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An adaptive spatio-temporal smoothing model for esti-

mating trends and step changes in disease risk

Alastair Rushwortha, Duncan Leea and Christophe Sarranb

aSchool of Mathematics and Statistics, University of Glasgow, UK.

bUK Met Office, Exeter, UK.

Summary. Statistical models used to estimate the spatio-temporal pattern in disease

risk from areal unit data often represent the risk surface for each time period in terms

of known covariates and a set of spatially smooth random effects. The latter act as

a proxy for unmeasured spatial confounding, whose spatial structure is often char-

acterised by a spatially smooth evolution between some pairs of adjacent areal units

while other pairs exhibit large step changes. This spatial heterogeneity is not con-

sistent with a global smoothing model in which partial correlation exists between all

pairs of adjacent spatial random effects, and a novel space-time disease model with

an adaptive spatial smoothing specification that can identify step changes is therefore

proposed. The new model is motivated by a new study of respiratory and circulatory

disease risk across the set of Local Authorities in England, and is rigorously tested by

simulation to assess its efficacy. Results from the England study show that the two

diseases have similar spatial patterns in risk, and exhibit a number of common step

changes in the unmeasured component of risk between neighbouring local authori-

ties.

Keywords: Adaptive smoothing; Gaussian Markov random fields; Spatio-

temporal disease mapping; Step change detection.

1. Introduction

Disease risk exhibits spatio-temporal variation due to many factors, including chang-

ing levels of environmental exposures and differences in the prevalence of risk-
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inducing behaviours such as smoking. Data about disease risk are typically ob-

tained in the form of population level summaries for administrative geographical

units, such as local authorities or counties, and the spatial pattern in risk is pre-

sented in the form of a choropleth map. Such disease maps enable public health

scientists and epidemiologists to quantify the spatial pattern in disease risk across

a region of study, allowing financial resources and public health interventions to be

targeted at areas at highest risk. Disease maps are routinely published by health

agencies worldwide, such as the cancer e-Atlas (http://www.ncin.org.uk/cancer_

information_tools/eatlas/) by Public Health England and the weekly influenza

maps (http://www.cdc.gov/flu/weekly/usmap.htm) produced by the Centres for

Disease Control and Prevention in the USA. In addition to their use in allocating

health service resources, such maps allow the scale of health inequalities between

rich and poor communities and their underlying drivers to be quantified. For exam-

ple, a 2014 report by the Office for National Statistics (ONS) in the UK estimates

that average healthy life expectancy differs by nineteen years between communities

with the highest and the lowest levels of deprivation (Office for National Statistics,

2014). Such large inequalities exacerbate socioeconomic divisions in society, and

health costs may be increased due to higher disease prevalence in the most disad-

vantaged regions.

The disease maps presented by health agencies display raw disease rates, which are

contaminated by sampling variation and do not allow statements to be made about

the probability that the risk in an area exceeds a certain threshold (exceedence

probabilities, see Richardson et al., 2004). Therefore a range of statistical models

have been developed for these disease data, which represent the risk surface with

known covariates and a set of spatially smooth random effects. The latter act as

a proxy for capturing unmeasured spatial confounding, where spatial structure is

induced by using a special case of a Gaussian Markov Random field (GMRF, Rue

and Held, 2005) prior, known as the Conditional Autoregressive (CAR, Besag et al.,

1991) prior. For data that contain repeated spatial measurements over time, spa-

tial GMRF priors have been extended to incorporate spatio-temporal structure, and

http://www.ncin.org.uk/cancer_information_tools/eatlas/
http://www.ncin.org.uk/cancer_information_tools/eatlas/
http://www.cdc.gov/flu/weekly/usmap.htm
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prominent examples include Bernardinelli et al. (1995), Knorr-Held (2000), MacNab

and Dean (2001) and Ugarte et al. (2010).

These GMRF-based models assume the random effects are globally spatially smooth,

in the sense that a single parameter governs the spatial autocorrelation in disease

risk between all pairs of geographically adjacent areal units. In practice however,

this residual or unexplained spatial structure is often characterised by a spatially

smooth evolution between some pairs of adjacent areal units, while other pairs ex-

hibit large step changes. The identification of such step changes in the unexplained

component of risk is known as Wombling following the seminal article by Womble

(1951), and can provide a number of epidemiological insights. Firstly, it allows the

delineation of clusters of areal units that exhibit unexplained elevated risks com-

pared with neighbouring areas, which enables health resources and public health

interventions to be specifically targeted at areas in greatest need. Secondly, it en-

ables the elucidation of unknown etiological factors: by providing detailed insight

into the spatial structure of confounding, potential risk factors can be more easily

identified that could be driving unexplained risk. Existing global smoothing models

do not support step change detection as part of model fitting, which may result in

oversmoothing in regions where strong local disparities exist, leading to biased esti-

mation of their associated disease risks. This problem is analogous to specifying a

single smoothing parameter to estimate a non-linear function using semi-parametric

regression, when the underlying signal exhibits varying levels of smoothness. A

range of spatially adaptive smoothing priors have been proposed to address these

limitations for purely spatial data, including Green and Richardson (2002), Lu and

Carlin (2005), Lu et al. (2007), Lawson et al. (2012), Lee and Mitchell (2013), Wake-

field and Kim (2013) and Lee et al. (2014).

However, very few spatially adaptive smoothing models have been developed for

spatio-temporal disease data, with an exception being Lee and Mitchell (2014) who

propose an iterative fitting algorithm using Integrated Nested Laplace Approxima-

tions (INLA). A spatio-temporal setting has the advantage of temporal replication of
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the spatial surface, which is likely to improve the estimation in such highly complex

models. However, as the temporal replication increases so does the computational

complexity, due to the increased numbers of data points and parameters. There-

fore the contribution of this paper is the development of a new spatially adaptive

GMRF model for spatio-temporal disease mapping data, which can be viewed as

both an adaptive smoother and a model for the detection of step changes in unex-

plained risk. The model builds on the purely spatial approach of Ma et al. (2010),

and does not make any simplifying assumptions about the step change structure

unlike Lee et al. (2014). Additionally, unlike existing methods in this field, our

model is freely available to others via the R package CARBayesST, making this

research reproducible. The methodological development is motivated by a new

study of respiratory and circulatory disease in England, UK, which according to

the World Health Organisation (WHO) are two of the largest causes of death world-

wide (www.who.int/mediacentre/factsheets/fs310/en/).

The remainder of this paper is structured as follows. In Section 2 the motivating

data set of respiratory and circulatory hospital admissions in England between 2001

and 2010 is presented, while in Section 3 the literature on spatio-temporal disease

mapping and adaptive spatial smoothing is reviewed. Section 4 proposes a new

space-time GMRF model for adaptive smoothing, which is comprehensively tested

by simulation in Section 5. In Section 6 the proposed model is applied to the

motivating application, while the paper concludes in Section 7 with a discussion of

the results and suggestions for future research.

2. Motivating case study

Our methodological development is motivated by a new study of circulatory and res-

piratory disease risk in England, which have International Classification of Disease

tenth revision (ICD-10) codes I00-I99 and J00-J99 respectively. Hospital admission

records from the Health and Social Care Information Centre (www.hscic.gov.uk)

were analysed at the UK Met Office to provide counts of hospital admissions by local

www.who.int/mediacentre/factsheets/fs310/en/
www.hscic.gov.uk
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authority, where the primary diagnosis was circulatory or respiratory disease and

where the method of admission was as an emergency. The resulting data are annual

counts of circulatory and respiratory hospital admissions for each of the N = 323

Local Authorities (LA) in England between 2001 and 2010. The expected number of

hospital admissions was calculated for each year and LA to adjust for their differing

population sizes and demographic structures, and internal standardisation was used

based on England-wide rates.

The Standardised Incidence Ratio (SIR) is the ratio of the observed to the expected

numbers of disease cases, and is an exploratory measure of disease risk. The mean

SIR for each LA between 2001 and 2010 is displayed in the left column of Figure 1,

for both circulatory (top) and respiratory (bottom) disease. The figure shows that

the spatial patterns in mean SIR are similar across the two diseases, with a Pear-

son’s correlation coefficient of 0.9356. Both maps exhibit similar risk levels across

large parts of England, although a number of step changes are evident around the

cities of Birmingham and Manchester, which are England’s second and third largest

urban areas. The main driver of this spatial pattern in disease risk is socio-economic

deprivation, which is a multifaceted concept and difficult to measure. Here we at-

tempt to quantify it by the percentage of the working age population who are in

receipt of Job Seekers Allowance (JSA), and the residuals from a simple Poisson

log-linear model with JSA as the only covariate are displayed in the right column

of Figure 1. This unexplained spatial variation in disease risk is autocorrelated for

both diseases, which can be assessed by computing a Moran’s I statistic for the

residuals for each year and disease. These statistics range between (0.204, 0.251) for

circulatory disease and between (0.248, 0.328) for respiratory disease, and based on

Monte Carlo permutation tests are all significant at the 5% level. However, Figure 1

also highlights that these unexplained spatial structures exhibit step changes, which

are not compatible with a global spatial smoothing model.

Therefore the aims of this analysis are twofold. Firstly, we want to produce the best

estimate of the spatio-temporal patterns in circulatory and respiratory disease risks,
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so that the extent of the health inequalities in these two diseases can be identified.

Secondly, we wish to estimate the locations of the step changes in the unexplained

risk surface, so that the geographical extent of clusters of excessively high unex-

plained risks regions can be identified and investigated for possible causes. These

goals are likely to be best achieved by an adaptive smoothing model such as that

proposed in Section 4, but before we present our model we provide a review of the

existing literature.

3. Spatio-temporal disease mapping

The study region is typically composed of N non-overlapping areal units indexed

by i ∈ {1, . . . , N}, for which data are observed for j ∈ {1, . . . , T} time periods.

These data comprise the observed and expected numbers of disease cases, and for the

population living in area i during time period j are denoted by (Yij , Eij) respectively.

A Poisson log-linear model is commonly specified for these data:

Yij |Eij , Rij ∼ Poisson(EijRij), (1)

log(Rij) = x⊤
ijβ + φij ,

βr ∼ N(0, 10000) r = 1, . . . , p.

Here, disease risk is represented by Rij , where Rij = 1.2 corresponds to a 20% in-

creased risk of disease compared with the expected number of disease cases (based

on national disease rates) Eij . The natural log of Rij is modelled by a vector of p

known covariates xij with parameters β = (β1, . . . , βp), and spatially and tempo-

rally structured random effects φij . A Bayesian approach to estimation is taken in

these hierarchical models, based on Markov chain Monte Carlo (McMC) simulation.

GMRF priors are commonly used to induce spatial smoothness in the random effects

(φij , φkj), via a binary N ×N adjacency matrix W . Element wik = 1 if areas i and

k share a common border (denoted i ∼ k) and wik = 0 otherwise (denoted i ≁ k),
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Fig. 1. Left: Mean standardised incidence ratios (SIR) for circulatory (top left) and respira-

tory (bottom left) disease across English local authorities between 2001 and 2010. Right:

Mean standardised Pearson residuals after fitting a Poisson log-linear model with JSA as

a covariate to circulatory disease (top right) and respiratory disease (bottom right). In all

cases, the locations of four major English cities are indicated with arrows.
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while wii = 0 for all i. Numerous GMRF priors have been developed for purely

spatial random effects (φ1, . . . , φN ), and the proposal by Leroux et al. (2000) has an

attractive full conditional decomposition for f(φi|φ−i), given by

φi|φ−i, ρ, σ
2,W ∼ N

(

ρ
∑N

k=1
wikφk

ρ
∑N

k=1
wik + 1− ρ

,
σ2

ρ
∑N

k=1
wik + 1− ρ

)

, (2)

σ2 ∼ Uniform(0, 10000),

ρ ∼ Uniform(0, 1),

where φ−i = (φ1, . . . , φi−1, φi+1, . . . , φN ). Here the conditional expectation of φi is

a weighted average of the random effects in adjacent areal units, which spatially

smooths their values. The level of spatial smoothing is controlled by ρ, and if ρ = 1

equation (2) reduces to the intrinsic autoregressive model proposed by Besag et al.

(1991), while if ρ = 0 the random effects have identical and independent normal

prior distributions. The joint distribution for (φ1, . . . , φN ) corresponding to these

full conditionals is a zero-mean multivariate Gaussian distribution, with variance σ2

and precision matrix Q(ρ,W ) = ρ[diag(W1) −W ] + (1 − ρ)I, where 1 is an N × 1

vector of ones and I is the N ×N identity matrix.

3.1. Non-adaptive spatio-temporal models

Many spatio-temporal extensions of spatial GMRF models have been developed in

the disease mapping literature, with the first being Bernardinelli et al. (1995) who

model Rij with linear time-trends that have spatially varying slopes and intercepts.

A further generalisation was proposed by MacNab and Dean (2001), in which the

time index is projected onto a set of spline basis functions, allowing spatially-varying

non-linear temporal trends. In contrast, Knorr-Held (2000) introduced a decomposi-

tion of Rij into spatial and temporal main effects and an interaction, with all terms

being modelled by GMRF priors. More recently, Rushworth et al. (2014) utilise the

autoregressive decomposition
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f(φ1, . . . ,φT ) = f(φ1)

T
∏

j=2

f(φj |φj−1), (3)

where φj = (φ1j , . . . , φNj). They combine the likelihood model (1) with Leroux

CAR priors for each φj , with φ1 being modelled by (2), while temporal autocor-

relation is induced by the prior φj ∼ N
(

αφj−1, σ
2Q(ρ,W )−1

)

for j = 2, . . . , T .

Temporal autocorrelation is controlled via α, with α = 0 corresponding to temporal

independence while α = 1 corresponds to a multivariate random walk prior. A uni-

form prior on the unit interval is placed on α, while the priors outlined in (2) are

placed on the remaining hyperparameters.

3.2. Adaptive spatial smoothing models

The global nature of the spatial autocorrelation induced by (2) for purely spatial ran-

dom effects (φ1, . . . , φN ) can be seen from their theoretical partial autocorrelations,

which are given by

Corr[φi, φk|φ−ik, ρ,W ] =
ρwik

√

(ρ
∑N

r=1
wir + 1− ρ)(ρ

∑N
s=1

wks + 1− ρ)
. (4)

Under model (2) and the spatio-temporal extension (3), random effects for all pairs

of neighbouring areal units (for which wik = 1) will be partially autocorrelated, and

the strength of that partial autocorrelation will be controlled by ρ. Thus as ρ will

typically be close to one (the spatial residual surfaces are autocorrelated as described

in Section 2), a pair of adjacent areas exhibiting substantially different levels of un-

explained risk will have those risks wrongly smoothed towards each other, masking

the step change to be identified.

This has prompted the development of spatially adaptive smoothing models, which

are flexible enough to capture both smoothness and step changes in the random

effects surface. However, almost all of these models have been developed for purely

spatial data, and the extension to the spatio-temporal domain is one of the contribu-

tions of this paper. Brewer and Nolan (2007) and Reich and Hodges (2008) extend
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GMRF models by allowing the variance σ2 to vary across the study region, which

results in different levels of smoothing to the spatially smooth prior mean. Lawson

et al. (2012), Charras-Garrido et al. (2012), Wakefield and Kim (2013) and Ander-

son et al. (2014) utilise a piecewise constant cluster model in the linear predictor,

which allows for step changes between neighbouring areas. Alternatively, Lu et al.

(2007), Brezger et al. (2007), Ma et al. (2010), Lee and Mitchell (2013) and Lee et al.

(2014) treat the non-zero elements of the adjacency matrix W as random variables,

rather fixing them equal to one. Equation (4) then implies that spatially adjacent

random effects (φi, φk) can be partially autocorrelated or conditionally independent,

depending on the estimated value of wik. It is this latter approach that we extend

to the spatio-temporal domain in this paper, and we treat wik as random variables

on the unit interval in common with Brezger et al. (2007) but utilise a second stage

CAR prior in common with Ma et al. (2010) to achieve the adaptive smoothing.

4. Methodology

Here we present a novel spatially adaptive smoothing model for spatio-temporal

data, which allows step changes to occur between adjacent areal units in the unex-

plained component of risk while treating their locations as unknown. Step change

detection is achieved by modelling the elements in W corresponding to adjacent

random effects as random variables on the unit interval, rather than assuming they

equal one. For example, if the posterior mean of wik is close to zero then (4) implies

that the corresponding random effects are close to conditionally independent, which

indicates strong evidence of a step-change in risk. Our proposed model is one of

the first adaptive (localised) smoothing models for spatio-temporal data, and is im-

plemented in a Bayesian framework with inference based on McMC simulation. It

improves on existing purely spatial approaches by not requiring input or covariates

from the user unlike Lu et al. (2007), and by not restricting the set of boundary

configurations unlike Lee et al. (2014).
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4.1. Level 1 - Likelihood and random effects model for (Yij , φij)

The first level of the model for (Yij , φij) is similar to that proposed by Rushworth

et al. (2014), and is given by

Yij |Eij , Rij ∼ Poisson(EijRij), (5)

log(Rij) = xTijβ + φij ,

β0 ∼ N(0, 10000),

φ1 ∼ N
(

0, σ2Q(W, ǫ)−1
)

,

φj |φj−1 ∼ N
(

αφj−1, σ
2Q(W, ǫ)−1

)

for j = 2, . . . , T,

σ2 ∼ Uniform(0, 10000),

α ∼ Uniform(0, 1),

where φj = (φ1j , . . . , φNj). The only difference from the model proposed by Rush-

worth et al. (2014) is that the GMRF prior proposed by Leroux et al. (2000) is

replaced by the intrinsic GMRF prior, which has the simplification that ρ = 1. This

simplification is enforced because the additional flexibility offered by the Leroux

prior is redundant when adaptive (local) smoothing is permitted via modelling W ,

as is the case here. In particular, attempting to estimate both ρ and W could re-

sult in high posterior correlation and multimodality, because the random effects are

spatially independent if either ρ = 0 or all elements of W equal zero. To avoid rank-

deficiency of the precision matrix Q(W, ǫ) and subsequent problems with matrix

inversion, the adjusted specification Q(W, ǫ) = diag(W1)−W + ǫI is used, where ǫI

is added to ensure that Q(W, ǫ) is diagonally dominant and hence invertible. This

invertibility condition is required because in the second level of the model described

below, elements in W are treated as random variables, necessitating the evaluation

of the normalised prior density of f(φj |φj−1). Sensitivity to the value of ǫ was

checked in an initial modelling step, and was found not to affect estimation until ǫ

was increased to a relatively large value, such as ǫ > 10−2. Therefore in this paper

we set ǫ = 10−7.
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4.2. Level 2 - Adjacency model for elements in W

Our methodological contribution extends the model of Rushworth et al. (2014) by

treating the elements of W that correspond to adjacent areal units as unknown

parameters to be estimated, rather than assuming they are fixed at one. These

parameters are collectively denoted by the vector w+ = {wik|i ∼ k} of length

NW = 1TW1/2, while the remaining elements ofW that correspond to non-adjacent

areal units remain fixed at zero. Equation (4) shows that under the intrinsic model

(when ρ = 1) if wik ∈ w+ is close to one then partial autocorrelation and hence

smoothing is induced between the spatially adjacent φij and φkj for all time periods

j. Conversely, if wik is estimated as close to zero then φij and φkj are close to

conditionally independent for all time periods j, and no such spatial smoothing is

enforced. In the latter case, a step change is said to exist in the random effects

surface between areal units (i, k) for all time periods j. Thus the weight of evidence

for a step change between areal units (i, k) is based on the posterior distribution

f(wik|Y), where Y denotes the vector of all data points. Specifically, we follow Lu

and Carlin (2005) and quantify the evidence for a step change using

pik = P(wik < 0.5|Y), (6)

the posterior probability of wik being less than 0.5. We model wik ∈ w+ as a set

of continuous random variables on the unit interval [0, 1] as suggested by Brezger

et al. (2007), rather than as binary random variables as suggested by Ma et al.

(2010) and Lee and Mitchell (2013). This is because a continuous domain for w+

allows the direct application of a second stage GMRF prior, avoiding the need for a

discrete prior such as the Ising model for which no polynomial time algorithm exists

to compute its normalising constant. As we model each wik ∈ [0, 1] we propose

a GMRF prior on the logit scale, v+ = log (w+/(1−w+)), which has the back

transformation w+ = exp(v+)/(1 + exp(v+)). The GMRF prior we propose for

v+ is a multivariate Gaussian distribution with a constant mean of µ, a constant

variance of τ2, and a precision matrix defined by the GMRF prior proposed by

Leroux et al. (2000) for first level random effects. This second stage GMRF prior
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requires us to specify an adjacency structure for the elements in v+, and here two

elements vik, vrs ∈ v+ are defined as adjacent (denoted ik ∼ rs) if the geographical

borders they represent in the study region share a common vertex. Using this

notation, the GMRF prior we propose for v+ and its hyperpriors are given by:

p(v+|τ2, ρ, µ) ∝ exp



−
1

2τ2



ρ
∑

ik∼rs

(vik − vrs)
2 + (1− ρ)

∑

vik∈v
+

(vik − µ)2







 ,(7)

τ2 ∼ Uniform(0, 10000),

ρ ∼ Uniform(0, 1).

Writing the joint prior for v+ in this form highlights the role of ρ, which controls the

extent to which step changes appear spatially clustered together and join at com-

mon vertices, or whether they are independently scattered around the study region.

When ρ ≈ 1 the random variable vik, which controls the existence of a step change

between areal units (i, k), is smoothed spatially towards adjacent vrs via the penalty
∑

ik∼rs(vik − vrs)
2, which thus induces spatially clustered step changes. In contrast,

when ρ = 0 each random variable vik is smoothed non-spatially towards the overall

mean value µ by the penalty
∑

vik∈v
+(vik − µ)2, which does not encourage spatial

clustering of step changes in the unexplained component of risk.

In order to avoid problems of numerical under and over flow in implementing the

McMC algorithm when transforming between v+ and w+, the sample space for

each vik ∈ v+ is truncated to the interval [−q, q]. Here we set q = 15, because

it avoids these numerical problems while allowing w+

ik to have an effective domain

of [0.000000306, 0.9999997], which is close to the intended [0, 1] interval. The prior

mean µ for v+ is fixed in (7), to ensure that the induced prior on the untransformed

w+ scale is consistent with our prior beliefs about the prevalence of step changes.

Specifically, given the level of spatial autocorrelation evident in the residuals shown

in Figure 1, and the associated Moran I statistics reported in Section 2, one would

expect there to be relatively few step changes in the random effects surface. In order
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to be consistent with this preference we have to choose µ > 0, as choosing µ < 0

implies a marginal mean for wik of less than exp(0)/(1 + exp(0)) = 0.5, which thus

favours step changes a-priori.

However, Figure 2 shows that the induced prior distribution for wik depends on τ2

as well as µ, with the left and right panels showing µ = 0 and µ = 15 respectively

for various values of τ . The left panel shows that when µ = 0 the prior density

for wik can have a mode at 0.5, which is incongruous with our prior beliefs because

higher probability density is associated with moderate values of wij compared to wij

close to 1. Some initial simulations confirmed that setting µ = 0 leads to spurious

step changes being identified. In contrast, when µ = 15, as shown in the right

panel of Figure 2, the prior assigns high prior probability to wik ≈ 0 or wik ≈ 1 or

both, with little prior probability in between. The ratio of the densities at {0, 1}

depends on τ , so that when τ is small, almost all prior mass is concentrated around

wik = 1, hence strongly discouraging boundaries. In contrast, as τ increases the

prior becomes more symmetric and ‘U’ shaped, with equal point masses at 0 and 1

expressing ambivalence about the presence or absence of step changes. Thus fixing

µ = 15 ensures that clear step change decisions, that is wik close to zero or one, are

preferred over ambiguous values such as wik = 0.5.

4.3. Inference

The model proposed here is implemented in the freely available R package CAR-

BayesST, which can be downloaded from the CRAN website (http://cran.r-project.

org). The McMC algorithm we use is a combination of Gibbs and Metropolis-

Hastings steps, and the high dimensionality of the parameter space means that

the algorithm has a number of features that reduce the computational burden.

These features are described in the supplementary material accompanying this pa-

per, which also includes sample R code to apply the model to simulated data.

http://cran.r-project.org
http://cran.r-project.org
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Fig. 2. Plots showing scaled prior densities for w+

ij for prior means µ = 0 (left) and µ = 15
(right). In each plot the densities resulting from different τ values are shown by different

coloured lines.

5. Simulation study

In this section we comprehensively test the performance of the proposed model un-

der a range of scenarios, which differ in the amount of temporal replication of the

data, the size of the step changes and the prevalence of the disease. The relative per-

formances of three models are compared in this study, the first of which is the global

smoothing model of Rushworth et al. (2014) that does not identify step changes, and

we term this Model (1). The second and third models are variants of the adaptive

smoothing model proposed in Section 4, with Model (2) being the simplification that

ρ = 0, while Model (3) is the full model with ρ estimated in the McMC algorithm.

Model (2) a-priori treats each wik ∈ w+ independently, and therefore does not

encourage configurations in which step changes cluster together. This comparison

allows the assessment of the relative merits of spatial and non-spatial smoothing of

the step changes.
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5.1. Data generation and study design

Data are generated for the N = 323 local authorities that comprise mainland Eng-

land, which is the motivating application described in Section 3. Our primary focus

in this study is to assess the ability of the models to (i) estimate the spatio-temporal

pattern in disease risk, and (ii) perform Wombling, that is the identification of step

changes in risk between neighbouring areas. For simplicity no covariates are in-

cluded in this study, so that the step changes identified in the random effects also

correspond to the risk surface. Disease count data are generated from a Poisson log-

linear model, where the expected numbers of cases Eij are altered to assess model

performance for diseases with different underlying prevalences. Simulated disease

data for England are generated for T consecutive time periods, which is also altered

to assess its impact on model performance. The log-risk surfaces are generated from

a multivariate Gaussian distribution, whose precision matrix is defined by the in-

trinsic CAR prior and hence produces spatially smooth surfaces. To simulate spatial

step changes in risk, a piecewise constant mean surface is specified for the random

effects, which is displayed in the left panel of Figure 3. Lighter shaded areas exhibit

a mean risk level of 1 while the darker shaded areas have a mean risk level of a, and

the black lines correspond to the locations of true step changes. Different values of

a are considered in this study, to assess the ability of the models to detect different

sized step changes. An example realisation of this surface is shown in the right

panel of Figure 3 for a = 2, where the clusters of high-risk areas are evident. To

ensure the true risk surface is not identical for all time periods, independent random

noise is added to the risk in each areal unit for each time period. The scenarios

considered in this study are summarised in Table 1, which shows that we consider

T = 1, 5, 20 time periods, elevated risk levels of a = 1, 1.5, 2, and disease prevalences

of E = 25, 75, 200. For the a = 1 scenario this corresponds to a spatially smooth

risk surface with no step changes, which tests the model’s propensity for identifying

step changes when none are present (false positives).
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Fig. 3. Left: Locations of the true step changes in risk, illustrated by black lines following

the borders between the selected subregions. Darker shading indicates areas with true

risk of 1.5 while lighter shading indicates a true risk of 1. Right: A single realisation of the

spatial risk surface assuming a = 1.5.

Table 1. Description of the scenarios in the simulation study.

Scenario type Parameters varied Parameters fixed
Varying time dimension T ∈ {1, 5, 20} a = 1.5; E = 75
Relative risk in high regions a ∈ {1, 1.5, 2} T = 5; E = 75
Expected cases E ∈ {25, 75, 200} T = 5; a = 1.5

5.2. Results

One hundred data sets were generated under each of the 9 scenarios shown in Table

1, and Models (1) - (3) were fitted in turn. Inference for each model was based

on 30,000 McMC samples following a burn-in period of 20,000 samples, after which

convergence was assessed to have been reached. The quality of the estimation of

the spatio-temporal pattern in disease risk was quantified by the root-mean squared

error (RMSE) of the estimated risk surface, that is RMSE=
√

1

NT

∑

i,j(Rij − R̂ij)2,

as well as by the coverage probabilities of the 95% credible intervals. Receiver-

operating characteristic (ROC) curves were computed to quantify the accuracy of

the step change detection, which were based on each models sensitivity and speci-
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Table 2. Median root mean-squared error (RMSE) and 95% credible interval coverages

associated with the fitted risks for each model and each of the 9 simulation scenarios.

RMSE CI coverage
(1) (2) (3) (1) (2) (3)

Temporal replication
T = 1 0.0916 0.0895 0.0912 0.9481 0.9504 0.9461
T = 5 0.0669 0.0462 0.0589 0.9628 0.9569 0.9536
T = 20 0.0493 0.0353 0.0382 0.9652 0.9287 0.9215

Relative risk
a = 1 0.0363 0.0380 0.0381 0.9551 0.8871 0.8881
a = 1.5 0.0677 0.0462 0.0584 0.9612 0.9563 0.9519
a = 2 0.0866 0.0505 0.0658 0.9644 0.9534 0.9519

Expected cases
E = 25 0.0924 0.0869 0.0899 0.9604 0.9644 0.9542
E = 75 0.0676 0.0464 0.0602 0.9582 0.9538 0.9531
E = 200 0.0486 0.0347 0.0414 0.9638 0.9462 0.9499

ficity at identifying true step changes. These statistics were based on comparing

E[wij |Y] to a threshold value p∗, where if E[wij |Y] < p∗ a step change was iden-

tified where as for the converse no step change was declared. The value of p∗ was

varied from 0 to 1 at intervals of 0.01, and the ROC curve is a plot of sensitivity

against specificity. However, for ease of presentation the Area Under the Curve

(AUC) is presented here rather than the full ROC curve, and an AUC of one corre-

sponds to perfect step change identification. We note that AUC was only computed

for Models (2) and (3), as Model (1) has no mechanism for step change detection.

Table 2 shows the RMSE and credible interval coverages associated with each model

across the nine simulation scenarios, from which a number of patterns emerge.

Firstly, models (2) and (3) outperform the existing non-adaptive approach in terms

of RMSE in all but the a = 1 scenario, in which no step changes exist and the RMSE

values are hence similar. Model (2) outperforms model (3) in terms of RMSE in

almost all cases, suggesting that the spatial smoothing imposed on the adjacency

relationships w+ is sub-optimal compared with assuming each element wik ∈ w+

is a-priori independent. For all models RMSE decreases as both the number of

time periods T and disease prevalence E increases, which is due to an increase in

the amount of data. The coverage probabilities for all models are generally close to

their nominal 95% levels, with the exception being the a = 1 scenario in which the

adaptive smoothing models have coverages of just below 89%.
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Table 3. Mean area under the ROC curve for step change identification across

100 simulations for models (2) and (3). Bracketed figures correspond to the 10%

quantile of areas. For a = 1 SPF denotes the specificity since there are no true

step changes to identify in this scenario.

Median area under ROC curves
(2) (3)

Temporal replication
T = 1 0.7204 (0.6751) 0.5460 (0.4979)
T = 5 0.9989 (0.9964) 0.6951 (0.4988)
T = 20 0.9980 (0.9967) 0.8883 (0.4995)

Relative risk
a = 1, SPF 0.8750 (0.6571) 0.8584 (0.5872)
a = 1.5 0.9987 (0.9974) 0.7281 (0.4988)
a = 2 0.9996 (0.9993) 0.7901 (0.4995)

Expected cases
E = 25 0.8671 (0.8262) 0.6138 (0.4988)
E = 75 0.9979 (0.9957) 0.6811 (0.4988)
E = 200 0.9991 (0.9986) 0.7595 (0.4995)

Table 3 displays the median AUC statistic across the set of ROC curves calculated

for the 100 simulated data sets from each scenario. The numbers in brackets are

the tenth percentile of that distribution, and give a summary of the variation in

the AUC statistics across the 100 simulated data sets. An exception to this is the

a = 1 scenario, which instead displays the specificity because as the risk surface

is spatially smooth there are no true step changes to identify. For model (2) the

median AUC values is close to the maximal value of 1, indicating very accurate step

change identification. The exception to this occurs when T = 1 which is when step

change detection is based on only one realistaion of the spatial surface.

the specificity for the a = 1 scenario for model (3) with ρ estimated, which has a

median specificity of only 0.5594. The relatively poorer performance of model (3)

compared with model (2) is consistent across all scenarios and is also evident in the

tenth percentile results, and re-enforces the RMSE and coverage results displayed in

Table 2. This poorer performance is because model (3) forces the step changes to

be spatially smooth, thus inducing a set of false positives that are spatially close to

the real boundaries. The other main result from Table 3 is that the AUC increases

as the number of time periods T increases, which is due to an increase in the amount

of temporal replication in the data.
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6. Results of the England case study

This section presents the results of the England circulatory and respiratory disease

case study introduced in Section 2, where JSA is included as a covariate in all models.

We apply two models to each data set, the global smoothing model of Rushworth

et al. (2014) (Model (1)) and the adaptive smoothing model proposed here with the

simplification that ρ = 0 (Model (2)). We do not apply the full adaptive model

which estimates ρ because the simulation study showed it produced poorer results

compared to Model (2). Inference for both models is based on 50,000 posterior

samples, which are collected after a burn-in period of a further 50,000 samples.

In analysing these data our goals are to: (i) estimate the spatio-temporal pattern

in disease risk to quantify the extent of health inequalities; and (ii) estimate the

location of any step changes in the unexplained spatial risk structure, which will

assist in the identification of unmeasured confounders.

6.1. Model fit and risk estimation

Figure 1 shows evidence of spatial smoothness and step changes in the unexplained

component of the risk surfaces for both conditions, which is corroborated by the De-

viance information criterion (DIC) statistics presented in Table 4. The table shows

that the adaptive smoothing model (2) fits the data better than the global smooth-

ing model (1) for both diseases, with reductions of around 350 (1%) in both cases.

Additionally, Table 4 shows that model (2) has a substantially smaller number of

effective parameters (pD) than (1), so that it is achieving this improvement in fit

whilst having an improvement in parsimony. While model (2) has a more com-

plex specification than model (1), its ability to identify step changes permits the

GMRF component to smooth more strongly elsewhere in the spatial surface. This

stronger smoothing over the remaining random effects is visible in Table 4 from the

smaller variance estimates for σ2, which in turn implies greater level of penalisation

of φN×T and a reduction in the overall effective number of parameters pD. Finally,

the temporal autocorrelation as estimated by the parameter α is high and consistent

between models and different disease data, with posterior median estimates ranging
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Table 4. Diagnostics for models (1) and (2) for the England circulatory

and respiratory admissions data sets.

Circulatory Respiratory
Diagnostic (1) (2) (1) (2)

DIC 35,333 35,079 35,270 35,031
pD 2,905.6 2,645.7 3,219.5 2,664.47

% of borders with pik > 0.75 - 31.6 - 24.3
% of borders with pik > 0.99 - 18.3 - 18.2

σ̂2 0.0425 0.0098 0.0507 0.0136
τ̂2 - 256.47 - 261.03
α̂ 0.974 0.960 0.969 0.964

between 0.96 and 0.98.

Maps of the average risks across all years from model (2) are displayed in the left

column of Figure 4, and show similar spatial patterns in risk for both diseases, with

a Pearson’s correlation coefficient of 0.948. The maps show that the average risk

varies over space with values between (0.192, 1.634) and (0.176, 2.152) respectively

for circulatory and respiratory disease, suggesting the presence of substantial health

inequalities. These inequalities have generally widened over time, as the difference

between highest and lowest respiratory disease risk was 1.78 in 2001 and 2.13 in 2010.

For circulatory disease a similar pattern is evident, with an estimated difference

between highest and lowest risk of 1.39 in 2001 and 1.54 in 2010.

6.2. Step change identification

Table 4 summarises the number of step changes in the unexplained component of

the risk surface, based on pik = P(wik < 0.5|Y) values above a threshold of 0.75 and

0.99. The higher 0.99 level threshold was used by Lu and Carlin (2005), and results

in 18.3% of borders being step changes for circulatory disease and 18.2% for respira-

tory disease. These step changes are largely similar between the diseases, with 92%

agreement between their locations. They are displayed in the right column of Figure

4 as white lines, while the grey shading represents the time averaged exponentiated

random effects surface which corresponds to the unexplained component of the vari-

ation in disease risk. The figure shows evidence of much higher risks of hospital

admission in areal units containing large cities, and in the central band of Northern
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England that incorporates Manchester and Yorkshire, even after adjusting for JSA.

It is striking that these features are largely consistent between the two diseases, so

that although the estimated risks have different overall magnitudes, they exhibit

very similar spatial patterns. Public health professionals can use these results to

identify potential risk factors for disease, by searching for risk factors that exhibit

step changes in the same locations as those exhibited in Figure 4.
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Fig. 4. Maps showing the average risk surface (left column) and the unexplained compo-

nent of the risk surface (right column) for both diseases. The top row relates to circulatory

disease while the bottom row relates to respiratory disease. The white lines on the maps

in the right column correspond to step changes that have been identified using a cutoff of

pik ≥ 0.99 in (6).
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7. Discussion

In this paper a new study of the spatio-temporal structure of circulatory and res-

piratory disease risk in England is presented, with the goal of understanding the

extent of health inequalities and whether the data present evidence of disparities in

disease risk between pairs of adjacent regions. Consequently, a new spatially adap-

tive smoothing model for disease risk was developed, that can estimate the location

and strength of step-changes in disease risk. The model is a spatially adaptive ex-

tension to the class of GMRF prior distributions, and is one of the first models for

step change identification in spatio-temporal disease risk. Freely available software

via the CARBayesST package for R is provided to allow others to apply our model

to their own data, and this is one of the first R packages for spatio-temporal disease

mapping.

The simulation study in Section 5 established the superiority of our model over

existing global smoothing alternatives, in terms of both risk estimation and the

quantification of uncertainty in disease risk. Our model was also successful at re-

covering the locations of known step changes in simulated data, with AUC statistics

close to one for a range of different scenarios. These AUC statistics were higher if

the step changes were assumed to be independent in space, because a-priori assum-

ing spatial clustering resulted in false step changes being identified close to real step

changes. Thus existing global smoothing models are sub-optimal for space time dis-

ease mapping in two respects. Firstly, they smooth over such step changes leading

to poorer estimation of disease risk, and secondly they cannot identify such step

changes which themselves provides etiological evidence about potential unmeasured

risk factors.

Section 6 described the application of the new model to the England hospital admis-

sions data, from which strong evidence of step changes in the unexplained component

of risk was found. Better model fit with a smaller number of effective parameters

pD was also observed compared to the global smoothing alternatives, which was
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achieved because increased levels of smoothing were possible in locations where step

changes were not present. Thus existing models without this adaptive smoothing

capability may overfit some data sets, by imposing too weak a spatial smoothing

constraint due to the presence of step changes in risk. A striking association was

found between the fitted risks and identified step changes between circulatory and

respiratory disease, perhaps indicating the influence of the same unobserved risk

factor (after allowing for socio-economic deprivation by JSA). Therefore in future

work we will try and identify such unmeasured confounders, to see if the they are

indeed common to both diseases.

Another avenue for future work is to use the model in an ecological regression con-

text, where the effect of an exposure on disease risk is of primary interest rather

than the spatio-temporal pattern in disease risk. The efficacy of adaptive smoothing

models in this context may be to reduce spatial confounding between the random

effects and the covariates as suggested by Clayton et al. (1993), and environmental

factors such as air pollution would be a natural context for such work. A further

avenue of future work is to consider spatio-temporal models for multiple diseases,

such as circulatory and respiratory disease, simultaneously, thus allowing between

disease correlations in step change locations to be utilised in the model.
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