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This article considers the theoretical modelling of a novel electrostatic transducer in which the back-

plate consists of many spherical resonators. Three analytical models are considered, each of which pro-

duce impedance profiles of the device, in addition to transmission voltage responses and reception force

responses, all of which closely agree. Design parameters are then varied to investigate their influence on

the resonant frequencies and other model outputs.
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1. Introduction

Ultrasound is employed in a variety of technological applications which include penetration of a

medium and analysis of the reflected wave (medical imaging and non-destructive evaluation) and

focused energy supply (industrial cleaning and therapeutic ultrasound) (see Ladabaum et al., 1998;

Leighton, 2007). Electrostatic ultrasonic transducers are used for the detection and generation of ultra-

sonic waves (see Manthey et al., 1992). These transducers consist of a thin dielectric membrane

stretched across a conducting backplate. This backplate is often rough or grooved in order to trap air

beneath the membrane and reduce the membrane’s rigidity (see Schindel et al., 1995). Recently, back-

plates have been designed with machined cavities with acoustic amplifying conduits emanating from

the cavity (see Campbell et al., 2006; Walker et al., 2008; Walker & Mulholland, 2010). Issues such as

manufacturing tolerances can arise in these designs due to the dependence of the cavity and conduits’

dimensions on the transducer’s resonating frequencies. This is one factor which can affect the perfor-

mance of a transducer; other factors include the membrane’s thickness and size (see Rafiq & Wykes,

1991; Noble et al., 2001), the voltages applied (see Bayram et al., 2003) and issues which arise concern-

ing the impedance matching into air or any other fluid (see Alvarez-Arenas, 2004; Saffar & Abdullah,

2012). Conventionally, the propagation of ultrasound from a transducer into a material which is under

inspection has been facilitated by the use of a liquid or gel couplant (see Lynnworth, 1965; Reilly &

Hayward, 1991; Manthey et al., 1992).

Airborne ultrasound has many applications in non-destructive testing and capacitive ultrasonic trans-

ducers perform well in such applications due to good impedance matching of the dielectric membrane to

the air load. Recently, methodologies for manufacturing backplates have been developed that are based

c© The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications.
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2 A. J. WALKER AND A. J. MULHOLLAND

Fig. 1. A schematic representation of the electrostatic transducer where the spacing between the membrane and the backplate and

the size of the resonators have been exaggerated. In practice, there would be tens or hundreds of these resonators in a square or

circular-like lattice. The membrane displacement is zero unless it lies above one of the resonator apertures.

on depositing ternary solutions, one solvent and two solute polymers, onto an electrically conducting

substrate (or a non-conductive substrate which is subsequently electroded). During the deposition pro-

cess, the polymers undergo phase separation and the cavities can then be created by selective dissolution

of one polymer phase. The dimensions of the cavities and their spatial distribution can be controlled by

selection of the solutes and solvent and the rate of solvent evolution during the deposition process. This

process can be used to make Helmholtz resonator-like cavities in the backplate which can be used to

tune the resonator to a specific frequency (Mackie & O’Leary, 2012).

This article considers the theoretical modelling of such an ultrasonic transducer. The design con-

sists of a metalized Mylar membrane stretched over a conducting backplate which incorporates evenly

spaced spherical cavities formed by the process described above. Figure 1 provides a schematic of the

cavity design. The important outputs from the model are the mechanical impedance and the transmis-

sion and reception sensitivities of the device. Three models are proposed and compared; a 1D (in space)

model where the membrane is considered to operate as a damped harmonic oscillator, a membrane

model where the dominant restoring force comes from the tension applied, and a plate model where

the restoring forces comes from internal stiffness. The form of the 1D model is similar in form to the

model proposed by Walker & Mulholland (2010) where fluidic amplification was implemented. The

membrane and plate models are based on the work by Caronti et al. (2002) which considers the mod-

elling of a capacitive micromachined ultrasonic transducer which incorporates a machined cavity in the

backplate. The main difference from these articles is the form of the drag forces on the membrane which

is calculated from Helmholtz resonator theory.

In Section 2 each mathematical model is described. The differential equations are solved via two

different techniques which provide the mechanical impedance profile of the device. Derivation of the

transmission voltage response (TVR) and reception force response (RFR) is also provided. Section 3

presents a comparison between the three different models. It is shown that the proposed models are

in agreement with each other and they predict an operating frequency of around 1.5 MHz. Then, in

Section 4, design parameters related to the spherical resonators are varied in order to ascertain their

influence on the resulting resonating frequency of the device. It is found that selecting specific design

parameter values can drastically alter the device operating performance. Conclusions and discussions

are then provided in Section 5.
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AN ULTRASONIC TRANSDUCER INCORPORATING SPHERICAL RESONATORS 3

2. Analytical models of an electrostatic ultrasonic transducer incorporating Helmholtz resonators

To begin, the radiation impedance for one spherical resonator is computed and then used to provide

a lumped impedance profile for the full backplate. This is then inserted into the three derived mod-

els which are then solved for the mechanical impedance profile of the device. The transmission and

reception sensitivities are then derived.

2.1 Backplate impedance model

A single Helmholtz resonator with a radius rr and an aperture of radius ra, as shown in Fig. 2, is

considered. For the frequencies of interest, it is assumed that λ ≫ 3
√

Vr and λ ≫
√

Sa, where λ is the

wavelength of the sound in the resonator, Vr is the volume of the resonator and Sa = πr2
a is the area

of the aperture. This aperture radiates sound, providing a radiation resistance and a radiation mass. The

compression of the fluid in the resonator provides a stiffness sr. If it is assumed that the aperture radiates

sound in the same manner as an open-ended pipe, the radiation resistance Rr is given by Kinsler et al.

(2000, p. 285)

Rr = ρacr2
aπ

3

λ2
, (2.1)

where ρa is the density of the fluid in the resonator and c is the speed of sound in the resonator. The

thermoviscous resistance, Rω, can also be included in the formulation of the impedance, where (Kinsler

et al., 2000, p. 285)

Rω = 2m′cαω, (2.2)

and αw is the absorption coefficient for wall losses, given by

αw = 1

rac

(
ηω

2ρa

)1/2 (
1 + γω − 1√

Pr

)
, (2.3)

with η being the coefficient of shear viscosity, ω the angular frequency, γω ≈ 8/π an attenuation coeffi-

cient (see Kinsler et al., 2000, p. 213), and Pr being the Prandtl number. The total effective mass m′ of

the aperture is given by

m′ = ρaSaL′, (2.4)

where

L′ ≈ L + 1.6ra, (2.5)

is the effective length of the neck of the resonator, with L being the actual length of the neck of the

resonator. For the main, L is set equal to zero, other than in Section 4.3.

To determine the stiffness of the resonator(s), an airtight membrane over the aperture of the resonator

is considered. When the membrane is pushed in a distance ψ , the volume of the resonator is changed by

∆Vr = −Saψ , resulting in a pressure increase of pr = ρac2Saψ/Vr. The force required to maintain this

displacement is given by fr = Sapr = srψ and therefore the effective stiffness is

sr = ρac2S2
a

Vr

. (2.6)

The instantaneous complex driving force produced by a pressure wave of amplitude Pi impinging on

the resonator aperture is f (t) = SaPi eiωt, where i =
√

−1 and t is time. The resulting equation for the
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4 A. J. WALKER AND A. J. MULHOLLAND

Fig. 2. A schematic representation of a single resonator, manufactured by depositing ternary solutions, one solvent and two solute

polymers, onto an electrically conducting substrate. During the deposition process the polymers undergo phase separation and

the cavities can then be created by selective dissolution of one polymer phase. The dimensions of the cavities and their spatial

distribution can be controlled by selection of the solutes and solvent and the rate of solvent evolution during the deposition

process.

inward displacement ψ of the fluid in the resonator is

m′ψ̈ + (Rr + Rω)ψ̇ + srψ = SaPi eiωt, (2.7)

where a dot denotes a time derivative. Hence, the mechanical impedance of the resonator is given by

Zr
m = Rr + Rω + i

(
ωm′ − sr

ω

)
, (2.8)

where Rr, Rω, m′ and sr are given by (2.1), (2.2), (2.4) and (2.6), respectively. In order to calculate

this impedance, an expression for the volume of the resonator must be constructed. Considering the

schematic of one resonator in Fig. 2, it can be seen that each cavity consists of a sphere with a ‘removed

cap’ of base radius ra and height ha. The volume Vr of each resonator is then given by Weisstein (2013)

Vr = 4

3
πr3

r − π

6
ha(3r2

a + h2
a), (2.9)

where, by considering Pythagoras’ theorem, ha can be written in the form

ha = rr −
√

r2
r − r2

a. (2.10)

As mentioned, the backplate consists of an array of resonators. Consequently, each resonator’s

impedance must be combined to form a lumped acoustic impedance which can then be inserted into

the model(s) for the displacement of the membrane. Defining Zr
m[i, j] as the mechanical impedance of

the resonator in the ith row and jth column of the array of resonators, the specific acoustic impedance
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AN ULTRASONIC TRANSDUCER INCORPORATING SPHERICAL RESONATORS 5

of each resonator can then be given by Zr
s [i, j] = Zr

m[i, j]/Sa[i, j] and the acoustic impedance of each res-

onator is given by Zr[i, j] = Zr
m[i, j]/S2

a[i, j]. By summing the impedances of each resonator in each row

of the array, and then summing the lumped impedances of each row, a form for the total impedance of

the array of resonators can be found. That is, the sum of the impedances of each resonator in a row is

given by

Zr[j] = 1∑nj

i=1 1/Zr[i, j]
, (2.11)

where nj is the number of resonators in row j. The sum of each row (the lumped acoustic impedance of

the backplate, Zb) is then calculated via

Zb = 1
∑N

j=1 1/Zr[j]
, (2.12)

where N is the number of rows in the resonator array.

Consequently, given the dimensions of each resonator, and other associated parameters such as the

speed of sound in the resonators, the lumped impedance of the backplate can be calculated and inserted

into a model for the mechanical impedance of the device. The three models which describe the motion of

the membrane, and consequently the mechanical impedance profile of the device, can now be illustrated.

2.2 Model I: pipe-driver model

This section considers the membrane as a pipe-driver system (see Kinsler et al., 2000, p. 280). That is,

the membrane is assumed to act like a damped harmonic oscillator, which is excited by an externally

applied force f (t). The displacement of the membrane ψ , from its equilibrium position, is given by

(
mass of

membrane

)(
membrane

acceleration

)
+

(
viscous damping

in membrane

)

+
(

drag forces

on membrane

)
+

⎛
⎝

force from

excess pressure

in resonators

⎞
⎠ +

⎛
⎝

driving

electrostatic

force

⎞
⎠ = 0.

The viscous damping term is assumed to be proportional to the membrane velocity,

viscous damping = Rv

Sm

ψ̇ , (2.13)

where Rv is a damping constant and Sm is the surface area of the membrane. The drag forces on the

membrane are also assumed to be proportional to the membrane velocity; however, the mechanical

impedances of the adjacent fluids must be utilized,

drag forces on membrane = (Zb
m + Zl

m)ψ̇ . (2.14)

Here, Zb
m is the mechanical impedance of the backplate, related to the acoustic impedance given by

(2.12), Zl
m is the mechanical impedance of the fluid on the load side of the membrane, where the acoustic

impedance of air is normally given as 413 Nsm−3 at room temperature.

The excess pressure in the resonators is given by the percentage change in their volume as the

membrane oscillates multiplied by the mechanical impedance of the fluid at the membrane–backplate
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6 A. J. WALKER AND A. J. MULHOLLAND

interface and the velocity of sound in the fluid. That is,

excess pressure in resonators = ∆Vr

Vr

Zr
mc = Saψ

Vr

Zr
mc. (2.15)

Care must be taken here concerning the spacing of the resonators. If each resonator is acting indepen-

dently, that is, the resonators are sufficiently separated so that there is no coupling and each part of

the membrane between the resonators has zero displacement (that is, it is clamped), then no summa-

tion of the resonators’ volumes occurs. In this paper, it is assumed that the resonators are sufficiently

spaced so that there is a zero displacement (Dirichlet) boundary condition around each resonator aper-

ture perimeter.

The electrostatic force is given by Caronti et al. (2002)

Fe = CV 2

2d2
e

, (2.16)

where C = ǫ0Sm/de is the capacitance of the device, ǫ0 is the permittivity of free space, V is the applied

voltage and de is the distance between the electrodes. It can be shown that the change in electrostatic

force can be written as (see Caronti et al., 2002; Walker & Mulholland, 2010)

∆FE = ǫ0SmVdc

d2
e

Vac − ǫ0SmV 2
dc

d3
e

ψ , (2.17)

where Vdc is the d.c. voltage and Vac is the a.c. voltage. Hence, the dynamic equation for the membrane

displacement is given by

dmρsψ̈ +
(

Rv

Sm

+ Zl
s + Sa

Sm

Zb
s

)
ψ̇ +

(
SaZr

mc

SmVr

− ǫ0V 2
dc

d3
e

)
ψ = f (t), (2.18)

where dm is the thickness of the membrane, ρs is the density of the membrane, Zl
s is the specific acoustic

impedance of the fluid at the load side of the membrane and the space between the electrodes de is

given by

de = dm

ǫr

+ Lm + xdc, (2.19)

where ǫr is the relative permittivity of the membrane, Lm is the distance between the inner surface of the

membrane and the lower electrode, xdc is the displacement of the membrane due to a bias d.c. voltage

Vdc and f (t) is the voltage driving force applied to the membrane given by

f (t) = ǫ0VdcVac(t)

d2
e

. (2.20)

Taking the Fourier transform (see Wright, 2005) of equation (2.18) gives

[
−ω2dmρs + iω

(
Rv

Sm

+ Zl
s + Sa

Sm

Zb
s

)
+

(
SaZr

mc

SmVr

− ǫ0V 2
dc

d3
e

)]
Ψ = F, (2.21)
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AN ULTRASONIC TRANSDUCER INCORPORATING SPHERICAL RESONATORS 7

where Ψ is the membrane displacement in the frequency domain and F is the voltage driving force in

the frequency domain. The frequency domain response of the system is then

Ψ = F

iωZI
s

, (2.22)

where ZI
s is the combined specific acoustic impedance of the system given by

ZI
s = iωdmρs +

(
Rv

Sm

+ Zl
s + Sa

Sm

Zb
s

)
− i

w

(
SaZr

mc

SmVr

− ǫ0V 2
dc

d3
e

)
, (2.23)

and

F = ǫ0VdcV̄ac(ω)

d2
e

, (2.24)

where V̄ac(ω) is the Fourier transform of the a.c. voltage Vac(t). Consequently, the velocity of the mem-

brane is the frequency domain is

Ψ̇ = 1

ZI
s

F. (2.25)

Hence, the amplitude of the pressure produced at the membrane–fluid load interface is

Po = Ψ̇ Zl
s. (2.26)

The device outputs of interest are the mechanical impedance, and the transmission and reception sensi-

tivities. The transmission and reception sensitivities are calculated in the same manner for each model

in Section 2.5.

2.3 Model II: membrane model

In this section the analysis to describe the membrane is provided, following a similar methodology to

that by Caronti et al. (2002). Assuming that the Mylar membrane is thin and the dominant restoring force

comes from the tension in the membrane, the membrane equation can be used to model the displacement

of the Mylar membrane. It is given by

∇2ψ(r, ω) + A2
mψ(r, ω) = Bm + Cm

∫ ra

0

rψ(r, ω) dr, (2.27)

where ψ(r, ω) is the displacement of the membrane at any point in its radius r � ra and frequency ω,

and A2
m accounts for viscous damping forces arising from the energy losses of the vibrating membrane

and the impedance arising from the design in the backplate, given by

A2
m = − 1

τ

(
−ω2dmρs + iω

(
Rv

Sm

+ Zl
s + Sa

Sm

Zb
s

)
+

(
SaZr

mc

SmVr

− ǫ0V 2
dc

d3
e

))
, (2.28)

where τ is the tensile stress per unit length. The constant Bm takes into account the excitation voltage

and is given by

Bm = ǫ0VdcVac(t)

τd2
e

, (2.29)
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8 A. J. WALKER AND A. J. MULHOLLAND

and Cm is related to the average displacement of the membrane and is given by

Cm = 2ρac2

τ r2
r Lm

. (2.30)

The homogeneous part of equation (2.27) is in the form of Bessel’s equation and hence the complemen-

tary function is given by

ψcf (r, ω) = C1J0 (λmr) + C2Y0 (λmr) , (2.31)

where C1, C2 and λm are all functions of ω to be found and J0 and Y0 are the Bessel functions of

the first and second kind of zero order (see Sneddon, 1980). Since the displacement of the membrane

must exist at r = 0 (the centre of the membrane) then C2 ≡ 0 since Y0(λmr) → ∞ as r → 0. Inserting

the complementary function into the auxiliary solution enables us to show that λm = Am and thus a

particular integral of the from

ψpi(r, ω) = C1J0(Amr) + C3, (2.32)

should be chosen, where C3 is an arbitrary function of ω to be solved for. Inserting the particular integral

(2.32) into the integro-differential equation (2.27) provides us with the solution for the function C2,

namely

C2 = B̄m + C1C̄m, (2.33)

where

B̄m = Bm

(A2
m − (1/2)Cmr2

a)
and C̄m = CmraJ1(Amra)

Am(A2
m − (1/2)Cmr2

a)
, (2.34)

with J1 being the Bessel function of the first kind of first order (see Sneddon, 1980). Since the displace-

ment of the membrane is zero apart from where it sits directly above the resonator aperture then the

appropriate boundary condition is ψ(ra, 0) = 0, and hence C1 is given by

C1 = − B̄m

J0(Amra) + C̄m

. (2.35)

Consequently, the full solution to the membrane equation (2.27) is given by

ψ(r, ω) = − B̄m

(J0(Amra) + C̄m)
J0(Amr) + B̄m − B̄mC̄m

(J0(Amra) + C̄m)
. (2.36)

The velocity of the membrane and, in turn, the impedance of the system, can then be given via the

spatially averaged displacement 〈ψ〉, given by Caronti et al. (2002)

〈ψ〉 = 1

πr2
a

∫ ra

0

ψ(r, ω)2πr dr. (2.37)

The specific acoustic impedance is defined as the ratio of the driving electrostatic force and the product

of the average velocity of the membrane and its surface area. Consequently, it can be written

ZII
s (ω) = CmAm

iω(−2(B̄m/(J0 (Amra) + C̄m))J1(Amra) + AmraB̄mAmra(B̄mC̄m/(J0(Amra) + C̄m)))
. (2.38)

This impedance will be used in the following section to provide a comparison with the other two models.
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AN ULTRASONIC TRANSDUCER INCORPORATING SPHERICAL RESONATORS 9

2.4 Model III: plate model

In this section the analysis for the plate model is provided. That is, it is assumed that the dominant

contribution to the restoring force of the membrane comes from its stiffness. Consequently, plate theory

is applied to model the membrane. The equation of motion for symmetric harmonic vibrations can be

constructed via (Caronti et al., 2002)

∇4ψ(r, ω) − A4
pψ(r, ω) = Bp − Cp

∫ ra

0

ψ(r, ω)r dr, (2.39)

where ψ(r, ω) is the displacement of the membrane at any point in its radius r and frequency ω, and A4
p

accounts for viscous damping forces arising from the energy losses of the vibrating membrane and the

impedance arising from the design in the backplate, given by

A4
p = − 1

D

(
−ω2dmρs + iω

(
Rv

Sm

+ Zl
s + Sa

Sm

Zb
s

)
+

(
SaZr

mc

SmVr

− ǫ0V 2
dc

d3
e

))
, (2.40)

where D is the flexural rigidity of the membrane. The function Bp takes into account the excitation

voltage and is given by

Bp = ǫ0VdcVac(t)

D(dm/ǫr + Lm)3
, (2.41)

and Cp is related to the average displacement of the membrane, with Cp being given by

Cp = 2ρac2

Dr2
r Lm

. (2.42)

The solution to the homogeneous part of equation (2.39) is given by

ψcf (r) = C4J0(Apr) + C5Y0(Apr) + C6J0(iApr) + C7Y0(iApr), (2.43)

where C4, C5, C6 and C7 are functions of ω to be solved for. Since the solution must exist at r ≡ 0 (at

the centre of the membrane) then C5 ≡ C7 ≡ 0 and recalling J0(ix) ≡ I0(x) (see Watson, 1996, p. 77),

where I0 is the modified Bessel function of the first kind of order zero, a particular integral of the form

ψpi(r, ω) = C4J0(Apr) + C6I0(Apr) + C8, (2.44)

can be assumed. Inserting this into the integro-differential equation (2.39) provides us with the solution

for C8, namely

C8 = B̄p + C4C̄pJ1(Apra) + C6C̄pI1(Apra), (2.45)

where

B̄p = − Bp

Ap − (1/2)Cpr2
a

, C̄p = Cpra

Ap(Ap − (1/2)Cpr2
a)

. (2.46)

Similar to the previous model, we assume that the membrane has zero displacement outwith the support

of the resonator aperture and so ψ(ra, ω) = 0. Here we also require a condition on the spatial derivative

on the perimeter of the aperture and so we set ψ ′(ra, ω) = 0. This condition concurs with the assumption
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10 A. J. WALKER AND A. J. MULHOLLAND

that the membrane has zero displacement, and hence zero velocity, outwith the support of the resonator.

Hence, two equations to solve for our two remaining unknowns C4 and C6 are provided and we find

C4 = − B̄pI1(Apra)

B̂p

, C6 = − B̄pJ1(Apra)

B̂p

, (2.47)

where

B̂p = J0(Apra)I1(Apra) + 2C̄pJ1(Apra)I1(Apra) + J1(Apra)I0(Apra). (2.48)

Consequently, the full solution to the plate equation (2.39) is given by

ψ(r, ω) = − B̄pI1(Apra)

B̂p

J0(Apr) − B̄pJ1(Apra)

B̂p

I0(Apr) + B̄p

− B̄pI1(Apra)

B̂p

C̄pJ1(Apra) − B̄pJ1(Apra)

B̂p

C̄pI1(Apra). (2.49)

As in the previous section, the specific acoustic impedance is the ratio of the driving electrostatic force

and the product of the average velocity over the surface of the membrane and the membrane’s surface

area, given by

ZIII
s = Bpπr2

a

iω〈ψ〉Sm

, (2.50)

where 〈ψ〉 is the average mechanical behaviour of the membrane, defined similarly to equation (2.37).

The full formulation of this impedance is omitted for brevity.

2.5 Electrical impedance, transmission and reception sensitivities of the device

A transducer converting electrical and mechanical energy forms a two-port network that relates elec-

trical quantities at one port to mechanical quantities at the other (see Kinsler et al., 2000, p. 390). The

canonical equations which describe this are given by

V̄ac = ZEBI + TΨ̇ , (2.51)

F = TI + ZmoΨ̇ , (2.52)

where Ψ̇ is the velocity of the membrane, calculated from any of the three previous models, I is the

current at the electrical inputs, F is the force on/from the radiating surface, ZEB is the blocked electrical

impedance (Ψ̇ = 0), Zmo is the open-circuit mechanical impedance (I = 0) and T is the transduction

coefficient (mechanical ↔ electrical). In the short circuit case V̄ac = 0 it can be shown

F

Ψ̇
=

(
Zmo − T2

ZEB

)
= Zm, (2.53)

where Zm is the mechanical impedance of the transducer. Hence equations (2.51) and (2.52) can be

rewritten as

V̄ac = ZEBI + βZEBΨ̇ , (2.54)

F = βZEBI + ZmΨ̇ , (2.55)
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AN ULTRASONIC TRANSDUCER INCORPORATING SPHERICAL RESONATORS 11

respectively, where the transformation factor β is given by β = T/ZEB. When the source (a.c.) volt-

age is of the form Vac(t) = Vac eiωt, then by Caronti et al. (2002), Kinsler et al. (2000) and Walker &

Mulholland (2010)

Vac =
(

1

G + iωC0

)
I + Vdc

iωxdc

Ψ̇ , (2.56)

where G is the static conductance caused by electrical losses in the device and C0 is the value of C at

Ψ̇ = 0. Hence, comparing with equations (2.51) and (2.52) the transformation factor β can be given as

(see Walker & Mulholland, 2010)

β = VdcC0

xdc

− i
GVdc

ωxdc

, (2.57)

where C0 = ǫ0Sm/(dm/ǫr + L + xdc). Consequently, the blocked electrical impedance is given by

ZEB = 1

G + iωC0

. (2.58)

2.5.1 Transmission sensitivity In transmission mode, a voltage V̄ac is applied that results in a mem-

brane velocity Ψ̇ and hence a force F being produced, where

F = −ZmΨ̇ . (2.59)

The transmission sensitivity, or TVR, is defined here as the ratio of the transmitted pressure to the

driving voltage (see Caronti et al., 2002). That is

TVR = PoSm

Vac

. (2.60)

After some algebraic manipulation, it can be shown that (via Walker & Mulholland, 2010)

TVR = − β

(1 + Zb
m/Zm)

. (2.61)

This can now be evaluated using equations (2.57) and the various equations for the mechanical

impedance of the transducer Zm and the mechanical impedance of the backplate Zb
m.

2.5.2 Reception sensitivity The reception sensitivity is defined as the ratio of the open-circuit (I = 0)

output voltage to the force on the membrane (see Caronti et al., 2002). That is, the RFR is given by

RFR = V̄ac

PoSm

. (2.62)

Setting I = 0 (for the open-circuit) in equations (2.51) and (2.52) gives

V̄ac = TΨ̇ , (2.63)

F = ZmoΨ̇ . (2.64)
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12 A. J. WALKER AND A. J. MULHOLLAND

Since F = PoSm then Ψ̇ = PoSm/Zmo and so from equation (2.63) it can be shown that

V̄ac = ZEBβPoSm

Zmo

.

Inserting this formulation for the voltage into equation (2.62) gives

RFR = β
ZEB

Zmo

. (2.65)

It can also be shown that Zmo = Zm + T2/ZEB and hence equation (2.65) can be written

RFR = ψZEB

Zm + (T2/ZEB)
. (2.66)

Again this can be evaluated via equations (2.57) and (2.58) and the equations given for the mechanical

impedance in each model.

The three models are now compared, by investigating the mechanical impedance, the TVR and the

RFR in the next section.

3. Comparison of models

In this section a comparison between the three models presented in the previous sections is provided.

Of particular interest is the operating frequency of the devices since the resonators are included in order

to tailor the devices to a specific frequency. Consequently, this section provides plots of the impedance

profiles from the backplate and the entire system, in addition to the TVR and RFR.

In order to successfully compare the three models, material and design parameter values must be

considered. Initial endeavours in manufacturing backplates have taken place and form the basis for the

backplate design parameter values given in Table 1. Additional design and material parameter values

are given in Table 2.

As mentioned previously, the resonators must be sufficiently spaced such that no coupling between

each resonator occurs. Within the model the parameters N and nj (the number of rows of resonators and

the number of resonators in each row) can be adjusted to examine the effect of this spacing on the device

performance. Here we will simply choose a number of resonators that is commensurate with those used

in preliminary experiments.

The mechanical impedance profiles of the resonators are then computed via the equations provided

in Section 2.1. For the design parameter values given in Tables 1 and 2, the normalized mechanical

Table 1 Design values of the backplate and the spherical resonators therein

Design parameter Symbol Magnitude Dimensions

Radius of resonators rr 25 µm

Radius of apertures/membrane ra 20 µm

Thickness of backplate Lm 1 mm
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AN ULTRASONIC TRANSDUCER INCORPORATING SPHERICAL RESONATORS 13

Table 2 Parameter and design values of the transducer

Design parameter Symbol Magnitude Dimensions

Speed of sound in air c 343 m/s

Density of air in resonator ρa 1.2 kg/m3

Attenuation coefficient γω 0.001 —

Thickness of membrane dm 8 µm

Membrane dielectric constant ǫr 5 —

Coefficient of shear viscosity η 1.78 Pa s

Prandtl number Pr 0.75 —

d.c. Voltage Vdc 200 V

Applied voltage V 200 V

Density of mylar membrane ρs 1420 kg/m3

d.c. Deflection on membrane xdc 60 nm

Permittivity of free space ǫ0 8.85 × 10−12 F/m

Damping coefficient Rv 100 kg/m s

0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

mechanical

impedance

(normalized)

frequency (MHz)

mechanical impedance

Fig. 3. Normalized mechanical impedance of the array of resonators with dimensions provided in Table 1. Note the impedance

minimum, and hence system resonance at approximately 1.5 MHz.

impedance of the resonator array is shown in Fig. 3. It is clearly seen that the minimum impedance

occurs around 1.5 MHz and therefore a central operating frequency of the device around this frequency

is expected.
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membrane model
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transmission

voltage

response

(normalized)

frequency (MHz)

reception

force

response

(normalized)

frequency (MHz)

Fig. 4. Normalized specific acoustic impedance (a), normalized TVR (b) and normalized RFR (c) of the three models. The pipe-

driver model is dashed, the membrane model is dotted and the plate model is short dashed. The three lines lie on top of each other

and illustrate the excellent corroboration between each model.

For comparison purposes the specific acoustic impedance of each model is normalized with respect

to its maximum value achieved and then expressed in decibels via

ẐI
s = 20 log10

(
ZI

s

max(ZI
s)

)
, (3.1)

ẐII
s = 20 log10

(
ZII

s

max(ZII
s )

)
, (3.2)

ẐIII
s = 20 log10

(
ZIII

s

max(ZIII
s )

)
, (3.3)

where ẐI
s, ẐII

s and ẐIII
s are the normalized specific acoustic impedances in decibels of the pipe-driver

model, the membrane model and the plate model, respectively.

The normalized specific acoustic impedance of the device for each model, given by equations (2.23),

(2.38) and (2.50), is shown in Fig. 4(a). It is clear to see that there is excellent corroboration between

each model. This fact suggests that any of the three models here could be used in order to model this

device as well as other similar devices. Furthermore, it suggests that the effects of the resonators far

outweigh those of the membrane’s stiffness or rigidity. In a similar manner to the specific acoustic
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impedances, the normalized TVR and the normalized RFR are calculated, in decibels, for each model.

These are given by, respectively,

T̂VR = 20 log10

(
TVR

max(TVR)

)
, (3.4)

R̂FR = 20 log10

(
RFR

max(RFR)

)
. (3.5)

The TVR for all models is given in Fig. 4(b) and the RFR in Fig. 4(c). It is clear that all models closely

agree for both the TVR and the RFR.

Since the three models corroborate, the effect of changing some of the parameters of the res-

onators on the outputs of the device is examined. Specifically, the changes in the TVR and the RFR

are considered.

4. Influence of design parameters

In this section the dependence on certain design parameters related to the spherical resonators are

considered. As the outputs of the three models closely match, we inspect only the pipe-driver model

described in Section 2.2. Three separate investigations were implemented. The parameters varied were

the aperture size (with corresponding scaled resonator volume), the aperture size (with fixed resonator

volume) and the neck length (where the neck length was equal to zero in the standard case). It should

be noted first of all that all of the above investigations revealed no change in the electrical impedance

of the system, as expected.

4.1 Aperture and resonator size

The case where the aperture size is varied, with the ratio between aperture radius and resonator radius

kept constant, is considered. Primarily, five different values of the aperture radius are considered:

ra = 1 nm (solid line), 10 nm (dashed line), 100 nm (dotted line), 1 µm (dash dot line) and 25 µm

(dash dot dot line). The last value being the largest aperture size possible since rr = 25 µm, as per

Table 1. The first value of ra = 1 nm should give an indication of how a similar device with no res-

onators would operate. Figure 5(a) shows the TVR for these five different designs with it being clearly

illustrated that the inclusion of resonators with larger apertures (and corresponding larger volumes)

results in a higher TVR and a more prominent resonant frequency, although perhaps a reduced band-

width. By considering the normalized TVR (Fig. 5(b)) it can be seen that the resonant frequency

varies substantially from a sub-ultrasonic resonance (ra = 1 µm, dash-dot) to resonances in the range

of 5 − 7 MHz. Since there is clearly a high dependence on the aperture radius, it was decided to inves-

tigate the dependence of the TVR on the aperture radius for a fixed frequency of f = 1 MHz. This

dependence can be found in Fig. 5(c). The figure clearly shows that the TVR is maximized by a value

of ra ≈ 12 µm.

The RFR follows a similar pattern in all but the resonant frequency positions. Using the same vari-

ables as in the TVR case, the results are shown in Fig. 6. The results suggest that the device operates

in a similar frequency range in the reception and transmission modes; however, it does appear that the

device operates substantially better in the reception mode. By varying the aperture size, it seems that

the RFR is maximized by a design parameter choice of ra ≈ 12 µm. It is also seen that the larger the
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(a)
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(c)
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Fig. 5. TVR (a) and normalized transmission voltage response in dB (b) of the device, for each of the five values for the

aperture radius (with corresponding resonator volume). Normalized TVR as a function of aperture radius for fixed frequency

f = 1 MHz (c).

aperture size, the higher the resonant frequency of the device. However, it should be noted that only the

largest aperture size results in an RFR in the ultrasonic range.

4.2 Aperture size with fixed resonator volume

The effect of changing the aperture size, where the volume of the whole resonator is kept constant, is

now considered. For ease of comparison, the aperture sizes considered are the same as in the previous

section, whereas the volume of the resonator is kept at the same size as in the standard design (calculated

via equation (2.9) and Table 1). This is clearly not attainable using the chemical set-up described in the

introduction to the article, but instead is an interesting mathematical investigation into how the nature

of the resonators affects the device’s performance.
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Fig. 6. RFR (a) and normalized RFR in dB (b) of the device, for each of the five values for the aperture radius (with corresponding

resonator volume). Normalized RFR as a function of aperture radius for fixed frequency f = 1 MHz (c).

The TVR, normalized TVR and effect of aperture radius for a fixed frequency are given by Fig. 7. As

can be seen, there are no large differences between these results and those in the previous section, save

for the value of ra ≈ 10 µm which maximizes the TVR. The same can be said for the RFR, normalized

RFR and the effect of aperture radius, given by Fig. 8. Both sets of devices operate in the same range

of frequencies and both follow similar responses when varying the aperture size. It can therefore be

concluded that it is the aperture size which has more influence on the operation of the device than the

volume of the resonators.
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Fig. 7. TVR (a) and normalized transmission voltage response in dB (b) of the device, for each of the five values for the aperture

radius (with fixed resonator volume). Normalized TVR as a function of aperture radius for fixed frequency f = 1 MHz (c).

4.3 Neck length

Finally the effect of constructing a neck on the resonator is scrutinized in order to investigate a possible

change in the design which results in an improved bandwidth or resonating frequency. That is, it is not

assumed that L = 0 in equation (2.5). To begin, five different lengths of the neck are chosen: L = 0 m

(solid line), 1 µm (dashed line), 10 µm (dotted line), 100 µm (dash-dot line) and 1 mm (dash-dot-dot

line). The TVR and normalized TVR are shown via Fig. 9(a,b). These figures show the dependence
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Fig. 8. RFR (a) and normalized RFR in dB (b) of the device, for each of the five values for the aperture radius (with fixed resonator

volume). Normalized RFR as a function of aperture radius for fixed frequency f = 1 MHz (c).

of the magnitude, bandwidth and resonating frequency of the device on the length of the neck. It can

be seen that the longer the neck, the narrower the bandwidth and the lower the resulting resonating

frequency. Figure 9(a) also suggests that the highest TVR occurs when the length of the neck is between

10 and 100 µm. The actual value of this can be seen easier in Fig. 9(c), where the TVR is plotted

against the effective length for f = 1 MHz. Note that L ≈ 32 µm gives the best TVR. A similar analysis

was done for the RFR. Figure 10 shows the same effect of the resonator neck length on the RFR as the

TVR.
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Fig. 9. TVR (a) and normalized transmission voltage response in dB (b) of the device, for each of the five values for the neck

length. Normalized TVR as a function of the neck length for fixed frequency f = 1 MHz (c).

5. Conclusions and discussion

This article considered the theoretical modelling of a novel electrostatic transducer in which the back-

plate consisted of an array of spherical resonators which act in a similar manner to cavities/pits found

in more standard devices. The resonators are made by depositing ternary solutions onto an electrically

conducting substrate and the spherical resonators can be created by selective dissolution of one poly-

mer phase after phase separation. The dimensions of the cavities and their spatial distribution can be
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Fig. 10. RFR (a) and normalized RFR in dB (b) of the device, for each of the five values for the neck length. Normalized RFR

response as a function of the neck length for fixed frequency f = 1 MHz (c).

controlled by selection of the solutes and solvent and the rate of solvent evolution during the deposi-

tion process. More specifically, this article focussed on the theoretical modelling of such a device using

three different analytical models: a 1D (in space) model, and two 2D (in space) models which consider

separate effects on the membrane. The models produced mechanical impedance profiles of the device,

in addition to TVRs and RFRs, all of which closely agree.

The 1D pipe-driver model was then used to investigate the effect of changing certain device param-

eters on the device performance. Specifically, the aperture radius, resonator volume and aperture neck
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length were varied. It was observed that the resonant frequency, bandwidth and sensitivity of the device

were all highly dependent on these resonator parameters.

Each model showed good agreement and illustrated that the device’s performance was highly depen-

dent on the parameters of the backplate. It is therefore important to consider an array of resonators to

ascertain if their dimensions could be tailored for specific operating frequencies or bandwidths. As an

array of exactly similar resonators has the same impedance as one resonator of the same dimensions,

then arrays of resonators of varying dimensions should be studied. There is a possibility of being able to

compute array designs which produce outputs with much larger bandwidths than the outputs provided

herein. The inverse problem of finding the required parameter values which result in a required oper-

ating resonance/bandwidth of the device can also be implemented. The models included could also be

used as a guideline for constructing a systems-dynamics model which could prove beneficial for finding

optimal parameter values for a specific operating bandwidth and resonant frequency.

Some assumptions were made during the modelling which should be addressed. It was assumed,

firstly, that the resonators were equally spaced and identical (although the model itself is constructed in

such a manner that this need not be the case). Perhaps more importantly, the model assumed that the

membrane, while of the order of size of the backplate, has zero displacement everywhere apart from

over each aperture, causing the effective radius of the membrane to be much smaller. Clearly, a free

membrane would resonate at a much lower frequencies than the resonant frequency of the backplate,

meaning that the device would not operate at its desired frequency. These models must be tested against

experimental evidence in order to ascertain if the membrane acts in such a manner.

Furthermore, experimental evidence is required to confirm the model’s validity with respect to the

operating resonant frequency. In addition, topography scans of the backplate will show to what extent

the resonators are of the same shape and dimension. It may be required to introduce a range of sizes of

resonators into the model to account for such manufacturing disparities. Furthermore, the actual strength

of the pressure output from the models/prototypes must be considered, an aspect which has not been

covered in this article. These are experimental issues which are the subject of ongoing investigations.

Finally, there are many facets of these models which could be developed; such as the extent of

energy leakage into the silicone substrate and the backplate, the affect of the d.c. bias voltage on device

operation and the possibility of filling the resonators with other fluids than air in order to modify the

operating frequency. Further methods of comparisons, other than operating frequency, with experimen-

tal output will also be considered in future publications.
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Appendix A. Nomenclature

The tables below provide a full nomenclature of terms used within the article. It is worth noting that, as

far as notation concerned, the literature is not consistent and care should be taken when comparing with

other work.
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Notation Description

Am, Ap Viscous damping

Bm, B̄m, Bp, B̄p, B̂p Excitation voltage term

C Capacitance

Cm, C̄m, Cp, C̄p, Average displacement of membrane term

C0 Value of capacitance C at Ψ̇ = 0

c Speed of sound in resonator

D flexural rigidity of membrane

de Distance between electrodes

dm Thickness of membrane

F Applied force (in frequency domain)

f (t) Voltage driving force (in time domain)

Fe Electrostatic force

fr Force on membrane

G Static conductance

ha Height of removed cap of spherical resonator

I Current at electrical inputs

In Modified Bessel function of first kind of nth order

i Imaginary number

Jn Bessel function of first kind of nth order

L Length of neck of resonator

L′ Effective length of neck of resonator

Lm Distance between lower electrode and membrane

m′ Total effective mass of aperture

N Number of rows in resonator array

nj Number of resonators in row j

Pi Amplitude of pressure wave on resonator

Pr Prandtl number

Po Pressure produced at membrane load

pr Pressure in resonator

RFR, (R̂FR) Reception force response (RFR in decibels)

Rr Radiation resistance of resonator

Rv Damping constant

Rω Thermoviscous resistance

r Radial variable across resonator aperture

ra Radius of open aperture in resonator

rr Radius of spherical resonator

Sa Area of aperture of resonator

Sm Surface area of membrane

sr Stiffness of resonator

T Transduction coefficient

TVR (T̂VR) Transmission voltage response (TVR in decibels)

t Time

continued.
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Notation Description

V Applied voltage (time domain)

Vac Alternating current voltage

V̄ac Applied voltage (frequency domain)

Vdc Direct current voltage

Vr Volume of resonator

xdc Membrane displacement due to Vdc

Yn Bessel function of second kind of nth order

Zb Acoustic impedance of backplate

ZEB Blocked electrical impedance

Zm Mechanical impedance of transducer

Zl
m Mechanical impedance of load

Zb
m Mechanical impedance of backplate

Zr
m Mechanical impedance of resonator

Zmo Open-circuit mechanical impedance at I = 0.

Zr Acoustic impedance of resonator

Zs (Ẑs) Combined specific acoustic impedance (Zs in decibels)

Zl
s Specific acoustic impedance of fluid at load

Zr
s Specific acoustic impedance of resonator

αw Absorption coefficient

β Ratio of transduction coefficient and electrical impedance

γω Attenuation coefficient

ǫr Relative permittivity of the membrane

ǫ0 Permittivity of free space

η Coefficient of shear viscosity

λ Wavelength of sound in resonator

ρa Density of fluid in resonator

ρs Density of membrane

τ Tensile strength of membrane

Ψ Displacement of membrane (frequency domain)

ψ Displacement of membrane (time domain)

ω Angular frequency
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