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ABSTRACT

This article is concerned with attempting to ‘predict’ (hindcast) the

damage caused by the L’Aquila 2009 earthquake (Mw 6.3) and, more

generally, with the question of  how close predicted damage can ever be

to observations. Damage is hindcast using a well-established empirical-

based approach based on vulnerability indices and macroseismic inten-

sities, adjusted for local site effects. Using information that was available

before the earthquake and assuming the same event characteristics as

the L’Aquila mainshock, the overall damage is reasonably well predicted

but there are considerable differences in the damage pattern. To under-

stand the reasons for these differences, information that was only avail-

able after the event were include within the calculation. Despite some

improvement in the predicted damage, in particularly by the modifica-

tion of  the vulnerability indices and the parameter influencing the

width of  the damage distribution, these hindcasts do not match all the

details of  the observations. This is because of  local effects: both in terms

of  the ground shaking, which is only detectable by the installation of  a

much denser strong-motion network and a detailed microzonation, and

in terms of  the building vulnerability, which cannot be modeled using

a statistical approach but would require detailed analytical modeling

for which calibration data are likely to be lacking. Future studies should

concentrate on adjusting the generic components of  the approach to

make them more applicable to their location of  interest. To increase the

number of  observations available to make these adjustments, we en-

courage the collection of  damage states (and not just habitability

classes) following earthquakes and also the installation of  dense strong-

motion networks in built-up areas.

1. Introduction

Predicting the impact of  future earthquakes is a

key step of  earthquake risk management. Generally the

potential impact in terms of  building and infrastructure

damage, number of  casualties and homeless people and

the direct economic loss are predicted for various earth-

quake scenarios (e.g. a repeat of  a historical event or

the rupture of  a nearby fault). The procedures followed

to make these predictions have become increasingly so-

phisticated but this invariably increases the need for de-

tailed quantitative inputs. Consequently there remains

a place for simpler, observationally-based methods to

assess the impacts of  potential earthquakes. One such

procedure is the Level 1 approach developed within the

RISK-UE project supported by the European Commis-

sion’s Fifth Framework Programme [Mouroux and Le

Brun 2006]. An extended version of  this procedure has

been used to develop many earthquake scenarios as

part of  public-service actions for the French Ministry

of  the Environment [Sedan et al. 2008]. Comparisons

of  the accuracy of  damage predicted by this approach

to observed damage in recent French earthquakes has

been encouraging (e.g. Lourdes, 2006, ML 5; Sedan et

al. [2013]) but these comparisons have been limited to

small earthquakes (Mw<5) because of  France’s moder-

ate seismicity. 

The aim of  this article is to extend these compar-

isons to a highly-damaging earthquake. The recent

L’Aquila (Italy) earthquake (Mw 6.3 Global CMT) that

occurred on April 6, 2009, has been chosen for this com-

parison: firstly, because it is similar to the type that

could occur in mainland France, i.e. a shallow moder-

ate earthquake occurring close to a city center com-

posed of  a mixture of  pre-code, mainly masonry,

dwellings and modern reinforced concrete (RC) struc-

tures, and, secondly, because of  the wealth of  available

ground-truth data. As will be shown below, there are

significant differences between the observed damage

and that predicted by the standard Level 1 procedure

for this earthquake. Consequently the main focus of

this article is an analysis of  the reasons for this difficulty

in ‘predicting’ (hindcasting) and a discussion on the lim-

its of  earthquake risk evaluation. The overall objective

of  this study is to understand the critical aspects of  the

standard Level 1 procedure when it is applied in an op-

erational context for risk assessments of  a large geo-
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graphical zone where information is limited. More so-

phisticated procedures could be followed for small areas

or where extensive field studies have been conducted

but these approaches are rarely possible for public-ser-

vice projects of  a large zone.

Several damage hindcasts of  the L’Aquila earth-

quake have been published. Karakostas et al. [2012] and

Kontoes et al. [2012] have made them using a hybrid

approach based on Italian and Greek fragility curves.

Erdik et al. [2011] compare several rapid loss estimation

procedures (PAGER, QLARM and ELER) using the

L’Aquila earthquake as an example. Using the ELER

method they also estimated the damage to buildings

using four different ground-motion models. Sabetta

[2011] also provides the loss estimates made by the Ital-

ian Civil Protection for this earthquake using the SIGE

software. From the viewpoint of  justifying the non-

evacuation of  L’Aquila during the seismic crisis, Zechar

et al. [2014] and van Stiphout et al. [2010] estimated the

damage using the QLARM software, which is based on

EMS98 vulnerability classes. They used a generic vul-

nerability model for L’Aquila, with 30% of  buildings in

EMS98 class A (the most vulnerable), 30% in class B,

30% in class C and 10% in class D (the least vulnerable).

This generic distribution will be discussed later in the

present article.

Considering hindcasts for other recent moderate

earthquakes in Europe, Rivas-Medina et al. [2014] com-

pare predicted and observed damage for the Lorca 2011

earthquake (Mw 5.1 Global CMT) in Spain. They used

several ground-motion prediction equations (GMPEs)

and standard RISK-UE Level 2 capacity curves from

Lagomarsino and Giovinazzi [2006]. They note diffi-

culties in comparing habitability diagnostics for build-

ings and scenario damage states. Another difficulty

encountered is the simulation of  specific building types,

specifically: old masonry and RC-frame buildings. Ma-

sonry structures are predicted to be more damaged

than they were in reality. The situation is reversed for

the RC buildings: they experienced greater damage

than the predictions would suggest. However, looking

at the whole of  Lorca, these differences roughly com-

pensate and the global simulated damage is quite close

to reality but they show large local discrepancies.

The Liege 1983 earthquake (ML 4.9) in Belgium is

studied by Garcia-Moreno and Camelbeeck [2013].

Their goal is quite different to the present article: they

estimate ground-motion maps in terms of  peak ground

and pseudo-spectral acceleration (PGA and PSA, re-

spectively) that best explain the observed damage. The

inversion was made using two sets of  fragility and vul-

nerability curves for masonry buildings: those of

HAZUS and those of  Lang and Bachmann [2004]. Kauf-

mann and Schwarz [2008] compared several EMS98

vulnerability assessments with observed damage from

the Albstadt (Germany) 1978 earthquake (ML 5.7). 

In the next section the risk evaluation procedure

followed here is outlined. Section 3 presents various at-

tempts to hindcast the observed damage (i.e. predict

the damage using only information that was available

before the earthquake assuming the size and location

of  the event is known). Since significant differences be-

tween the observed and ‘predicted’ damage are identi-

fied, Section 4 analyses the reasons for this difference.

The article ends with some discussion of  the results and

recommendations for future risk evaluations.

2. Level 1 risk evaluation procedure

The risk evaluation procedure used here consists

of  various steps, which are briefly outlined in this sec-

tion. It is assumed that the magnitude and location

(hypocenter and fault position) of  the earthquake are

precisely known (and equal to those assessed after the

L’Aquila event), along with any other earthquake char-

acteristics (e.g. normal-faulting mechanism) required

to evaluate the GMPEs considered. This assumption is

made because it is the basis of  deterministic scenario-

based risk evaluations.

The first step of  the procedure is to estimate the

PGA or peak ground velocity (PGV) using a GMPE as-

suming a uniform site condition, generally a standard

rock class (here Eurocode 8 class A), for every grid lo-

cation where the damage is to be estimated. In this

study, because of  the level of  detail available on the ob-

served building damage, two different areas are consid-

ered: a large area of  central Italy centered on L’Aquila,

where macroseismic intensities are available (but de-

tailed damage observations are not); and a much smaller

area covering only the city of  L’Aquila, where details

of  the observed damage are known in addition to a de-

tailed microzonation of  local site effects. At the scale

of  the L’Aquila municipality the grid size was 15 m.

Next the impact of  local site effects on PGA and

PGV due to variations in the near-surface lithology and,

possibly, topography (not considered here) are modeled

by applying site amplification factors using a site classi-

fication map (ideally based on a microzonation of  the

area). The maps of  PGA and PGV taking account of

the local site effects are then converted to macroseis-

mic intensity in terms of  the European Macroseismic

Scale (EMS98) [Council of  Europe 1998] using a ground-

motion-intensity conversion equation (GMICE). Inten-

sity estimates in terms of  EMS98 summarize the effects

of  the earthquake at that location on a twelve-point in-

teger scale. In this study this is the final step of  the pro-

cedure for the risk evaluation of  the wide region of
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central Italy. 

For the detailed damage assessment for the city of

L’Aquila three additional steps are necessary, which

were developed within RISK-UE [Lagomarsino and

Giovinazzi 2006]. Firstly, the fragility to earthquake

shaking of  the elements at risk (for this study,

dwellings) are characterized by vulnerability indices

(Vi), which range from zero (no vulnerability to earth-

quake shaking) to one (building is highly vulnerable to

shaking). A value of  Vi is assigned to each building type

(defined in terms of  its age, material and technique of

construction and, potentially, other characteristics).

Next, based on the Vi and the assessed intensity at each

location, the mean damage degree (µD, between zero

and five) is estimated based on a vulnerability function.

Finally, the distribution of  damage at each location is

assessed based on µD and a value t, which governs the

spread of  the distribution, by using a beta distribution.

The final outcome is the distribution in terms of  the six

levels defined in EMS98: D0 (undamaged), D1 (slight

damage), D2 (moderate damage), D3 (heavy damage),

D4 (partial collapse) and D5 (total collapse) for each lo-

cation that is separately considered.

This procedure is programmed in the in-house

BRGM software Armagedom, which was used for the

computations presented here. Details on the procedure

and the software are provided by Sedan et al. [2013].

2.1. GMPEs for L’Aquila

Two of  the GMPEs proposed by the project

SHARE for the construction of  a harmonized seismic

hazard map for Europe [Delavaud et al. 2012] are used

here for the estimation of  damage. These are: Akkar

and Bommer [2010], which was derived by regression

analysis on about 500 strong-motion records from Eu-

rope and the Middle East, and Cauzzi and Faccioli

[2008], which was based on analysis of  about 1200 ac-

celerograms mainly from Japan but with some data

from California, Europe and Iran. These two GMPEs

were given the highest weight in the logic tree by

Delavaud et al. [2012].

2.2. Local site effects in L’Aquila and wider region

Di Capua et al. [2011] present a national EC8 site

class map based on surface geology, which is used for

the analysis of  the wide region. To assess the damage

scenarios, each site class is translated into amplification

factors for PGA and PGV using the EC8 spectra. 

The national EC8 site class map being established

at a scale of  1:100,000, it is not fully adapted to city-

scale damage assessments. To improve our analysis of

local site effects and their implications for damage esti-

mation when focusing on L’Aquila, we used the ad-

vanced seismic microzonations performed at a scale

better than 1:10,000 for L’Aquila, Onna, Paganica, Bari-

sciano, San Pio delle Camere and Castelnuovo [Gruppo

di Lavoro MS-AQ 2010]. For those microzonations, 1D

or 2D numerical simulations were performed follow-

ing the approach described by the Gruppo di Lavoro

MS [2008]. Two amplifications factors FA and FV are cal-

culated respectively from the maximum acceleration

spectral response and the maximum velocity spectral

response. 

2.3. Vulnerability assessment for current buildings

In this study only current dwellings have been con-

sidered using the building census data freely provided

by ISTAT [2001]. These census data provide informa-

tion about the total number of  buildings; the age and

materials of  construction, either RC or masonry, are

given but this information is not cross-referenced. In-

formation is provided at a district or locality level (one

municipality is divided into n localities). The newest

census data (from 2011) do not provide all this infor-

mation [ISTAT 2014]. The vulnerability of  the current

dwellings are characterized for the procedure followed

here using the following two steps. 

LIMITS ON EARTHQUAKE RISK EVALUATIONS

Vulnerability class (EMS98) in %

Age of  building A B C D

I Before 1919 64.0 26.8 8.4 0.8

II 1919-1945 41.3 36.5 18.7 3.5

III 1946-1961 16.8 34.2 32.8 16.2

IV 1962-1971 4.8 14.8 33.4 47.0

V 1972-1981 24.2 11.4 27.5 36.9

VI After 1982 0.4 4.2 9.0 86.4

From Bernardini
et al. [2007]

Modified here

EMS98
vulnerability

classes
Vi Vi t Reference

A 0.880 0.850 8 Figure 9

B 0.720 0.700 8 Figure 10

C 0.560 0.700 16 Figure 10

D 0.400 0.525 10 Figure 11

Table 2. EMS98 vulnerability classes and RISK-UE vulnerability in-
dexes Vi used for the “blind” scenario [Bernardini et al. 2007] (t = 6
was used for all classes) and the modified Vi and t parameters ac-
cording to observations of  Rossetto et al. [2009], Liel and Linch [2009]
and Tertulliani et al. [2010].

Table 1. Distribution matrix of  the vulnerability classes EMS98 with
the reference to the age of  building, taken from Zuccaro et al. [2012].



Firstly, Zuccaro et al. [2012] proposes a preliminary

method to classify Italian current building into EMS98

vulnerability classes as a function of  age of  construc-

tion (Table 1). This method is adapted to the 2001 cen-

sus information provided by ISTAT. Local variations in

building type are not taken into account at this level of

study. This is discussed later on in this article. 

Secondly, EMS98 vulnerability classes are con-

verted into RISK-UE vulnerability indexes following the

approach of  Bernardini et al. [2007]. Therefore, for the

hindcast the vulnerability indices that have been used

are the ones presented in Table 2.

2.4. Observed macroseismic intensities in central Italy

The observed intensities using the Mercalli-Can-

cani-Sieberg (MCS) scale reported by Galli et al. [2009]

are available in the DMBI database [Stucchi et al. 2007,

Locati et al. 2011]. So as to facilitate comparisons with

the predicted intensities (made at all grid points within

the area), these observations are interpolated using

kriging with a trend [e.g. Douglas 2007] taking account

of  the fault location. It should be noted that strictly

speaking intensities are integers and hence they cannot

be processed in this way. The assumption that intensi-

ties can be manipulated like continuous variables is,

however, commonly made because it enables analyses

(in this case, interpolation) that would not be possible if

intensities were considered only as integers. Neverthe-

less, the reader is cautioned against over-interpreting

details of  the interpolated intensities. These interpolated

intensities (Figure 1) are used here as the basis of  the com-

parisons for the wide region of  central Italy. Following

Musson et al. [2010], it is assumed here that intensities

on the MCS and EMS98 scales are equivalent.

2.5. Observed damage in L’Aquila 

Tertulliani et al. [2010] describe the exhaustive

building-to-building survey performed in the center of

L’Aquila to evaluate the damage and to compile an in-

ventory of  building types according to EMS98 guide-

lines [Council of  Europe 1998]. Tertulliani et al. [2010]

present these valuable results as maps of  vulnerability

classes and damage grades. These damage grades are

the basis of  the comparisons for the city of  L’Aquila.

3. Hindcasting the observations

This section discusses several options for hindcast-

ing the damage observations. The first method is called

the “standard approach” or “blind scenario”. In this ap-

proach the only measured data used are the epicentral

coordinates and the moment magnitude. Next the me-

dian ground motions (PGA or PGV) are estimated using

a GMPE taking into account a national EC8 site classifi-

cation map, the estimation of  the macroseismic intensity

using a published GMICE and, finally, the damage as-

sessment using, in the present work, the RISK-UE proce-

dure. As noted above two GMPEs adapted to European

context have been used and for the Akkar and Bommer

DOUGLAS ET AL.
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Figure 1. Interpolated macroseismic intensities using the intensities of  Galli et al. [2009] reported in the DMBI-EMIDIUS database [Locati
et al. 2011]. Isoseismals indicate the interpolated intensities whereas the observations are shown as colored circles.
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[2010] model the fault location available on the INGV

(the Italian Istituto Nazionale di Geofisica e Vulcanologia)

ShakeMap website has been taken into account. 

The comparisons of  macroseismic intensites for

the wide region are shown in Figure 2. It can be seen

that there are considerable differences between the pre-

dictions and observations for this standard approach.

The following sections seek to improve the match by

various techniques. The idea here is to quantify the im-

pact of  uncertainties in each of  these steps on the final

result by using available observations for a given event

to avoid (bypass) a given step. For example, using the

observed PGAs (or PGVs) from a dense strong-motion

network in the epicentral zone rather than a GMPE will

quantify the possible reduction if  this step was perfectly

performed and using the observed macroseismic in-

LIMITS ON EARTHQUAKE RISK EVALUATIONS

Figure 2. Comparison between hindcast macroseismic intensities (MCS) using Cauzzi and Faccioli [2008] (top) and Akkar and Bommer
[2010] (bottom) and those observed (MCS, DMBI-EMIDIUS).



tensity map will eliminate the uncertainties from the

first three steps.

3.1. Improving estimated ground motions

The first way in which the predictions could be

made more similar to the observations is to improve

the ground-motion estimates. This was done here by

making use of  the strong-motion records for this earth-

quake and the kriging with a trend technique [e.g. Dou-

glas 2007] (Figure 3). The procedure followed was that

the observed PGAs and PGVs at each of  the strong-mo-

tion stations that recorded this earthquake were ad-

justed to the Eurocode 8 (EC8) A class (rock) by using

the Italian EC8 site class map of  Di Capua et al. [2011]

and the site amplifications of  the EC8 design spectra

for the different classes (spectral acceleration at 0.5 s

was used as a proxy for PGV following Bommer and

Alarcon [2006]), these were then kriged and the EC8

amplifications were subsequently applied to the result-

ing ground-motion map.

Given the low density of  stations in the L’Aquila

area (only five stations in the city) the estimated

ground-motion field shows little spatial variation. This

means that the use of  this map to avoid the uncertain-

ties of  the first three steps is likely to not significantly

reduce the mismatch with observations, except for pos-

sibly removing an overall bias because the average

ground motions in the city were higher (or lower) than

would be expected based on a GMPE.

Figure 4 compares the observed and estimated in-

tensities at locations near L’Aquila using the various ap-

proaches. In many locations intensity is overestimated.

In many villages close to the epicenter low intensities

(VI or less) were observed, which could be related to

fault directivity towards the south and spatial variabil-

ity of  the ground motions. GMPEs generally assume

isotropic attenuation in all directions and the instru-

mental network was not dense enough to capture the

heterogeneities. The historical center of  L’Aquila is one

of  the points where observed and estimated intensities

(VIII-IX) are similar. 

In Italy, the software ShakeMap has been opera-

tional at the Istituto Nazionale di Geofisica e Vul-

canologia since 2006 [Michelini et al. 2008, Faenza and

Michelini 2010]. According to Faenza and Michelini

[2010], this software uses the GMICE of  Wald et al.

[1999]. The ShakeMap for the L’Aquila earthquake is

available on Shakemap INGV archives (INGV [2009],

http://shakemap.rm.ingv.it/shake/2206496920/inten-

sity.html). The predicted intensities for this event vary

between VII and VIII in the L’Aquila municipality. This

estimated intensity map has been used as one of  the at-

tempts to better match the observations.

3.2. Adjusting the GMICE

After the PGA and PGV are estimated they are

converted to macroseismic intensity through a GMICE.

Because of  their wide use in Italy and elsewhere, two

models have been considered here [Wald et al. 1999,

Faenza and Michelini 2010]. Neither of  these use obser-

DOUGLAS ET AL.
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Figure 3. Comparison between hindcast macroseismic intensities using kriging of  measured PGV and those observed in L’Aquila (EMIDIUS).



7

vations from the L’Aquila earthquake and, hence, it is

useful to check their applicability to these data by com-

paring observed and predicted intensities based on ob-

served PGAs and PGVs (Figure 5). From this comparison

it can be seen that for PGA the model of  Faenza and

Michelini [2010] roughly matches the observations

whereas for PGV the model of  Wald et al. [1999] is bet-

ter. However, the ranges of  measured PGAs and PGVs

for the same intensity level are very large, e.g. the ranges

for intensity V span over an order of  magnitude (factor

of  ten). Consequently, this transformation introduces

much uncertainty into the procedure. This could be

avoided by predicting EMS98 intensity directly but this

would require reliable intensity prediction equations to

be available that take into account local site effects.

3.3. Impact of  site effects on intensities

Within the risk evaluation reported here, site ampli-

fication is accounted for by its influence on PGA and

PGV and, subsequently, through the GMICE on macro-

seismic intensity. To understand the influence that vari-

ations in site conditions could have on the assessed

intensities, the increment in intensity ( I) for both PGA

and PGV are computed using two different GMICEs

(those of  Faeza and Michellini [2010] and Wald et al.

[1999]) for the range of  site amplifications specified in the

microzonation of  Gruppo di Lavoro MS–AQ [2010] (Fig-

ure 6). For the site amplifications for the EC 8 site classes

(A, B, C and D), EC 8 design spectra [CEN 2005] for these

classes are used; as noted above, for PGV the site ampli-

fication for a spectral acceleration of  0.5 s is used as a

LIMITS ON EARTHQUAKE RISK EVALUATIONS

Figure 4. Comparison between observed intensities and those predicted by the three different approaches shown in Figure 2 and Figure 3

Figure 5. Comparison of  intensities observed in the L’Aquila earthquake and those predicted by the GMICEs of  Faenza and Michelini [2010]
and Wald et al. [1999].



proxy following Bommer and Alarcon [2006]. Since the

site amplifications specified in the microzonation

[Gruppo di Lavoro MS–AQ 2010] are with respect to the

plateau of  the acceleration (FA) and velocity (FV) spectra

of  the sites it is not possible to clearly relate this to am-

plification of  PGA and PGV but this assumption has been

made here. This could overemphasize the importance of

site amplification on macroseismic intensities. 

Studying Figure 6 suggests that amplifications im-

plied by EC 8 lead to a limited effect on the intensities

(less than half  a unit with respect to rock intensities)

but in the case of  site amplifications evidenced in mi-

crozonations for L’Aquila DI can reach one unit or

more. Such variations are noticeable on the observed

macroseismic intensities and hence are contributing to

the mismatch between predictions (made without ac-

cess to the microzonations) and observations.

3.4. Results 

The results of  these attempts are summarized in

Figure 7 and Figure 8 for the historical center of  L’A-

quila. They are roughly arranged with respect to how

much information that was only available after the

earthquake is used. Table 3 summarizes the character-

DOUGLAS ET AL.
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Figure 6. Effect of  PGA and SA(0.5s) (proxy for PGV) site amplifications on macroseismic intensities for two GMICEs and the site factors
predicted by Eurocode 8 and the microzonation of  L’Aquila.

Figure 7. Comparison between hindcast damage states (right: by neighborhood) using the most complete approach (CAU3) and those ob-
served (left: by building) in the center of  L’Aquila [Tertulliani et al. 2010].
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istics of  each simulation and Table 4 presents the main

results in terms of  damage buildings for comparison to

the observations. It can be seen that, despite using much

additional information, there remain large differences

between the hindcasts and the observations. The rea-

sons for this are discussed in the following section. 

4. Why the observed damage cannot be ‘predicted’

The best results should be obtained using the in-

terpolated macroseismic intensity map (since we are

basically starting with the answer) but this is not ob-

served. The possible reasons for this are the following:

- Differences between the distribution of  damage

and modeled distributions for different t and Vi ;

- Inconsistency between macroseismic intensities

and reported damage (reported damage higher than in-

tensities suggest);

- Bi-modal damage distribution coming from two

populations of  buildings (low and high vulnerabilities);

and

- Tails of  the distributions: what is the lowest

ground motion/intensity where damage is observed?

The first three of  these possibilities are investigated

in this section. The fourth is not considered here since

it would require more detailed information on the ob-

served ground motions than provided by the handful

of  strong-motion stations in L’Aquila.

4.1. Observed damage distributions

Following the L’Aquila earthquake, many research

teams undertook field surveys of  building damage in

different areas. Liel and Lynch [2009] estimated dam-

LIMITS ON EARTHQUAKE RISK EVALUATIONS

ID Ground-motion input Building vulnerabilities 

SKM1 INGV shakemap Zuccaro et al. [2012]

OINT1
Observed intensities interpolated
[Galli et al. 2009]

OPGV1
Measured bedrock PGV from kriging
GMICE: Faenza and Michelini [2010]
Site effects: national EC8 map

AK1
GMPE: Akkar and Bommer [2010]
GMICE: Faenza and Michelini [2010]
Site effects: national EC8 map

CAU1
GMPE: Cauzzi and Faccioli [2006]
GMICE: Faenza and Michelini [2010]
Site effects: national EC8 map

SKM2 INGV shakemap Based on Zuccaro et al. [2012] and ISTAT2001 with new
vulnerability index and t value based on observations.

OINT2
Observed intensities interpolated
[Galli et al. 2009]

OPGV2
Measured bedrock PGV from kriging
GMICE: Faenza and Michelini [2010]
Site effects: national EC8 map

AK2
GMPE: Akkar and Bommer [2010]
GMICE: Faenza and Michelini [2010]
Site effects: national EC8 map

CAU2
GMPE: Cauzzi and Faccioli [2006]
GMICE: Faenza and Michelini [2010]
Site effects: national EC8 map

CAU3
GMPE: Cauzzi and Faccioli [2006]
GMICE: Faenza and Michelini [2010]
Site effects: Microzonation (only in historical center of  L’Aquila)

CAU4 Same as CAU3 Simulation only done for L’Aquila historical center.
EMS98 vulnerability classes observed by Tertulliani et al.
[2010] distributed homogeneously in the red zone.
Vulnerability index and t value as discussed above.

IX CNT
Constant intensity IX is assumed
for the entire historical center of  L’Aquila.

Table 3. Synthesis of  the simulations considered in the present work. 



age states for RC residential buildings in L’Aquila. Fig-

ure 9 presents the distributions of  damage states as-

suming two different distributions of  building height:

for Case 1 the height distribution of  the L’Aquila RC

buildings is the same as the height distribution in the

original field database and for Case 2 the height distri-
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Figure 8. Distribution of  damage states in L’Aquila observed by Tertulliani et al. [2010] and simulations.
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bution is updated based on available census data for

L’Aquila. This comparison shows that, for the RC struc-

tures in Aquila, the vulnerability index that best fits the

damage distribution observed by Liel and Lynch [2009]

for the Case 1 is Vi= 0.6 and for Case 2 Vi=0.5 and a t

value, governing the damage distribution, of  8. Hence,

for RC structures in L’Aquila the initial value consid-

ered in the “blind” scenario (Table 2) seems to under-

estimate the vulnerability of  this type of  structure.

In their preliminary field report following the L’A-

quila earthquake, Rossetto et al. [2009] report the build-

ing damage distribution in Onna. Figure 10 compares

the RISK-UE damage distribution for macroseismic in-

tensity IX-X and for Vi between 0.7 and 0.9 to the ob-

served damage distribution for Onna. In this case, Vi=

0.88 chosen in the “blind” scenario seems to be a good

assumption. A t value of  8 is assumed. Considering the

observed data in Onna, all the masonry buildings would

LIMITS ON EARTHQUAKE RISK EVALUATIONS

Number of  D4 and D5 buildings Number of  inhabitable buildings (class E)

ID
Intensity
L’Aquila his-
torical center

Simulated
Observed

[Tertulliani et
al. 2010]

Simulated* Observed (AeDES)

Municipality Center Center** Municipality Center Municipality
Center

(red zone)

SKM1 VII-VIII 744 152

504

2694 546

6616 748

OINT1 VIII 1315 376 3493 834

OPGV1 VIII-IX 3522 538 7110 981

AK1 IX 4633 543 8336 989

CAU1 VIII-IX 3265 533 6782 982

SKM2 VII-VIII 403 86 2159 513

OINT2 VIII 931 284 3307 864

OPGV2 VIII-IX 3014 458 8159 1047

AK2 IX 4386 596 10112 1149

CAU2 VIII-IX 2756 445 7651 1035

CAU3 VIII-IX 4285 410 9546 1004

CAU4 VIII-IX - 243 - 971

IX CNT IX - 452 - 1207

Figure 9 (left). Damage distribution using the RISK-UE approach for macroseismic intensity IX and different vulnerability indexes (Vi= 0.4 –least
vulnerable to Vi= 0.9- most vulnerable) and the discrete damage distributions [Liel and Lynch 2009] for two different assumptions on building
heights: RC case 1 - height distribution based on field database and RC case 2 - height distribution updated with available census data for L’Aquila.
Figure 10 (right). Damage continuous distribution using the RISK-UE approach for intensity IX-X and different vulnerability indexes and the
discrete damage distribution of  masonry buildings observed in Onna [Rossetto et al. 2009].

Table 4. Results of  the different simulations for the L’Aquila municipality. (*) Transformation based on Table 6 (E=100% of  D4 and D5
buildings + 85% of  D3 + 47% of  D2). (**) Total number of  buildings in center of  L’Aquila on April 6, 2009, was 1536, according to Tertul-
liani et al. [2010]. Total number of  buildings considered in this scenario, based on ISTAT [2001], data is 1511. Total number of  buildings in
red zone (zona rossa) in the center of  L’Aquila according to AeDES is 1238.



be classed in vulnerability class A according to EMS98.

Following the global vulnerability assessment by Zuc-

caro et al. [2012] and ISTAT [2001] data for Onna, the

building stock in Onna would be classified as shown in

Table 5. Even if  observations by Rossetto et al. [2009]

do not include all buildings in Onna, it seems clear that

the classification using Zuccaro et al. [2012] tends to un-

derestimate the number of  buildings in vulnerability

class A. On the other hand the number of  buildings in

vulnerability class D is probably overestimated.

It seems appropriate to use in the same scenario

different values of  t for the various vulnerability classes

(e.g. for vulnerability class A t equal to 8 is the best

choice while for the vulnerability classes B and C t

equal to 16 appears better). In the “blind” scenario we

used the same t value for the all the vulnerability classes

but when trying to improve the match to the observa-

tions different values of  t are used (as is allowed by the

software we use). For vulnerability classes A, B and C,

the observations from field reports show a uni-modal

damage distribution that is consistent with the beta dis-

tribution proposed by the RISK-UE approach for each

building type. This is not seen for the vulnerability class

D, which seems to present a bi-modal damage distribu-

tion coming from two populations of  buildings (low

and high vulnerabilities, Figure 10). It should be noted,

however, that there are only eight buildings in class D

reported by Tertulliani et al. [2010], which is too few to

conclude on a bi-modal distribution.

In Figure 7 the damage distribution observed in the
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Onna by age By type

Before
1919

Between
1919

and 1945

Between
1946

and 1961

Between
1962

and 1971

Between
1972

and 1981

Between
1982

and 1991

After
1991

Masonry RC

Number
of  buildings

33 8 4 6 17 31 16 93 22

EMS98
classes

A B C D

Number
of  buildings

48 18 16 51

L’Aquila red zone by age By type

Before
1919

Between
1919

and 1945

Between
1946

and 1961

Between
1962

and 1971

Between
1972

and 1981

Between
1982

and 1991

After
1991

Masonry RC

Number
of  buildings

934 219 239 115 21 3 1 1135 304

EMS98
classes

A B C D

Number
of  buildings

740 432 242 119

L’Aquila municipality by age By type

Before
1919

Between
1919

and 1945

Between
1946

and 1961

Between
1962

and 1971

Between
1972

and 1981

Between
1982

and 1991

After
1991

Masonry RC

Number
of  buildings

3563 1628 1626 1756 2445 2099 971 8614 4113

EMS98
classes

A B C D

Number
of  buildings

5129 2777 2672 4728

Table 5. ISTAT [2001] data for Onna, L’Aquila red zone and L’Aquila municipality and the distribution in EMS98 vulnerability classes using
the approach of  Zuccaro et al. [2012]. 
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historical centre of  L’Aquila is compared with the dam-

age distribution obtained with these updated simula-

tions. Damage state D3 was by far the most common

observed in this area while the simulated damage largely

underestimates the number of  buildings in damage state

D3 and the overall distribution is broader than the ob-

servations. When the vulnerability indexes and the t pa-

rameter are modified (Table 2), the results fit much better

to the observations of  Tertulliani et al. [2010]. In this case

D3 is clearly the most common estimated damage

state, which is related to the value of  t used here.

The EMS98 vulnerability distribution from the

field survey of  the historical center of  L’Aquila [Ter-

tulliani et al. 2010] can be compared with the vulnera-

bility distribution obtained using the approach of

Zuccaro et al. [2012] coupled with the ISTAT [2001]

data. As can be seen (Figure 12) for Tertulliani et al.

[2010] the most common vulnerability class is B while

using the census data the most common is class A. Two

further simulations considering Tertulliani et al.

[2010]’s vulnerability distribution (CAU4 and IX CNT),

only in the L’Aquila historical perimeter were con-

ducted. When the whole zone is assumed to corre-

spond to intensity IX (IX CNT), damage estimated by

simulations and the Tertulliani et al. [2010] damage ob-

servations are quite close. The closest match is found

when using observed building classes, adapted vulner-

ability functions and t values (as discussed previously)

and intensity fixed to IX, which is the observed highest

intensity in this area. Tertulliani et al. [2010] discuss that

the EMS98 intensity in the center of  L’Aquila varies be-

tween VIII and IX because the damage distributed with

respect to the vulnerability classes matches quite well

the distributions expected for both intensities. 

Looking at scenario CAU3 in detail (Figure 7), the

most damaged area in L’Aquila is to the south-west of

the historical center, where local site effects are large.

This generally agrees with the descriptions of  Tertul-

liani et al. [2010] and Contreras et al. [2014]. This area is

identified by the microzonation by a soil effect and con-

sequently the damage scenario takes this situation into

account. On the other hand, the north-west part of  the

historical center was heavily damaged but the simula-

tions do not predict this. Tertulliani et al. [2010] note

that the buildings in this area are built on rubble/land-

fill but the available microzonation considers this area

as bedrock [Gruppo di lavoro MS-AQ 2010]. 

4.2. Damage states and habitability

Following the earthquake the Italian Civil Protec-

tion, through their AeDES form [Chianello et al. 2009,

Dipartimento della Protezione Civile 2009], classified

dwellings with respect to their habitability, i.e. whether

they are safe to live in. This report gives the number of

buildings per habitability state aggregated by city district.

To compare it with damage simulations, the question is:

how to convert EMS98 damage states (predicted by the

RISK-UE Level 1 procedure) into habitability states? 

Karakostas et al. [2012] noted that no straightfor-

ward comparison can be made between structural

(fragility curves) and usability (statistical) damage states.

They assumed that: usability categories A and F corre-

spond to structurally “green” buildings (DS0 and DS1);

categories B, C and D to “yellow” (DS2 and DS3); and

category E to “red” (DS4 and DS5), leading to a 44.1%

“green”, 18.3% “yellow” and 37.6% “red” distribution.

Comune di L’Aquila [2014] (L’Aquila municipal

council) has published a public GIS with the AeDES hab-

itability diagnostic for each building, based on cadaster

delimitation. Using this information for the L’Aquila his-

torical center and the observed damage state from Ter-

LIMITS ON EARTHQUAKE RISK EVALUATIONS

Figure 11. Calibration of  the vulnerability indexes and of  the “t”
parameter for EMS98 vulnerability classes (class A –a, class D- b and
classes B and C –c) based on data from Tertulliani et al. [2010].

a

b

c



tulliani et al. [2010], the two data sources can be com-

pared for 204 buildings. Table 6 presents the relation be-

tween EMS98 and AeDES states. It can be seen that

EMS98 damage states D0 and D1 correspond mainly to

habitability states A and B. On the other side D4 and D5

corresponds, unsurprisingly, to habitability state E. Fol-

lowing Tertulliani et al. [2010] damage state D3 was the

most common in L’Aquila center and a large number

of  these buildings were classed in E by the AeDES pro-

cedure. Buildings in damage state D2 have been classed

equally between E and A-B habitability states. The val-

ues observed in Table 6 are used to predict the habit-

ability of  the current building stock (Table 4). 

These results, although based on only a limited

number of  buildings in the center of  L’Aquila, show

the difficulty of  using only habitability reports for this

kind of  work. This complexity has also been found by

Rivas-Medina et al. [2014] in Lorca. In any case, there

does not exist a clear relation between qualitative dam-

age states according to a macroseismic intensity scale

and habitability states. 

5. Conclusions and recommendations

One of  the objectives of  the present study was to see

how closely a hindcast blind scenario would match the

observed damage. The standard approach predicts the

overall damage ratios in L’Aquila quite well. However,

locally, great differences between observations and pre-

dicted damages are seen. These differences are due to:

seismic source heterogeneities and directivity, litholog-

ical site effects including very local effects (e.g. landfill),

individual building vulnerability variations, including

specificities that cannot be taken into account using a sta-

tistical approach. Current statistically-based seismic risk
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AeDES habitability states [Comune di L’Aquila 2014]

A B C D E

Habitable
building

Temporarily
inhabitable
building.
Habitable

after
low/rapid

work

Building
partially

inhabitable

Temporarily
inhabitable
building.
Habitable

after
significant

work

Inhabitable
building

EMS98
damage states
observed by
Tertulliani
et al. [2010]
in L’Aquila 

D0 2 2 - - -

D1 5 11 - - 1

D2 6 14 1 - 19

D3 1 11 4 - 106

D4 - - - - 16

D5 - - - - 5

Figure 12. Distribution of  vulnerability classes in L’Aquila using two approaches.

Table 6. Relation between EMS98 damage states observed by Tertulliani et al. [2010] and its AeDES habitability state [Comune di L’Aquila
2014] for 204 buildings. Note: There is a sixth habitability class ‘F’ meaning ‘Inhabitable building caused by neighboring buildings/elements’
but this is not present in the sample of  buildings considered here.
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procedures cannot reproduce all these situations. 

It appears that it is more important to predict cor-

rectly the ground-motion intensity than use the most

appropriate vulnerability functions since an error of,

say, one macroseismic intensity unit leads to a great

difference in predicted damage. For the purposes of  ob-

servational-based damage evaluations it would be useful

to derive state-of-the-art intensity prediction equations

that better account for earthquake source properties

(e.g. faulting mechanism) and local site conditions in

the style of  recent GMPEs. This would avoid the in-

troduction of  large uncertainties when converting in-

strumental intensity measures (e.g. PGA and PGV) to

macroseismic intensity through GMICEs.

Retro-analysis of  earthquake damage is generally

limited by a lack of  strong-motion stations since it is not

possible to ascertain the shaking that a neighbor experi-

ences. This study confirms the conclusion of  Crowley et

al. [2008] who show that, without a dense strong-motion

network, it is impossible to validate earthquake loss mod-

els because the uncertainty in the ground motion often

overwhelms the other uncertainties. Low-cost strong-

motion sensors (e.g. based on micro-electro-mechanical

systems) could allow a significant increase in the density

of  strong-motion networks, especially in urban areas.

Such instrumentation has great potential in improving

vulnerability functions [Ioannou et al. 2015].

Concerning potential improvements to vulnera-

bility functions, this study has highlighted the impor-

tance of  using a t value, controlling the width of  the

beta distribution, that is adapted to each building type.

In addition, it has demonstrated that some recent RC

buildings (at first glance of  low vulnerability) can per-

form poorly in earthquake shaking, leading to under-

estimation of  earthquake damage, whereas on the other

hand some masonry structures (apparently of  high vul-

nerability) can resist seismic shaking, leading to over-

estimating potential losses. A similar observation was

made by Rivas-Medina et al. [2014] for the Lorca earth-

quake. This is an important observation since Euro-

pean towns are characterized by various proportions of

RC and masonry buildings. The EMS-98 scale does

allow for the possibility that RC buildings can be more

vulnerable than masonry but this is not commonly ap-

preciated in risk scenarios.

Lastly, as Rivas-Medina et al. [2014] observed in

Lorca, this work has confronted the difficulties in com-

paring building habitability and damage states. After fu-

ture earthquakes, a field investigation like that conducted

by Tertulliani et al. [2010] would be useful for classify-

ing buildings into EMS98 damage states to avoid the

need for assumptions concerning equivalence between

building habitability and damage levels. Such field trips

would improve the observations necessary for the com-

parison of  simulations and observations and to improve

models of  damage distributions in earthquakes.

6. Data and sharing resources

Census data and Italian city district delimitation is

taken from ISTAT: http://www.istat.it/it/archivio/104

317 (last accessed August 4, 2014). 

ShakeMaps are taken from: http://shakemap.rm.

ingv.it/shake/2206496920/products.html (last accessed

August 4, 2014).

L’Aquila earthquake observed intensities are taken

from DMBI-EMIDIUS database: http://emidius.mi.ingv.

it/DBMI11/query_eq/20090406.htm (last accessed Au-

gust 4, 2014). 

Building habitability classifications in L’Aquila mu-

nicipality are taken from: http://laquila.geoportal.it/

websit/default.aspx?Utente=laquila (last accessed Au-

gust 4, 2014).

Microzonations data are taken from: http://www.

protezionecivile.gov.it/jcms/it/microzonazione_aqui

lano.wp (last accessed August 5, 2014). 

Building damage observations for the center of

L’Aquila are taken from Tertulliani et al. [2010].

Open Street Map was used as the base map.

Giuseppe Di Capua (INGV) provided the GIS file

of  the Italian site classification.
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