −x

0

Ψk(u)du, (3.8)

and ϕ′′
k(x) = Ψk(−x), (3.9)

respectively. As in [25]:

−1 ≤ ϕ′
k(x) ≤ 0 if −∞ < x < −ak or otherwise ϕ′

k(x) = 0; (3.10)

|ϕ′′
k(x)| ≤

2

k|x| if − ak−1 < x < −ak or otherwise ϕ′′
k(x) = 0; (3.11)

and x− − ak−1 ≤ ϕk(x) ≤ x− for all x ∈ R, (3.12)
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where we define x− = −x if x < 0 or otherwise x− = 0. Now, by Itô’s formula, we get
that for any t ≥ 0:

ϕk(I(t)) = ϕk(I0) +

∫ t

0

[

λ(I(s))ϕ′
k(I(s)) +

σ(I(s))2

2
ϕ′′
k(I(s))

]

ds

+

∫ t

0

σ(I(s))ϕ′
k(I(s))dB(s), (3.13)

where λ, σ : R → R are defined as before.

As ϕ′
k(I) = 0 and ϕ′′

k(I) = 0 for I ≥ 0, from (3.13)

ϕk(I(t)) ≤
∫ t

0

σ(I(s))ϕ′
k(I(s))dB(s). (3.14)

Taking the expectation yields:
Eϕk(I(t)) ≤ 0. (3.15)

Hence,
EI−(t)− ak−1 ≤ Eϕk(I(t)) ≤ 0. (3.16)

We get that as k → ∞,
EI−(t) ≤ 0. (3.17)

Now for all t, I−(t) ≥ 0, so EI−(t) ≥ 0, hence from our result (3.17), we must have:

EI−(t) = 0 ∀t ≥ 0. (3.18)

Furthermore, by using equation (3.18) and proof by contradiction, it is straightforward
to show that for all t > 0,

P(I(t) < 0) = 0,

⇒ P(I(t) ≥ 0) = 1. (3.19)

Therefore, I(t) ≥ 0 almost surely and this completes the left hand side of the proof for
equation (3.6).

To complete the proof we shall now show that I(t) ≤ N + µ+γ
β

. Let us define

J(I(t)) = N +
µ+ γ

β
− I(t),

=
βN + µ+ γ − βI(t)

β
. (3.20)
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Then, from Itô’s formula on equation (3.20), we get:

dJ(I(t)) = (−1)λ(J(I(t))− σ(J(I(t)))dB,

where

λ(J(I(t)) =















−2(µ+ γ)
(

N + µ+γ
β

)

, for J ≤ 0,
(

N + µ+γ
β

− J(I(t))
)

(βJ(I(t))− 2(µ+ γ)), for 0 ≤ J ≤ N + µ+γ
β

,

0, for J ≥ N + µ+γ
β

,

and

σ(J(I(t)) =



















0, for J ≤ 0,
√

βJ(I(t))
(

N + µ+γ
β

− J(I(t))
)

, for 0 ≤ J ≤ N + µ+γ
β

,

0, for J ≥ N + µ+γ
β

.

By Itô’s formula, we derive that:

ϕk(J(t)) = ϕk(J0) +

∫ t

0

[P (J(s)) +Q(J(s))] ds−
∫ t

0

σ(J(s))ϕ′
k(J(s))dB(s), (3.21)

where P,Q : R → R are defined by:

P (x) =















2(µ+ γ)
(

N + µ+γ
β

)

ϕ′
k(x), for x ≤ 0,

(

N + µ+γ
β

− x
)

(2(µ+ γ)− βx)ϕ′
k(x), for 0 ≤ x ≤ N + µ+γ

β
,

0, for x ≥ N + µ+γ
β

.

(3.22)

Q(x) =

{

x
2
(β(N − x) + µ+ γ)ϕ′′

k(x), for 0 ≤ x ≤ N + µ+γ
β

,

0, otherwise.
(3.23)

So P (x) ≤ 0 and Q(x) = 0 for all x.

Thus

ϕk(J(t)) ≤ −
∫ t

0

σ(J(s))ϕ′
k(J(s))dB(s).

Now take the expectations to get Eϕk(J(t)) ≤ 0. Hence, EJ−(t)− ak−1 ≤ Eϕk(J(t)) ≤ 0.
As k → ∞, ak−1 → 0, thus EJ−(t) ≤ 0. Similarly to the argument we used for proving
the left hand side of equation (3.6), it is clear that for all t > 0,

P(J(t) < 0) = 0,

⇒ P(J(t) ≥ 0) = 1, (3.24)

i.e., I(t) ≤ N + µ+γ
β

almost surely ∀t ≥ 0, which completes the entire proof. �

Hence we have proven the nonnegative property of the solution of the SDE SIS model
with demographic stochasticity (3.3) and provided that I(t) ∈ [0, N + µ+γ

β
] we could

express equation (3.3) as equation (2.5). This has completed our proof on the existence
of a unique nonnegative solution for the SDE SIS model (2.5).
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4 Extinction of our solution

In this section, we shall focus on the extinction aspect of the nonnegative solution I(t) ∈
[0, N + µ+γ

β
] to the SDE SIS model (2.5). Let us define the basic reproduction number R0

as:

R0 =
βN

µ+ γ
(4.1)

where the parameters as denoted as before.

Theorem 4.1 For any given initial value I(0) = I0 ∈ (0, N), if R0 ≤ 1 or if R0 > 1 and
N < 1

4
+ µ+γ

β
, then I(t) will hit zero with probability one in finite time. In other words,

the disease will certainly die out in finite time.

Proof. Let us define the stopping time

τn = inf{t : I(t) ≤ n}

for 0 ≤ n < I0, where we set inf ∅ = ∞. We need to show that

P(τ0 < ∞) = 1. (4.2)

We will show this by using proof by contradiction. If (4.2) were false, then P(τ0 = ∞) > 0.
Noting that limn→0 τn = τ0, we could find an n sufficiently small so that

δ̄ := P(τn = ∞) > 0. (4.3)

By Itô’s formula, we have that

d(
√

I(t)) =
√

I(0) + q(I(t))dt+
1

2

√

βN − βI(t) + µ+ γdB(t) (4.4)

for 0 ≤ t ≤ τn, where q : R → R is defined by:

q(x) =

√
x

2
(βN − µ− γ − βx)− 1

8
√
x
(βN − βx+ µ+ γ). (4.5)

In order to prove this theorem, we will now show that there exists a negative upper bound
for q(x) when x ∈ [n,N + µ+γ

β
].

• Case 1 : R0 = βN
µ+γ

≤ 1 . By using Theorem 3.3, it is clear that the second term

in equation (4.5) is negative. In addition, due to the fact that βN
µ+γ

≤ 1, then the first

term for (4.5) is negative, which makes q(x) in (4.5) negative. Therefore, we have that
for x ∈ [n,N + µ+γ

β
],

q(x) ≤
√
x

2
(βN − µ− γ)− β

2
x3/2 ≤ −β

2
n3/2. (4.6)

As a result from (4.6), we could conclude that for x ∈
[

n,N + µ+γ
β

]

, q(x) is negative

and thus there must exist some ε > 0 such that q(x) < −ε < 0 for t ≥ 0 for x ∈
[

n,N + µ+γ
β

]

.
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Now by substituting the negative upper bound of q(x) into equation (4.4) and inte-
grating, we get that:

√

I(t ∧ τn) ≤
√

I(0)−
∫ t∧τn

0

εdt+
1

2

∫ t∧τn

0

√

βN − βI(s) + µ+ γdB(s). (4.7)

By taking the expectation of equation (4.7) and using the result given by (4.3), we obtain
that:

0 ≤
√

I(0)− E

∫ t∧τn

0

εds ≤
√

I(0)− εδ̄t, ∀t ≥ 0. (4.8)

Now letting t → ∞, we have that 0 ≤ −∞, which clearly is a contradiction. Therefore
the result given by (4.2) must be true, in other words the disease will die out almost surely
for the case where R0 ≤ 1. Similarly, we shall apply the same argument to the second
case:

• Case 2: R0 = βN
µ+γ

> 1 where N < 1
4
+ µ+γ

β
. First of all we shall rewrite equation

(4.5) as:

q(x) =
1

8
√
x
U(x), (4.9)

where U(x) is defined as:

U(x) = 4x(βN − (µ+ γ)− βx)− (βN − βx+ µ+ γ), (4.10)

for x ∈
[

n,N + µ+γ
β

]

. Clearly, U(x) is a quadratic function so therefore it must have at

most two real roots. From (4.10),

U(n) = 4n(βN − (µ+ γ)− βn)− (βN − βn+ µ+ γ). (4.11)

We can choose n sufficiently small, thus making U(n) negative. Additionally U
(

N + µ+γ
β

)

is negative. So

−∞ < U(n) < 0, −∞ < U

(

N +
µ+ γ

β

)

< 0. (4.12)

Also, U(x) has a maximum turning point at x∗ = 1
2

(

1
4
+N − µ+γ

β

)

. Now suppose

that x∗ ∈
[

n,N + µ+γ
β

]

, then by substituting x∗ into (4.10) we could see that the second

term of (4.10) is negative. Furthermore, the first term of (4.10) becomes:

4x∗

(

βN

2
− µ+ γ

2
− β

8

)

, (4.13)

which is negative as N < 1
4
+ µ+γ

β
. So U(x) < 0 when x ∈

[

n,N + µ+γ
β

]

.

Now consider the case where x∗ > N + µ+γ
β

. By using the fact that U(n) < 0 and

U(N + µ+γ
β

) < 0 and that U(x) has one unique turning point, at x = x∗, U(x) is negative

12



for x ∈
[

n,N + µ+γ
β

]

. By combining both results we could conclude from equation (4.10)

that, for R0 > 1, ∃ε > 0 such that q(x) < −ε < 0 for x ∈
[

n,N + µ+γ
β

]

.

Arguing as in case 1, we deduce that P(τ0 < ∞) = 1. This completes the proof.

�

5 Probabilities of hitting the top and bottom limits

Now that we know under certain situations, the number of infected individuals will die
out, it is also useful to know the probability of it hitting zero and the probability of it
hitting N + µ+γ

β
. For the rest of this paper, we shall work on the SDE SIS model (2.5),

unless stated otherwise. Let a∧ b represent the minimum of {a, b} and a∨ b represent the
maximum of {a, b}. For a < I0 < b define

τa = inf{t ≥ 0 : I(t) ≤ a},

τb = inf{t ≥ 0 : I(t) ≥ b},
where τ0 = lima↓0 τa, τN+µ+γ

β
= limb↑(N+µ+γ

β
) τb and τ = τ0 ∧ τN+µ+γ

β
.

Theorem 5.1 For any given initial value I(0) = I0 ∈ (0, N + µ+γ
β

), we have that

• For 4(µ+γ)
β

≥ 1,

P

(

inf
0≤t<τ

I(t) = 0

)

= 1, (5.1)

P

(

sup
0≤t<τ

I(t) = N +
µ+ γ

β

)

= 0. (5.2)

• For 4(µ+γ)
β

< 1 if P(τ < ∞) = 1,

P

(

inf
0≤t<τ

I(t) = 0

)

=

∫ N+µ+γ
β

I0
(βN − βy + µ+ γ)

−4(µ+γ)
β e−2ydy

∫ N+µ+γ
β

0 (βN − βy + µ+ γ)
−4(µ+γ)

β e−2ydy
> 0, (5.3)

P

(

sup
0≤t<τ

I(t) = N +
µ+ γ

β

)

=

∫ I0
0

(βN − βy + µ+ γ)
−4(µ+γ)

β e−2ydy
∫ N+µ+γ

β

0 (βN − βy + µ+ γ)
−4(µ+γ)

β e−2ydy
,

= 1− P

(

inf
0≤t<τ

I(t) = 0

)

> 0. (5.4)

Furthermore, for the case when 4(µ+γ)
β

< 1 if P(τ = ∞) > 0, then

P

(

inf
0≤t<τ

I(t) = 0

)

≥
∫ N+µ+γ

β

I0
(βN − βy + µ+ γ)

−4(µ+γ)
β e−2ydy

∫ N+µ+γ
β

0 (βN − βy + µ+ γ)
−4(µ+γ)

β e−2ydy
> 0, (5.5)
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P

(

sup
0≤t<τ

I(t) = N +
µ+ γ

β

)

≥
∫ I0
0

(βN − βy + µ+ γ)
−4(µ+γ)

β e−2ydy
∫ N+µ+γ

β

0 (βN − βy + µ+ γ)
−4(µ+γ)

β e−2ydy
. (5.6)

Proof. The proof of Theorem 5.1 is established based on the framework of the “Mean
Reverting Square Root Process ” illustrated in [25]. Let us define the drift and diffusion
coefficients of our SDE SIS model (2.5) as

v(x) = β(N − x)x− (µ+ γ)x, (5.7)

and w(x) =
√

x(β(N − x) + µ+ γ), (5.8)

respectively.

As mentioned in [25], we know that for any given pair of nonnegative constants a and
b with a < I0 < b there is a unique solution, say M(x) satisfying the equation

v(x)M ′(x) +
1

2
w2(x)M ′′(s) = −1, a < x < b, (5.9)

with boundary conditions M(a) = M(b) = 0. This equation for M(x) is solved in [21] and
we shall outline the important aspects of the working for the purpose of completeness.
Let us introduce the speed measure

m(dx) =
2dx

p′(x)w2(x)
, x ∈ [a, b], (5.10)

and the Green function

Ga,b(x, y) =
(p(x ∧ y)− p(a))(p(b)− p(x ∨ y))

p(b)− p(a)
, x, y ∈ [a, b], (5.11)

where the scale function p(x) is defined in [21] as

p(x) =

∫ x

c

exp

(

−2

∫ ξ

c

v(ζ)dζ

w2(ζ)

)

dξ, x ∈ R,

where c ∈ R is a fixed number. This scale function p(x) is a monotonic increasing function
of x. By using equations (5.10), (5.11) and applying the boundary conditions, we could
obtain the explicit solution M(x) as illustrated in [21] that satisfies the equation (5.9),
namely:

Ma,b(x) =

∫ b

a

Ga,b(x, y)m(dy),

= −
∫ x

a

(p(x)− p(y))m(dy) +
p(x)− p(a)

p(b)− p(a)

∫ b

a

(p(b)− p(y))m(dy), (5.12)

≡ M(x).

14



Since Ga,b(x, y) is a non-negative function, it is clear that M(x) ≡ Ma,b(x) is also a
non-negative function. Now, let us define the stopping times:

τa = inf{t ≥ 0 : I(t) ≤ a},
τb = inf{t ≥ 0 : I(t) ≥ b},

where a < I0 < b. By the Itô formula we get that:

M(I(t ∧ τa ∧ τb)) = M(I0)−
∫ t∧τa∧τb

0

dt+

∫ t∧τa∧τb

0

w(I)M ′(I)dB,

= M(I0)− (t ∧ τa ∧ τb) +

∫ t∧τa∧τb

0

w(I)M ′(I)dB. (5.13)

Taking the expectations yields the following results which are similar to the ones that
have been illustrated in [25]:

EM(I(t ∧ τa ∧ τb)) = M(I0)− E(t ∧ τa ∧ τb) ≥ 0,

which gives

E(t ∧ τa ∧ τb) ≤ M(I0) < ∞.

Consequently this indicates that I(t) exits from every compact subinterval of
(

0, N + µ+γ
β

)

in finite expected time, which means that we must have P(τa ∧ τb < ∞) = 1. In addition,
by referring to the boundary conditions we get that

lim
t→∞

EM(I(t ∧ τa ∧ τb)) = 0,

and so E(τa ∧ τb) = M(I0). Let us now define

V (x) =

∫ x

x0

exp

(

−
∫ y

x0

2v(z)

w2(z)
dz

)

dy, (5.14)

where x ∈
(

0, N + µ+γ
β

)

and we define x0 = 1
2
(N + µ+γ

β
). This function has continuous

first and second derivatives V ′(x) and V ′′(x) in (0, N + µ+γ
β

) with strictly nonnegative

V ′(x), and V ′′(x) satisfies

V ′′(x) =
−2v(x)

w2(x)
V ′(x),

where v(x) and w(x) are defined as equation (5.7) and (5.8) respectively. By the Itô
formula, we could derive that:

V (I(t ∧ τa ∧ τb)) = V (I0) +

∫ t∧τa∧τb

0

V ′(I(u))w(I(u))dB. (5.15)

Taking the expectations and letting t → ∞ yields that:

V (I0) = EV (I(τa ∧ τb)),

= V (a)P(τa < τb) + V (b)P(τa > τb). (5.16)

15



By using the fact that the two probabilities must add up to one, we obtain from equation
(5.16) that:

P(τa < τb) =
V (b)− V (I0)

V (b)− V (a)
,

=

∫ b

I0
exp

(

−
∫ y

I0

2v(z)
w2(z)

dz
)

dy

∫ b

a
exp

(

−
∫ y

I0

2v(z)
w2(z)

dz
)

dy
, (5.17)

and P(τb < τa) =
V (I0)− V (a)

V (b)− V (a)
,

=

∫ I0
a

exp
(

−
∫ y

I0

2v(z)
w2(z)

dz
)

dy

∫ b

a
exp

(

−
∫ y

I0

2v(z)
w2(z)

dz
)

dy
, (5.18)

where equation (5.17) represents the probability of hitting a before it reaches b and vice
versa for equation (5.18). Now by substituting v(z) and w(z) into equation (5.14), we get
that:

V (x) =

∫ x

x0

exp

(

−2

∫ y

x0

β(N − z)− (µ+ γ)

β(N − z) + (µ+ γ)
dz

)

dy,

= e2x02−
4(µ+γ)

β

∫ x

x0

(

βN − βy + µ+ γ

βN + µ+ γ

)−
4(µ+γ)

β

e−2ydy. (5.19)

For the case where 4(µ+γ)
β

≥ 1, we have that V (x) tends to a finite (strictly negative)

limit as x → 0+ and that V (x) tends to infinity as x →
[

N + µ+γ
β

]−

, namely:

−∞ < V (0+) < 0 and V

(

[

N +
µ+ γ

β

]−
)

= ∞. (5.20)

Recall that:

τ0 = lim
a↓0

τa, τN+µ+γ
β

= lim
b↑N+µ+γ

β

τb and τ = τ0 ∧ τN+µ+γ
β
.

Define τ[a,b] = τa ∧ τb. From equations (5.17) and (5.18) and the above notations, we can
work out the probability of I(t) hitting the bottom limit is as follows:

For a ∈
(

0, N + µ+γ
β

)

P

(

inf
0≤t<τ

I(t) ≤ a

)

≥ P(τa < τb),

=
1− V (I0)/V (b)

1− V (a)/V (b)
. (5.21)

By letting b ↑ N + µ+γ
β

, we get that
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P

(

inf
0≤t<τ

I(t) ≤ a

)

= 1.

But since this holds for any a > 0 we must therefore have

P

(

inf
0≤t<τ

I(t) = 0

)

= 1. (5.22)

Similarly, the probability of I(t) hitting the top limit N + µ+γ
β

is:

P

(

sup
0≤t<τ

I(t) ≥ b

)

≥ P(τb < τa),

=
V (I0)− V (a)

V (b)− V (a)
. (5.23)

By letting a ↓ 0 we get that

P

(

sup
0≤t<τ

I(t) ≥ b

)

=
V (I0)− V (0+)

V (b)− V (0+)
.

But since this holds for any b < N + µ+γ
β

, then letting b ↑ N + µ+γ
β

,

P

(

sup
0≤t<τ

I(t) = N +
µ+ γ

β

)

= 0. (5.24)

As a result, for the case 4(µ+γ)
β

≥ 1, I(t) will reach 0 first before it reaches N + µ+γ
β

almost
surely.

By applying a similar argument for the case where 4(µ+γ)
β

< 1, we get that as x → 0+,

V (x) tends to a finite strictly negative limit, whereas as x →
[

N + µ+γ
β

]−

, V (x) tends to

a finite strictly nonnegative limit. In other words:

−∞ < V (0+) < 0 and 0 < V

[

(

N +
µ+ γ

β

)−
]

< ∞. (5.25)

Furthermore, the probability of I(t) reaching 0 before it reaches N + µ+γ
β

is given as
follows:

P

(

inf
0≤t<τ

I(t) ≤ a

)

≥ P(τa < τb),

=

∫ b

I0
(βN − βy + µ+ γ)

−4(µ+γ)
β e−2ydy

∫ b

a
(βN − βy + µ+ γ)

−4(µ+γ)
β e−2ydy

. (5.26)

Letting b ↑ N + µ+γ
β

in equation (5.26), we get that:

P

(

inf
0≤t<τ

I(t) ≤ a

)

≥
∫ N+µ+γ

β

I0
(βN − βy + µ+ γ)

−4(µ+γ)
β e−2ydy

∫ N+µ+γ
β

a
(βN − βy + µ+ γ)

−4(µ+γ)
β e−2ydy

> 0, (5.27)
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and since this holds for any a > 0, we have that

P

(

inf
0≤t<τ

I(t) = 0

)

≥
∫ N+µ+γ

β

I0
(βN − βy + µ+ γ)

−4(µ+γ)
β e−2ydy

∫ N+µ+γ
β

0 (βN − βy + µ+ γ)
−4(µ+γ)

β e−2ydy
> 0. (5.28)

Similarly, the probability that I(t) reaches N + µ+γ
β

before it reaches 0 is given as:

P

(

sup
0≤t<τ

I(t) = N +
µ+ γ

β

)

≥ 1− P(τ0 < τN+µ+γ
β
),

=

∫ I0
0

(βN − βy + µ+ γ)
−4(µ+γ)

β e−2ydy
∫ N+µ+γ

β

0 (βN − βy + µ+ γ)
−4(µ+γ)

β e−2ydy
, (5.29)

> 0.

If P(τ < ∞) = 1, then

P

(

inf
0≤t<τ

I(t) = 0

)

+ P

(

sup
0≤t<τ

I(t) = N +
µ+ γ

β

)

≤ 1,

and thus the inequalities (5.28) and (5.29) are actually equalities. This indicates that
wherever I(t) starts, there is a nonnegative probability that I(t) will first hit each of zero
and N + µ+γ

β
. If I(t) starts exactly halfway between zero and N + µ+γ

β
, then there is a

higher probability that I(t) will hit zero before it hits N+ µ+γ
β

. However, if P(τ = ∞) > 0

then all that we can say is as described in inequalities (5.28) and (5.29), namely

P

(

inf
0≤t<τ

I(t) = 0

)

≥
∫ N+µ+γ

β

I0
(βN − βy + µ+ γ)

−4(µ+γ)
β e−2ydy

∫ N+µ+γ
β

0 (βN − βy + µ+ γ)
−4(µ+γ)

β e−2ydy
> 0, (5.30)

P

(

sup
0≤t<τ

I(t) = N +
µ+ γ

β

)

≥
∫ I0
0

(βN − βy + µ+ γ)
−4(µ+γ)

β e−2ydy
∫ N+µ+γ

β

0 (βN − βy + µ+ γ)
−4(µ+γ)

β e−2ydy
. (5.31)

�

Hence in this section we have used the Feller test to calculate the probabilities that
I(t) will hit zero before it hits N + µ+γ

β
and vice versa. In the next section we shall look

at some of our analytical results using computer simulations.

6 Simulations

In this section we shall use the Milstein numerical simulation method for SDEs (e.g.
[35]) to numerically illustrate Theorem 4.1 and Theorem 5.1. The Milstein method is
superior to the simpler Euler-Maruyama method, for example used in [14], because as
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the integration time-step goes to zero the Milstein method is strongly convergent with
order 1 as opposed to 0.5 for the Euler-Maruyama method [19]. Our numerical integration
program was written in R and comprehensively verified using a large number of runs. For
Theorem 4.1, we first show that the disease will die out in finite time if R0 ≤ 1, or R0 > 1
and N < 1

4
+ µ+γ

β
, and explore numerically the situation where R0 > 1 and N ≥ 1

4
+ µ+γ

β
.

6.1 Simulations on extinction

In this section, we shall focus on highlighting the results shown in Theorem 4.1.

Example 6.1 (R0 ≤ 1) Let the following parameters be given as:

N = 100, µ = 25, γ = 35, β = 0.5, (6.1)

so the SDE SIS model (2.5) becomes

dI(t) = [0.5(100− I(t))I(t)− 60I(t)]dt+
√

0.5I(t)(100− I(t)) + 60I(t)dB. (6.2)

Clearly R0 = βN
µ+γ

= 0.833 < 1, when we could conclude from Theorem 4.1 that for any

initial value I(0) = I0 ∈ (0, 220), the disease will die out in finite time.

Moreover, by substituting the parameters (6.1) into the corresponding SIS determin-
istic model (2.6), we have:

dI(t)

dt
= I(t)[−10− 0.5I(t)]. (6.3)

By applying the Milstein method on the SDE SIS model (6.2) and its corresponding SIS
deterministic model (6.3), we have managed to construct the computer simulations illus-
trated in Figure 1 for parameters given by (6.1).

Figure 1 illustrates two different simulations constructed with different initial values.
The simulation on the left hand side represents the behaviour of the model when I(0) = 90,
while the one on the right hand side represents the behaviour of the model when I(0) = 1.
For both cases we could see that no matter what we choose our initial value to be, I(t)
will eventually die out and hit zero and thus the disease will go extinct. The simulation
was repeated with many different parameter values satisfying the condition R0 ≤ 1 and
different initial conditions and in each case the disease died out in finite time. This
supports the results of Theorem 4.1 on extinction.

Example 6.2 (R0 > 1, N < 1
4
+ µ+γ

β
) Let us use parameters

N = 42, µ = 0.9, γ = 20, β = 0.5, (6.4)

so the SDE SIS model (2.5) becomes

dI(t) = [0.5(42− I(t))I(t)− 20.9I(t)]dt+
√

0.5I(t)(42− I(t)) + 20.9I(t)dB, (6.5)

and the corresponding SIS deterministic model (2.6) becomes:

dI(t)

dt
= I(t)[0.1− 0.5I(t)]. (6.6)
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Figure 1: Computer simulation of the path I(t) for the SDE SIS model (6.2) and its
corresponding deterministic SIS model (6.3), using the Milstein method with step size
∆ = 0.0001 with different initial values.
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Figure 2: Computer simulation of the path I(t) for the SDE SIS model (6.5) and its
corresponding deterministic SIS model (6.6), using the Milstein method with step size
∆ = 0.0001 with initial value I(0) = 10.
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It is easy to see that R0 = 1.005 > 1, N < 1
4
+ µ+γ

β
= 42.05 and thus according to Theorem

4.1, for any initial value I(0) = I0 ∈ (0, 42), the disease will die out in finite time.

The simulation was repeated with many different parameter values satisfying R0 > 1
and N < 1

4
+ µ+γ

β
and in each case the disease died out in finite time as predicted by

Theorem 4.1. One such simulation is shown in Figure 2 with parameter values as in
(6.4).

Example 6.3 (R0 > 1, N ≥ 1
4
+ µ+γ

β
) As stated before we cannot determine any theoret-

ical results for this case. However, our simulations were also inconclusive. For some
parameter values the disease died out in finite time, whereas for others they did not ap-
pear to. For example for the parameter values N = 100, µ = 10, γ = 30, β = 0.5, in this
case we have that R0 = 1.25 > 1 and N > 1

4
+ µ+γ

β
= 80.25 and the simulations produced

by substituting these parameters into the SDE SIS model (2.5) died out in finite time. On
the other hand, for the parameter values N = 100, µ = 10, γ = 20, β = 0.5, in this case we
have that R0 = 1.667 > 1 and N > 1

4
+ µ+γ

β
= 60.25 and here the stochastic simulations

seemed to oscillate indefinitely. Here it was not clear that the disease died out in finite
time.

6.2 Simulations on the Feller test

Similar to section 6.1, we shall apply the Milstein method to reinforce the results that we
have shown in Theorem 5.1.

Example 6.4 (4(µ+γ)
β

≥ 1) We use parameter values

N = 100, µ = 25, γ = 30, β = 0.5, (6.7)

and by substituting these parameters into the SDE SIS model (2.5) and its corresponding
SIS deterministic model (2.6) we get that:

dI(t) = [0.5(100− I(t))I(t)− 55I(t)]dt+
√

0.5I(t)(100− I(t)) + 55I(t)dB, (6.8)

and
dI(t)

dt
= I(t)[−5− 0.5I(t)]. (6.9)

It is easy to see that 4(µ+γ)
β

= 440 > 1 and thus from Theorem 5.1, we conclude that

the disease hits zero before N + µ+γ
β

. The numerical simulations support these results as
expected. Two typical simulations are shown in Figure 3. The numerical simulations were
repeated with a variety of parameter values and initial conditions.

Example 6.5 (4(µ+γ)
β

< 1) Consider the parameter values

N = 1, µ = 0.025, γ = 0.09, β = 0.5, (6.10)

so the SDE SIS model (2.5) becomes:

dI(t) = [0.5(1− I(t))I(t)− 0.115I(t)]dt+
√

0.5I(t)(1− I(t)) + 0.115I(t)dB, (6.11)
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Figure 3: Computer simulations of the path I(t) for the SDE SIS model (6.8) and its
corresponding deterministic SIS model (6.9) with parameters N = 100, µ = 25, γ = 30, β
= 0.5, using the Milstein method with step size ∆ = 0.0001 with initial values I(0) = 90
(the left hand side) and I(0) = 1 (the right hand side).

and its corresponding SIS deterministic model (2.6) becomes:

dI(t)

dt
= I(t)[0.385− 0.5I(t)]. (6.12)

For this example, Theorem 5.1 says that it is possible for I(t) to hit either zero or N+ µ+γ
β

first. Figure 4 illustrates simulations which clearly shows that this is the case.

6.3 Realistic examples simulations

In sections 6.1 and 6.2, we have been focusing on using arbitrary parameters to support
our theories proved in Theorems 4.1 and 5.1 respectively. However, it would be better to
use parameters for real-life diseases. In this section, we shall look at two different diseases
for which an SIS model is suitable: gonorrhea amongst homosexuals and pneumococcus
amongst very young children in Scotland. We shall first look at gonorrhea amongst
homosexuals. Throughout the section the unit of time is still one day but the population
sizes are not scaled as previously.

Note that the demographic SDE SIS epidemic model (2.5) is a well established model.
This model approximates the system of ordinary differential equations describing the
probabilities that there are exactly i infected individuals at time t by a single stochastic
differential equation. In the system of ordinary differential equations i never exceedsN but
we have shown that in the stochastic differential equation approximation I may possibly
exceed N . However, it is important to note that when carrying out the simulations with
realistic parameter values, in practice I(t) never exceeded N , although the theoretical
possibility remains that it could do so.
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Figure 4: Computer simulations of the path I(t) for the SDE SIS model (6.11) and its
corresponding deterministic SIS model (6.12) with parameters N = 1, µ = 0.025, γ =
0.09, β = 0.5, using the Milstein method with step size ∆ = 0.0001 with initial values
I(0) = 0.5.

Example 6.6 (Gonorrhea Model) From Hethcote and Yorke [18] and Yorke, Hethcote
and Nold [38], we have the following parameters:

N = 10, 000, R0 = 1.4, µ = (1/(40× 365.25))/day, γ = (1/55)/day

which from the above and the equation for R0 defined by (4.1) we can derive the value for
β, namely β = 2.55503× 10−6/day. By numerically simulating equations (2.5) and (2.6),
Figure 5 is produced.

For this case, as R0 > 1 and N > 1
4
+ µ+γ

β
, Theorem 4.1 is inconclusive. For this case

Theorem 5.1 predicts that I(t) will almost surely hit zero in finite time. However, as the
time realistically looks likely to be very high it is not feasible to run the simulations for that
long. For the simulations shown and the other simulations not shown with both different
starting values, and different realistic parameter values with R0 > 1 and N ≥ 1

4
+ µ+γ

β
,

after an initial transient stage the stochastic simulations oscillated about the deterministic
level.

To illustrate the situation where R0 < 1, we shall change the value of N which real-
istically could change. Consider the parameter values

N = 7, 000, µ = (1/(40× 365.25))/day, γ = (1/35)/day, β = 2.55503× 10−6/day. (6.13)

Clearly in this case, R0 = 0.98 < 1 when we could conclude from Theorem 4.1 that for any
given initial value I(0) ∈ [0, N + µ+γ

β
], the solution I(t) of the SDE SIS model (2.5) will

die out almost surely with probability one. Furthermore 4(µ+γ)
β

> 1 whence, from Theorem

5.1 we could also conclude that I(t) will hit zero before N + µ+γ
β

with probability one.

The simulation produced by the Milstein method for SDE SIS model (2.4) and the
corresponding SIS deterministic model (2.5) with parameters given by (6.13) supports
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Figure 5: Computer simulations of the path I(t) for the Gonorrhea Model with parameters
N = 10, 000, µ = (1/(40 × 365.25))/ day, γ=(1/55)/day, β = 2.55503 × 10−6, using the
Milstein method with step size ∆ = 0.001 with initial values I(0) = 1, 000.

both Theorems 4.1 and 5.1. In other words the disease almost surely hits zero before the
upper bound and hits zero in finite time almost surely.

The numerical simulations were repeated with different values of N where R0 < 1,
and similar results were obtained each time.

Next, we shall look at pneumococcus, especially focussing on children under two years old
in Scotland mentioned in Greenhalgh, Lamb and Robertson [16].

Example 6.7 (Pneumococcus Model) In Greenhalgh, Lamb and Robertson’s paper
[16], they have chosen N = 150, 000, µ = 1/104 per week = 1.37363 × 10−3/day. In
Weir’s thesis [36], she chose γ = 1/7.1 per week = 0.02011/day and in Zhang et al.
[39] they chose β = 2 × 10−6/week = 2.857 × 10−7/day. It is easy to see that in this
case R0 = 2 > 1 and N > 1

4
+ µ+γ

β
and thus from Theorem 4.1 we are unable to conclude

anything. For these parameter values 4(µ+γ)
β

> 1 and so ultimately the disease goes extinct,
but the time taken for this to happen again seems very large. The numerical simulation
produced by these parameters is shown in Figure 6. Again for other simulations not shown
with different initial values and different parameter values with R0 > 1 and N ≥ 1

4
+ µ+γ

β
,

after an initial transient stage the stochastic simulations oscillated about the deterministic
level.

For illustrative purposes, we change N to 68, 000 so that R0 = 0.907 < 1 and that
4(µ+γ)

β
> 1. The numerical simulation produced for this case support both our results in

Theorems 4.1 and 5.1 and thus the disease almost surely hits zero before the upper bound
and hits zero in finite time almost surely. Again the numerical simulations were repeated
with different values of N where R0 < 1, and similar results were obtained each time.

As we mentioned at the beginning of this section the theoretical results show that
if we use the stochastic differential equation approximation suggested by Allen [1] to
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Figure 6: Computer simulations of the path I(t) for the Pneumococcus Model with param-
eters N = 150, 000, µ = 1.37363×10−3/day, γ = 0.02011/day and β = 2.8650×10−7/day,
using the Milstein method with step size ∆ = 0.001 and with initial value I(0) = 70, 000.

incorporate demographic stochasticity it becomes theoretically possible for the number
of infected individuals to exceed the population size and the number of susceptibles to
become negative. This may make us question whether the model is practically useful.
However extensive simulations with realistic parameter values for real diseases were per-
formed (some examples have been illustrated above) and in these simulations we never
once actually observed the number of susceptibles become negative, although it remains
a theoretical possibility. Thus this approximate model may still be useful to illustrate the
effect of inherent stochasticity in population dynamics.

7 Conclusion and Discussion

The use of epidemic models to control infectious diseases is becoming increasingly com-
mon. The SIS epidemic model is one of the simplest epidemic models possible and has
been widely used practically to predict the spread of infectious diseases such as gonor-
rhea and pneumococcus and examine the effect of control strategies. However it ignores
random variability in the population. One way to include random variation into the SIS
epidemic model is to model the transitions as Markov processes with the appropriate
rates and then either perform Monte-Carlo simulations, or derive the differential equa-
tions satisfied by pi(t), the probability that there are exactly i individuals infected by the
disease at time t. The latter approach is illustrated by Bailey [6]. However for realisti-
cally large population sizes these approaches rapidly become very cumbersome and use a
lot of computational power. Allen [1] suggested to use a stochastic differential equation
approximation to simplify the analytical stochastic model so that one had essentially a
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single stochastic differential equation instead of a very large set of ordinary differential
equations. This model has previously been formulated but never analysed. In this pa-
per we have filled this gap. We showed that this SDE SIS epidemic model has a unique
nonnegative bounded solution. Then we derived sufficient conditions for the disease to
go extinct in a finite time. This behaviour is different than the behaviour for the SIS
model with environmental stochasticity studied in [14] where environmental noise altered
the threshold value R0 from the deterministic model. If the stochastic threshold value Rs

0

exceeded one then the disease would persist and oscillate about a non-zero level. In our
model, the demographic noise does not alter the threshold value.

Next we used the Feller test to establish the probabilities of the number of infectious
individuals hitting the lower and upper boundaries. Finally we used numerical simulations
to confirm our analytical results and examine the behaviour of the model for realistic
parameter values for gonorrhea and pneumococcus.

The analytical results show that it is theoretically possible for the number of suscep-
tibles to become negative in the solution to the stochastic differential equation model.
However in many simulation runs with realistic parameter values this was never actually
observed so the stochastic differential equation model remains a useful approximation to
illustrate the possible effects of demographic stochasticity on population dynamics.
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