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Abstract We report a method to predict physico-chemical properties of druglike molecules using a classi-
cal statistical mechanics based solvent model combined with machine learning. The RISM-MOL-INF method
introduced here provides an accurate technique to characterize solvation and desolvation processes based on
solute-solvent correlation functions computed by the 1D Reference Interaction Site Model of the Integral Equa-
tion Theory of Molecular Liquids. These functions can be obtained in a matter of minutes for most small organic
and druglike molecules using existing software (RISM-MOL) (Sergiievskyi, V. P.; Hackbusch, W.; Fedorov, M.
V. J. Comput. Chem. 2011, 32, 1982-1992.). Predictions of caco-2 cell permeability and hydration free energy
obtained using the RISM-MOL-INF method are shown to be more accurate than the state-of-the-art tools
for benchmark datasets. Due to the importance of solvation and desolvation effects in biological systems, it
is anticipated that the RISM-MOL-INF approach will find many applications in biophysical and biomedical
property prediction.
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1 Introduction

The Integral Equation Theory (IET) of Molecular Liquids is a promising theoretical framework for modeling
solvent in biomolecular simulations.1 IET is based on the molecular Ornstein-Zernike (MOZ) equation, which
allows the density distribution of solvent molecules around a solute to be calculated from a set of integral
equations and a closure relationship, without the need for long molecular dynamics or Monte Carlo simulations.
Since IET methods operate with averaged quantities (total and direct solute-solvent correlation functions) and
they do not spend computer time on the averaging procedure, they can treat an infinite number of solvent
molecules and the results are almost independent of the size of the simulation cell and free from the statistical
noise which causes problems in numerical simulation. IET has found an ever-increasing number of successful
applications in the last few years, including computing solubility of druglike molecules2, fragment-based drug
design3, modelling the binding of water4 and ions5 by proteins, predicting tautomer ratios6, interpreting solvent
densities around biomacromolecules7, and sampling molecular conformations8. Here we propose a general
method to compute solution-phase properties of druglike molecules using IET combined with statistical or
machine learning algorithms. Proof-of-concept results are provided for the prediction of caco-2 cell permeability
and hydration free energy for which the new method is shown to perform better than many state-of-the-art
tools.

Caco-2 cells originate from an intestinal cell line derived from human colorectal carcinoma that under
the correct conditions exhibits many of the same properties as the eneterocytes lining the small intestine.9

For druglike molecules, permeability measured across a monolayer of caco-2 cells has been shown to be well
correlated with human oral absorption,10,11 which means that caco-2 cell permeability assays are useful in
vitro models of in vivo absorption behaviour.9 Experimental measurements and computational predictions of
caco-2 cell permeability are now widely used in early stage drug discovery as a means to assess oral absorption
and to guide medicinal chemists, with computational methods having the advantage that they can be applied
to virtual libraries of compounds prior to their synthesis. There are two important routes for cell permeation:
passive diffusion and carrier-mediated influx via active transport mechanisms. Passive diffusion can be further
classified as occurring by either paracellular or transcellular routes.

Hydration free energy (∆Ghyd or HFE) - the change in free energy associated with transferring a molecule
from gas phase to aqueous solution under standardised conditions - is one of the most important properties
in solution chemistry.12,13 Accurate computation of HFEs is of great interest because it is difficult and time-
consuming to measure experimentally,14,15 and because many physico-chemical and biomedical properties of
molecules are defined by their solvation and acid-base behavior, which can be estimated from their HFEs.1,16–18

For example, HFEs have been used in the calculation of aqueous solubility,2,19 protein-ligand binding affinity,20

acid-base dissociation constant (pKa)21, and octanol-water partition coefficient22–24, amongst others proper-
ties. Computed HFEs are also important for assessing the environmental impact of new organic molecules in
consumer products (i.e pharmaceuticals, agrochemicals, etc).25,26 Improving the accuracy of computational
methods to calculate HFEs would have widespread benefits.

2 Theory

The method proposed here is based on properties that can be computed using the 1D Reference Interaction
Site Model (1D RISM) proposed by Chandler et al. We begin with a description of the standard 1D RISM
method before outlining our approach to physico-chemical property prediction.
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2.1 1DRISM

The 1D RISM allows the thermodynamics of molecular solutions to be modelled by a set of integral equations
and closure relationships.27 In the following, we provide only a brief overview of the theory, a more thorough
discussion is provided elsewhere.1,28 In the RISM approach both the solute and the solvent molecules are
treated as sets of sites with spherically-symmetric properties. In the simplest case, the sites are just the atoms
of the molecules. Three types of site-site correlation functions are considered in the RISM: intramolecular
correlation functions, total correlation functions and direct correlation functions. Intramolecular correlation
functions describe the structure of the molecule. For the two sites, s and s′ of one molecule, the intramolecular
correlation function is:

ωss′(r) =
δ(r − rss′)

4πr2ss′

(1)

where rss′ is the distance between the sites and δ(r−rss′) is the Dirac delta-function. Total correlation functions
hsα(r) and direct correlation functions csα(r) are defined for each pair of solute and solvent sites (s and α,
respectively). The total correlation functions can be expressed as hsα(r) = gsα(r)−1, where gsα(r) is the radial
distribution function of solvent sites around the solute sites. Bulk solvent total correlation functions hbulk

αξ (r) are
also considered, and represent the distribution of sites ξ of solvent molecules around the site α of the selected
solvent molecule. Direct correlation functions csα(r) are calculated using the set of RISM equations for the case
of infinitely diluted solution28:

hsα(r) =
∑

s′ξ

〈

ωss′ ∗ cs′ξ ∗ [ωbulk
αξ + ρhbulk

αξ ]
〉

(r)

s = 1, . . . , Nsolute, α = 1, . . . , Nsolvent, r ∈ [0;∞)
(2)

Here 〈x ∗ y〉 (r) is the radial part of the spherically symmetric three-dimensional convolution 〈x ∗ y〉 (r) =
∫

R3 x(r − r′)y(r′)dr′, and ρ is a number density of the bulk solvent. To complete the set of RISM equations,
one needs to use a closure relationship, which has the general form:

csα(r) = eΞsα(r)−Bsα(r) − hsα(r) + csα(r)− 1, (3)

where Ξsα(r) = −βusα(r) + hsα(r) − csα(r), usα(r) is the atom-atom potential, Bsα(r) is a so-called bridge
function,28,29 β = 1/kBT , kB is the Boltzmann constant, and T is the temperature. The case B(r) ≡ 0
corresponds to the frequently used Hypernetted Chain closure28,29. However, the RISM equations with Hy-
pernetted Chain closure do not converge for many molecules of chemical interest28,30,31. Therefore, to improve
convergence, the Partially-Linearized Hypernetted Chain closure (PLHNC) is often used instead:32,33

csα(r) =

{

eΞsα(r) − hsα(r) + csα(r)− 1 Ξsα(r) < 0
−βusα(r) Ξsα(r) > 0

(4)

The intramolecular correlation functions ωss′(r) can be found from equation (1). The total correlation
functions of the bulk solvent hbulk

αξ (r) are normally obtained by solution of the solvent-solvent 1D RISM equa-

tions.28,34

The set of RISM equations (Equation (2)), together with the closure relation (Equation (4)), allow one
to find the functions hsα(r) and csα(r), which are illustrated for an example molecule in Figure 1. There
are no known methods to solve the set of RISM equations analytically in the general case. Thus, the RISM
equations are commonly solved numerically. In the current work we use the RISM-MOL solver, which is a
Matlab implementation of a multi-grid algorithm for solving RISM equations35.

Within the RISM theory, there are several expressions which allow one to obtain values of the hydration
free energy from the total and direct correlation functions hsα(r) and csα(r). Here we discuss four of the most
popular free-energy expressions.36–39
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Fig. 1 Solvent-solvent and solute-solvent correlation functions in 1D RISM. h(r) are total correlation functions, ω(r) are
intramolecular correlation functions. Subscripts s and s′ refer to solute sites (atoms), while greek letters refer to solvent sites
(atoms).

The first expression is the Gaussian Fluctuations approximation (GF ),37,38,40 in which the free energy is
given as:

∆GGF = 2πρkT
∑

sα

∞
∫

0

(−2csα(r)− csα(r)hsα(r)) r
2dr (5)

The second hydration free energy equation we consider is the Kovalenko-Hirata expression (KH ).28

∆GKH =2πρkT
∑

sα

∞
∫

0

[−2csα(r)−

hsα(r)(csα(r)−Θ(−hsα(r)))]r
2dr

(6)

where Θ(x) is a Heaviside step function.
The third expression is the Hyper-Netted-Chain (HNC ) approximation,36 in which the formula for the

hydration free energy is:

∆GHNC =2πρkT
∑

sα

∞
∫

0

[−2csα(r)−

hsα(r)(csα(r)− hsα(r))]r
2dr

(7)
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The final hydration free energy expression is the Hyper-Netted-Chain with repulsive Bridge correction
(HNCB), which has the form:39

∆GHNCB =∆GHNC+

4πρkT
∑

sα

∞
∫

0

(hsα(r) + 1)(e−BR

sα
(r) − 1)r2dr

(8)

The {BR
sα(r)} in the HNCB functional are repulsive bridge functions, defined for each pair of solute s and

solvent α atoms by the expression:

exp(−BR
sα(r)) =

∏

ν 6=α

〈

ωbulk
αν ∗ exp

(

−βεsν
(σsν

r

)12
)〉

(9)

where ωbulk
αν (r) are the solvent intramolecular correlation functions, and σsν and εsν are the site-site parameters

of the pair-wise Lennard-Jones potential.
When computing hydration free energies with either HNC of HNCB free energy functionals, the 1D RISM

equations are normally solved using the HNC or HNCB closure relationships, respectively. The HNC closure is
B(r) ≡ 0 as discussed previously. The HNCB closure has the following value when Ξsα(r)−BR

sα(r)< 0:

csα(r) = eΞsα(r)−BR

sα
(r) − hsα(r) + csα(r)− 1 (10)

whilst when Ξsα(r)−BR
sα(r)> 0, it takes a value given by:

csα(r) = −βusα(r)−BR
sα(r) (11)

Unfortunately, due to the many approximations inherent in 1D RISM theory, the standard 1D RISM
free energy functionals (i.e GF, KH, HNC, or HNCB) give trivial results that are too inaccurate for most
practical applications. However, it has previously been shown that more accurate predictions of hydration
free energies can be obtained by combining RISM calculations with simple molecular descriptors in order to
reduce systematic errors. Examples of these approaches include the partial wave correction41, atomic descriptor
correction (ADC)42 and structural descriptor correction (SDC) models43, which have a common functional
form:

∆Gcorrected = ∆Guncorrected + aV +
∑

i

aixi + c (12)

where ∆Gcorrected is the corrected hydration free energy, ∆Guncorrected is the uncorrected hydration free
energy computed by one of the previously mentioned free energy functionals (e.g. GF, KH, HNC, or HNCB),
a and bi are regression coefficients, V is the partial molar volume computed by 1D RISM (Equation 13), xi is
the count of a particular structural feature i, and c is a constant. The values of a, bi and c may be obtained by
multiple linear regression against experimental hydration free energy data. The success of these semi-empirical
free energy functionals suggests that the total and direct correlation functions computed by 1D RISM contain
useful information about solvation thermodynamics even if the standard free energy functionals do not give
accurate results.

The excluded volume of a solute in infinitely dilute aqueous solution can be calculated as a limiting case of
the partial molar volume44 when the solute number density tends to zero:

Vex =
1

ρ
+

4π

Nsolute

∑

s

∞
∫

0

(

hbulk
oo (r)− hso(r)

)

r2dr (13)
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where hbulk
oo (r) is the total oxygen-to-oxygen correlation function of bulk water, hso(r) is the total correlation

function between the solute site s and the water oxygen.

2.2 RISM-MOL-INF variables

The aim of this research is to develop a general method to predict the solution-phase properties of druglike
molecules that are important in pharmaceutical research and development (here we test the method for the
prediction of caco-2 cell permeability and HFE). Since solvation behaviour is known to be an important factor
in determining the bioavailability of candidate drugs,45 we hypothesise that solute-solvent correlation functions
computed by 1D RISM combined with statistical or machine learning algorithms may provide a fast and general
prediction method. More specifically, we propose that variables to quantify solvation and desolvation processes
can be derived from the following functionals, which are based on the standard 1D RISM free energy functionals,
but with the integration over r omitted.

Indeed, each of the functionals given in Equation 5 to Equation 8 can be re-written in a compact form:

∆GRISM
solv =

∞
∫

0

w(r)dr, (14)

where the integrand functionals w(r) combine the NS × Nα total and direct correlation functions of a single
solute into a single function of r. The form of one of these functionals (gf w(r)) is shown for four small organic
molecules in Figure 2 (similar graphs for the hncb w(r), hnc w(r) and kh w(r) functionals are provided in the
Supporting Information).

gf w(r) = 2πρkT
∑

sα

[−2csα(r)− csα(r)hsα(r)] (15)

kh w(r) =2πρkT
∑

sα

[−2csα(r)−

hsα(r)(csα(r)−Θ(−hsα(r)))]

(16)

hnc w(r) =2πρkT
∑

sα

[−2csα(r)−

hsα(r)(csα(r)− hsα(r))]

(17)

hncb w(r) =hnc w(r) +

4πρkT
∑

sα

[(hsα(r) + 1)(e−BR

sα
(r) − 1)] (18)

Each of the four functions considered here (gf w(r), hncb w(r), hnc w(r) and kh w(r)) provide a very
sensitive measure of the response of the solvent molecules to the solute.

We therefore hypothesise that a set of variables to quantify solvation and desolvation effects can be defined
based on the numerical value of these functions at selected values of r . Statistical or machine learning algorithms
will then be trained on these variables and the resulting model used to predict the property of interest, i.e. a
molecular informatics based approach. We refer to this method as RISM-MOL-INF since it combines RISM
with MOLecular INFormatics.
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Fig. 2 The gf w) function plotted for four different small organic molecules.

As an extra proof of our hypothesis, we refer to recent works that have used integrand functions in 3D RISM
free energy functionals to study the detailed mechanisms of solute-solvent interactions and the association of
molecules in complex solutions.46–48 In these works the integrand functions in 3D RISM free energy functionals
are used to determine the 3D Solvation Free Energy Density (3D-SFED) functions.48 These functions can be
used to characterize the intensity of the effective solute-solvent interactions in different 3D spatial regions at the
solute surface and to indicate where these contribute the most/least to the entire solvation free energy.47 Overall
it was shown that 3D-SFED functions can provide useful information about different association/adsorption
processes at complex biomolecule and supra-molecule aggregate surfaces.47–49

Since the total and direct correlation functions are normally represented on a fine grid when the 1D RISM
equations are solved, the grid points provide a natural coordinate system in which to define the RISM-MOL-INF
variables. However, the grid used to solve the 1D RISM equations has a narrower grid-spacing than is required
for this purpose. For example, the total and direct correlation functions obtained here from the RISM-MOL
program35 are represented on a grid from r = 0 Å to r = 120 Å with grid-spacing, δr = 0.00625 Å. Simply
taking the value of the selected function at each discrete grid point as a separate variable would lead to a large
number of redundant variables for two reasons. Firstly, the variables corresponding to neighbouring grid points
would be expected to be highly correlated. Secondly, grid points corresponding to r & 15 would contain little
useful information, since the total and direct correlation functions decay to single values for all molecules in
this region. Therefore, for the purposes of testing, we work with variables defined at every tenth grid point from
r = 0 Å to r = 15 Å. We denote each RISM-MOL-INF variable as m w n, where m is the 1D RISM free energy
functional upon which the variables are based (i.e. m is gf , kh, hnc or hncb) and n is the grid point at which
the variable is evaluated. The RISM-MOL-INF variables are given in lowercase to distinguish them from the
standard 1D RISM free energy functionals, which are given in uppercase (e.g GF, HNCB, HNC, and KH). The
grid point can be converted to a radial distance from solute site by r = n × δr, where δr is the grid spacing.
Hence, for example, the RISM-MOL-INF variable gf w 1000 is computed from a function derived from the GF
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free energy functional at r = 6.25 Å. Since 1D RISM is known to overestimate excluded volume effects,41 and
this error has been shown to be correlated with the partial molar volume computed by 1D RISM,26,41–43,50

we include this property as an additional descriptor in each of the sets of RISM-MOL-INF variables. The
RISM-MOL-INF variables as defined here are not mutally orthogonal and, therefore, contain some redundant
features. We have not attempted to make an a priori selection of a set of orthogonal descriptors for two reasons.
Firstly, selecting a model from a pool of correlated descriptors is a standard problem in statistical modelling,
for which there are many solutions.51 Secondly, it is not possible to predict a priori what values of r will lead
to the most useful variables for a given problem. Our decision to define a RISM-MOL-INF variable at every
tenth grid point simply represents a balance between reducing the number of variables to allow efficient subset
selection, while at the same time maintaining sufficient useful chemical information.

We use the RISM-MOL-INF variables as input to statistical or machine learning models to predict two
important physico-chemical properties of organic molecules: hydration free energy and caco-2 cell permeability.
The overall approach is similar to the cheminformatics models (i.e. Quantitative Structure-Property Relation-
ships, (QSPRs)) that are widely used in pharmaceutical property prediction, but the RISM-MOL-INF variables
characterize molecules by the effect they have on the density distribution of solvent molecules, rather than by
molecular structure alone. Since our main aim is to demonstrate the potential of the RISM-MOL-INF variables,
rather than to develop definitive QSPRs for either property, each model is trained on RISM-MOL-INF variables
only and comparisons are made to selected state-of-the-art tools.

2.3 Statistical and Machine Learning Algorithms

Training the RISM-MOL-INF models involves finding a function that relates objects x ∈ X and targets y ∈ Y
based solely on a sample z = (x, y) = ((x1, y1), ..., (xm, ym)) ∈ (X × Y )m of size m ∈ N . In the following,
the output space is a set of n real targets Y ∈ Rn, and the task is referred to as regression. We consider two
different methods of regression: Partial-Least-Squares (PLS) and Random Forest (RF).

2.3.1 Partial-Least-Squares Regression

Partial least squares (PLS) is a method for linear regression that has been widely used in many different fields
of research, including chemistry, biology, econometrics and social science. The PLS algorithm finds a linear
regression model by projecting both the dependent and independent variables into a new mathematical space
in which the covariance in the data structure can be explained by a small number of latent variables. As such
PLS regression has some similarity to principal component regression, but the latent variables are selected for
their ability to explain the variance in the dependent variable as well as in the independent variables. The
algorithms used for PLS regression have been explained elsewhere.52

2.3.2 Random Forest

Random Forest is a method for classification and regression which was introduced by Breiman and Cutler.53

The method is based upon an ensemble of decision trees, from which the prediction of a continuous variable
is provided as the average of the predictions of all trees. Recent studies have suggested that Random Forest
offers features which make it very attractive for statistical modelling studies.54 These include relatively high
accuracy of prediction, built-in variable selection, and a method for assessing the importance of each variable
to the model.

In RF regression, an ensemble of regression trees is grown from separate bootstrap samples of the training
data using the CART algorithm.53 The branches in each tree continue to be subdivided while the minimum
number of observations in each leaf is greater than a predetermined value. Unlike regression trees, the branches
are not pruned back. Furthermore, the descriptor selected for branch splitting at any fork in any tree is not
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selected from the full set of possible descriptors but from a randomly selected subset of predetermined size.
There are three possible training parameters for Random Forest: ntree - the number of trees in the Forest;
mtry - the number of different variables tried at each split; and nodesize - the minimum node size below which
leaves are not further subdivided.

The bootstrap sample used during tree growth is a random selection with replacement from the molecules
in the data set. The molecules that are not used for tree growth are termed the out-of-bag sample. Each tree
provides a prediction for its out-of-bag sample, and the average of these results for all trees provides an in situ
cross-validation called the out-of-bag validation.

3 Methods

3.1 1D RISM calculations

The RISM-MOL program was used to solve the 1D RISM equations35 using the dielectrically-consistent refer-
ence interaction site model (DRISM) formulism.55,56 All calculations were performed assuming solute molecule
in infinitely dilute aqueous solution. Using the HNC or HNCB closures to solve the 1D RISM equations often
leads to convergence issues. Since we would like the method developed here to be as robust as possible, we use
the numerically more stable PLHNC closure for all 1D RISM calculations.

3.1.1 Solvent Parameters

Solvent molecules were modeled using the Lue and Blankschtein version of the SPC/E model of water
(MSPC/E).57 This differs from the original SPC/E water model58 by the addition of modified Lennard-Jones
(LJ) potential parameters for the water hydrogen, which were altered to prevent possible divergence of the
algorithm.39,41,59,60 The Lorentz-Berthelot mixing rules were used to generate the solute-water LJ potential
parameters61, i.e. σsα = (σs+σα)/2 and ǫsα =

√
ǫsǫα. The following LJ parameters (for water hydrogen) were

used to calculate the interactions between solute sites and water hydrogens: σLJ
Hw

= 1.1657Å and ǫLJ
Hw

= 0.0155
kcal/mol.

3.1.2 Solute Parameters

For the hydration free energy dataset, atomic coordinates for each solute were obtained from Ratkova et al.43

Since these structures had already been geometry optimized at the MP2/6-311G(d,p) level of theory, no further
pre-processing was performed. For the caco-2 cell permeability dataset, molecular structures were taken from
the Supporting Information of the article by Hou et al.62 A single global minimum energy conformer was
selected for each solute by performing a low-mode conformational search using the OPLS-2005 force-field63

in Macromodel v.9.1.64 The atom-atom potential parameters and atomic partial charges required as input to
solve the 1D RISM equations were taken from the OPLS-2005 forcefield for all molecules in both the hydration
free energy and caco-2 cell permeability datasets. These parameters were selected because they have performed
well in previous 1D RISM studies.42

3.2 Calculation of RISM-MOL-INF variables

The method to compute RISM-MOL-INF variables was implemented using a locally modified version of the
RISM-MOL software35 and additional routines written in the R statistical computing environment.65
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3.3 Partial-Least Squares

Partial-Least Squares regression models were trained using the pls library66 in the R statistical computing
environment.65 The number of latent variables to include in each PLS model was selected by plotting the
root-mean-square error for leave-one-out cross-validation against the number of latent variables as discussed
later.

3.4 Random Forest

Random Forests were trained with the randomForest library67 in the R statistical computing environment,65

using standard parameters: mtry = N/3, nodesize = 5, and ntree = 500, where N is the number of input
variables and mtry is rounded down to the nearest integer. There is extensive evidence in the literature that the
Random Forest algorithm is insensitive to training parameters,68,69 so that variation of mtry between 40 and
N , of ntree from 250 upward, and of nodesize in the region 5 to 10 has little effect on prediction accuracy. As
has been done previously, we use these standard Random Forest parameters without further optimization.68,69

3.5 Statistical Analysis

To compare calculated and experimental results for different computational models, a correlation coefficient
and the root mean squared deviation (RMSD) were evaluated:

R2 = 1−
∑n

i=1(y
i − yiexp)

2

∑n
i=1(y

i
exp −M(yiexp))2

, (19)

RMSD(y, yexp) =

√

1

N

∑

i

(

yi − yiexp
)2

(20)

where index i runs through the set of N selected molecules, and yi and yiexp are the calculated and experimental
values, respectively, for molecule i for a given property (i.e. ∆Ghyd, logPeff , or similar). The total deviation
can be split into two parts: bias (or mean displacement, M ) and standard deviation (SD), which are calculated
by the formulae:

bias = M(y − yexp) =
1

N

∑

i∈S

(

yi − yiexp

)

(21)

σ(y − yexp) =

√

1

N

∑

i∈S

(

y(i) − y(i)exp −M(y − yexp)
)2

(22)

The bias gives the systematic error, which can be corrected by a simple constant term. The standard
deviation gives the random error that is not explained by the model. One can see the connection between these
three formulae:

RMSD(y, yexp)
2 = M(y − yexp)

2 + σ(y − yexp)
2 (23)

Models reporting RMSE greater than the standard deviation of the experimental data offer less accurate
predictions than the null model provided by the mean of the experimental data.

Statistical analyses were carried out in the R Statistical Computing Environment.65 Python scripts were
used to manipulate raw data files.
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3.6 Experimental Datasets

3.6.1 Hydration Free Energy

We use experimental hydration free energy data for 185 small organic molecules that were originally published
by Ratkova et al43. The use of this dataset facilitates a simple benchmark, since other methods to predict
hydration free energy have been tested on the same molecules.50,70 Experimental hydration free energies (in
kcal/mol) are tabulated as ∆Ghydr = −RT ln(caq/cgas), with concentrations in mol/L, which corresponds to
the choice of standard states proposed by Ben-Naim.71 The dataset was partitioned into a training dataset of
123 molecules and a testing dataset of 62 molecules by ranking all molecules by increasing molecular weight
and placing every third molecule into the test set.

3.6.2 Caco2 Permiability

Experimental caco2 cell permeability data were obtained for 100 druglike molecules from the work of Hou et
al.62 Caco2 data were expressed as logPeff , using a decadic logarithm with Peff referred to units of cm s−1

Experimental logPeff ranged from -6.96 to -4.11 with a mean value of -5.14 and a standard deviation of 0.77
logPeff units. The molecules in the dataset had molecular weights from 32.0 to 670.4 Dalton with a mean
of 314.7 Dalton and a standard deviation of 115.7 Dalton. The data were partitioned into the training (77
molecules) and test (23 molecules) sets that were previously used by Hou et al.62 The molecules in the test
dataset are illustrated in Figure 3.

3.7 Benchmark calculations

To provide a comparison to the results obtained by the RISM-MOL-INF approach, the following methods were
used to compute hydration free energies or caco-2 cell permeability.

3.7.1 Density Functional Theory calculations

Hydration free energies were computed with density functional theory using the M06-2X density functional,
the 6-31G* basis set and the SMD implicit continuum model for solvent as implemented in GAMESS-US
(version released on 1st May, 2013);72 this method was selected because it performed well in a recent blind
challenge for HFE calculation.73–75 We note that this is also the recommended method for HFE calculation
in both GAMESS-US and Gaussian09. Sample GAMESS input files are provided for these calculations in the
Supporting Information.

3.7.2 3D RISM/UC calculations

Hydration free energies were computed using the 3D Reference Interaction Site Model with the Universal Cor-
rection hydration free energy functional (3DRISM/UC). The 3DRISM method has been described elsewhere;50

here we provide only a brief overview of the 3D RISM/UC functional. Within the standard 3DRISM theory, hy-
dration free energy can be computed using the Gaussian fluctuations (GF) HFE functional, which was adopted
for 3DRISM from the 1DRISM case by Kovalenko and Hirata28,40:

∆GGF
hyd = kBT

Nsolvent
∑

α=1

ρα

∫

R3

[

−cα(r)−
1

2
cα(r)hα(r)

]

dr (24)
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Fig. 3 Chemical structures of the molecules in the external test that was used to validate the models to predict caco-2 cell
permeability
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where ρα is the number density of solvent sites α. Unfortunately, HFEs calculated using the GF free energy
functional have only a qualitative agreement with experiment. The error in hydration free energies calculated
by the GF functional in 3D RISM is strongly correlated with the partial molar volume calculated by 3D
RISM.14,50,76 The 3D RISM/UC free energy functional developed from this observation is a linear combination
of the ∆GGF

hyd, the dimensionless partial molar contribution, ρV , and a bias correction, b (intercept):50

∆G
3D−RISM/UC
hyd = ∆GGF

hyd + a(ρV ) + b (25)

where the values of the scaling coefficient a and intercept b are obtained by linear regression against experimental
data for simple organic molecules. To provide a like-for-like comparison to the other methods tested here, we
reparameterize the 3D RISM/UC model on the same dataset used to train the RISM-MOL-INF models (using
∆GGF

hyd and ρV data reported previously50). A similar strategy has been employed successfully in previous

studies.24,76 The coefficients in the reparameterized 3D RISM/UC model have the values a = −3.185 kcal/mol
and b = 0.433 kcal/mol. The 3D RISM is a more theoretically advanced method than 1D RISM, but is also ∼
100-fold more computationally expensive, which makes it less suitable for in silico screening of large compound
libraries.

We estimate the solute partial molar volume via solute-solvent site correlation functions using the standard
3D RISM theory expression77,78:

V = kBTη

(

1− ρα

Nsolvent
∑

α=1

∫

R3

cα(r)dr

)

(26)

where η is the pure solvent isothermal compressibility, and ρα is the number density of solute sites α.

The 3D RISM/UC method has been shown to give accurate hydration free energies for both simple organic
molecules and bioactive (druglike) molecules.14,50,76 and has been successfully used in computing solubility2

and protein-ligand binding free energies.20

3.7.3 ACD/Labs Software

Caco-2 permeability was predicted using version 12 of the commercial software released by ACD/Labs

3.7.4 QSPR models

As a benchmark for the RISM-MOL-INF results, QSPR models were built using Random Forest regression on
a set of common 2D and 3D descriptors computed by the program PADEL. The PADEL software supports
the calculation of a wide-variety of molecular descriptors, of which 355 2D/3D descriptors were considered
here (the remaining descriptors had either low variance or non-numeric values for some molecules and were re-
moved before regression models were built). The final set of descriptors included calculated physical properties
(Moriguchi logP, Crippen’s logP and molar refractivity), constitutional descriptors (counts of atoms and func-
tional groups, counts of polar atoms/bonds), thermodynamic descriptors (molecular linear free energy relation
descriptors), connectivity and topological indices (electrotopological state descriptors, extended topochemi-
cal atom descriptors, Kier/Wiener/Balaban/Zagreb indices), molecular flexibility descriptors (counts/fractions
of rotatable bonds), pharmacophore feature counts (counts of hydrogen bond donors and acceptors), volume
descriptors (McGowan volume), and molecular shape and surface area descriptors (solvent-accessible surface
areas, total polar surface area), amongst other properties.
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4 Results and Discussion

4.1 Hydration Free Energy

Four models were trained to predict hydration free energies using partial-least squares regression on each of the
four sets of RISM-MOL-INF descriptors (gf w, hnc w, hncb w and kh w). Each partial-least squares regression
model was trained using seven latent variables, where this number was selected by considering the graph of
root-mean-square error for leave-one-out cross-validation (RMSE(cv)) against number of latent variables (see
Supporting Information). The results for fit-to-the-training data, leave-one-out cross validation and prediction
of an external test set are presented in Table 1.

All of the models trained on RISM-MOL-INF variables predict hydration free energy significantly more
accurately than any of the standard 1D RISM free energy functionals (e.g. GF, HNCB, HNC and KH), which
provides evidence to support the approach taken to develop the RISM-MOL descriptors. In this context, it is
interesting to note that many of the RISM-MOL-INF descriptors are significantly more correlated with exper-
imental HFE than are the calculated HFEs obtained using the standard 1D RISM free energy functionals. For
example, Figure 4 shows that the kh w 900 RISM-MOL-INF descriptor has a strong inversely linear correlation
with experimental HFE (R = −0.93), even though the HFE calculated using the KH free energy functional
Equation 6 has a very low correlation with experiment (R = 0.36). This observation explains why combining
the RISM-MOL descriptors with PLS regression leads to successful predictions even when the standard 1D
RISM functionals fail.

Fig. 4 (i) uncorrected values of hydration free energy calculated using the Kovalenko-Hirata free energy functional plotted
against experimental HFE data (left-hand-side); (ii) the kh w descriptor with the highest correlation to experimental hydration
free energy data plotted against experimental hydration free energy data (right-hand-side).
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From inspection of Table 1, the choice of free energy functional from which to compute RISM-MOL-INF
variables does not strongly influence the accuracy of the models to predict HFE. The reason for this can be
seen in the Figure provided in the Supporting Information, where the functions from which the different sets of
RISM-MOL descriptors are computed are shown to have similar forms for four small organic molecules (even
though the HFEs computed from the standard 1D RISM functionals GF, KH, HNC or HNCB differ by up to
an order of magnitude).

The most accurate predictions of HFE for the external test set were obtained using the kh w variables
in a 7-latent-variable PLS regression model, which gave R = 0.98, RMSE= 0.60 kcal/mol (Table 1) and no
significant outliers (Figure 5). Indeed, all of the RISM-MOL-INF variables gave relatively accurate results with
0.60 < RMSE < 0.63 kcal/mol.

To provide a benchmark, HFEs were also computed with: (i) density functional theory using the M06-2X
density functional combined with the 6-31G* basis set and the SMD implicit continuum model for aqueous
solvent; (ii) the 3DRISM/UC model reparameterized using the molecules in the training set. As can be seen from
inspection of Table 1, although the density functional and 3DRISM based approaches give accurate hydration
free energies, the predictions obtained using the RISM-MOL-INF variables are significantly more accurate than
those obtained using these benchmark methods, which provides encouraging proof-of-concept of the method
proposed here.

Method R(tr) RMSE(tr) bias(tr) R(cv) RMSE(cv) bias(cv) R(te) RMSE(te) bias(te)
gf w 0.98 0.56 0.00 0.97 0.67 0.01 0.98 0.61 -0.12
hncb w 0.98 0.58 0.00 0.97 0.71 0.02 0.98 0.63 -0.13
hnc w 0.98 0.57 0.00 0.97 0.68 0.02 0.98 0.60 -0.11
kh w 0.98 0.57 0.00 0.97 0.68 0.01 0.98 0.60 -0.11
GF 0.82 3.59 -2.37 0.83 3.70 -2.49
HNCB 0.85 5.93 4.67 0.82 5.79 4.46
HNC 0.36 42.43 -40.21 0.23 42.18 -40.17
KH 0.36 41.21 -38.93 0.23 40.95 -38.90
QM 0.96 0.87 -0.31 0.97 0.78 -0.31
3DRISM/UC 0.95 0.93 0.00 0.96 0.84 -0.16

Table 1 Prediction of the hydration free energy of an external test set of 62 small organic molecules. The top four lines of
the table show the results obtained using the RISM-MOL-INF method with the gf w, hncb w, hnc w, or kh w variables. The
following four lines show the results obtained using the GF, HNCB, HNC and KH free energy functionals. The remainder
of the table provides the results obtained using density functional theory combined with a polarizable continuum model for
solvent (M06-2X/6-31G*/PCM) or the 3D Reference Interaction Site Model with Universal Correction free energy functional
(3DRISM/UC). The statistics reported in columns two to ten are the correlation coefficient (R), the root-mean-square-error
(RMSE) and the bias and these are assessed for the training data (tr), the test data (te), and for 10-fold cross-validation (cv).

4.2 caco2

Accurate computational methods to predict the caco2 permeability of organic molecules are highly sought
after in pharmaceutical research and development to assess the bioavailability of de novo designed drugs.79

Despite recent progress, caco-2 cellpermeability remains a difficult property to calculate directly from molecular
simulation.

To further validate the RISM-MOL-INF descriptors, we applied them to the prediction of caco2 permeability
for a dataset of 100 druglike molecules (partitioned into a training dataset of 77 molecules and a test set of 23
molecules). For one molecule in the external test set (cyclosporin), the 1D RISM equations did not converge
within a reasonable time period. Cyclosporin - a cyclic peptide containing a large ring system comprising 33
backbone atoms - has a significantly higher molecular weight (1202.61 Daltons) than most orally administered
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Fig. 5 Correlation plot of experimental versus predicted hydration free energy data for an external test set of 62 organic
molecules. Predictions were made with a 7-latent variable partial-least squares model trained using kh w descriptors.

pharmaceuticals. For the purposes of this work, cyclosporin was removed from the external test set and statistics
are reported for 22 molecules.

Descriptors Model R(cv) RMSE(cv) bias(cv) R(te) RMSE(te) bias(te)
gf w RF 0.79 0.45 0.02 0.91 0.39 -0.07
hncb w RF 0.78 0.45 0.03 0.91 0.41 -0.08
hnc w RF 0.77 0.46 0.03 0.91 0.41 -0.09
kh w RF 0.77 0.47 0.02 0.91 0.41 -0.09
Padel RF 0.73 0.51 -0.01 0.75 0.60 -0.13
ACD 0.79 0.56 0.17
Hou et al.62 0.77 0.58 0.04
Ponce et al.80 0.80 1.43 0.52

Table 2 Prediction of caco-2 cell permeability (logPeff ) for a dataset of druglike molecules

Four models to predict caco-2 cell permeability were developed using the training dataset and Random
Forest regression combined with the gf w, kh w, hnc w, hncb w RISM-MOL-INF variables. The predictive
accuracy of the four different RISM-MOL-INF models for the external test set is shown in Table 2. All of
the RISM-MOL-INF models tested here gave reasonably accurate predictions of caco-2 cell permeability with
R(te) > 0.9 and RMSE(te) ≤ 0.41. The best RISM-MOL predictions of caco-2 cell permeability were obtained
using gf w descriptors, which gave R(te) = 0.91, RMSE= 0.39 logPeff units (Table 2 and Figure 6).

Figure 7 shows a barplot of the Random Forest importance metric for each gf w(r) variable (blue) overlaid
on a line graph showing the form of the gf w function for each molecule in the training dataset (grey) (similar
graphs for kh w, hnc w, hncb w are provided in the Supporting Information). Random Forest importance was
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assessed for each variable by measuring the increase in mean-square-error for cross-validation when the Random
Forest was retrained with the selected variable replaced by Gaussian noise. Although the gf w function for
each molecule in Figure 7 is a combination of NS × Nα total and direct solute-solvent correlation functions,
which means that the peaks in the gf w function do not correspond directly to solvent shells, it is nonetheless
interesting to note that in the region 3< r <10 Å important variables are found in clusters (at solute-solvent
distances of ∼ 3 Å, ∼ 4.5 Å, ∼ 5.5 Å,∼ 7 Å and ∼ 9 Å) and that the average importance metric in each
cluster decreases as solute-solvent distance increases. The most important variables are found at ∼ 3 Å, which
corresponds approximately to the position of the first solvation shells observed in the pairwise total correlation
functions between water oxygen atoms and solute heavy atoms in Figure 1. The importance to the model of a
cluster of variables at r ∼ 11 Å(Figure 7) is surprising because solute-solvent correlations would be expected to
be weak at this intermolecular separation. Long-range correlations are known to be poorly treated in standard
1D RISM methods.28 If the model is retrained using only those variables corresponding to r < 10Å the root-
mean-square error for prediction of the test set increases a small amount from 0.39 to 0.42 logPeff units, which
is still more accurate than any of the other approaches against which we have benchmarked the RISM-MOL-
INF predictions. Therefore, in future, removing those descriptors corresponding to large values of r may provide
a simple method to increase physical interpretability without significantly reducing predictivity.

Comparing the values of R(te), RMSE(te) and bias(te) for the RISM-MOL-INF methods with those ob-
tained using the two benchmark methods (i.e. a QSPR model based on PADEL descriptors and predictions
made using ACD v12 software), it is clear that the RISM-MOL-INF method provides significantly more accu-
rate predictions of caco-2 cell permeability (Table 2). Furthermore, the RISM-MOL-INF method also performs
better than the QSPR models previously reported by Hou et al.62 and Ponce et al.80 (Table 2). These results
provide a clear proof-of-concept of the RISM-MOL-INF methods proposed here.

Fig. 6 Correlation plot of experimental versus predicted caco-2 cell permeability for an external test set of 22 druglike molecules.
Predictions were made using Random Forest regression trained on gf w variables
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Fig. 7 Plot of the function from which gf w variables are defined (grey lines) overlaid on a barpot showing the importance
of each gf w variable to the Random Forest model to predict caco-2 cell permeability (blue bars). Please see the text for a
definition of the Random Forest importance metric.

4.3 Computational Expense

One of the possible applications of RISM-MOL-INF variables is in silico screening of large virtual libraries,
where it is necessary to consider the computational expense of the selected method, as well as its accuracy. The
calculations discussed in this paper were performed in serial on Dual Intel Xeon X5650 2.66 GHz processors at
the ARCHIE-WeSt supercomputing centre located at the University of Strathclyde in Glasgow, Scotland. The
most time-consuming step in computing the RISM-MOL-INF variables for a selected solute is solving the 1D
RISM equations using the RISM-MOL program; the remaining steps require minimal computational expense.
Figure 8 shows the time required for the RISM-MOL calculation plotted against number of solute atoms for
a dataset of 1000 small organic molecules taken at random from the PUBCHEM database.81 The mean time
required for the RISM-MOL calculations was 3 minutes and 30 seconds. Since the RISM-MOL-INF variables
can be calculated in a matter of minutes for most small organic and druglike molecules using existing software
(RISM-MOL), it suggests that they may be useful for medium to high-throughput in silico screening of large
virtual compound libraries.

5 Conclusions

We have proposed a method to compute variables to quantify solvation and desolvation processes in molecular
informatics. The RISM-MOL-INF variables are derived from solvent density distribution functions computed
by the 1D Reference Interaction Site Model of the Integral Equation Theory of Molecular Liquids. As such, they
quantify the response of solvent molecules as a function of distance from the selected solute. The RISM-MOL-
INF variables can be computed in a matter of minutes for most druglike solutes using existing software (RISM-
MOL). We have shown that hydration free energy and caco2 cell permeability can be predicted accurately using
RISM-MOL-INF variables only combined with statistical or machine learning algorithms.



Integral Equation Theory of Molecular Liquids 19

Fig. 8 The time required to solve the 1D RISM equations scales as ∼ N2, where N is the number of atoms in the molecule.
The dashed-line shows an exponential fit of this dependence with parameters y = 0.00278(±0.00008)x2.08(±0.007).

There is clearly great scope to develop the methods presented here. From one side, the RISM-MOL-INF
variables would be expected to benefit from developments in RISM theory. Open problems in this field include
the design of bridge functionals,82 free energy functionals,14 and more efficient and robust algorithms for solving
the RISM equations.35,83 It should also be possible to derive useful descriptors from correlation functions
computed by 3D RISM, which is a more computationally expensive, but more advanced model from RISM
theory. The use of 3D RISM would also be more appropriate for modeling larger biomacromolecules (e.g
peptides, proteins) whose complex solvation behaviour is known to be poorly represented by standard 1D
RISM theory. Further work is required to define the domain of applicability of the RISM-MOL-INF method
presented here and to test whether this can be extended using 3D RISM. From another side, it may be possible
to derive variables that are more relevant to specific molecular informatics tasks than those discussed here.
For example, by considering cosolutes or non-aqueous solvents, both of which are possible using existing RISM
methods. The prediction of octanol-water distribution coefficient using RISM-MOL-INF variables computed
separately for solute in octanol and solute in water is an obvious example of this idea. The performance of
RISM-MOL-INF variables for standard cheminformatics applications such as assessing molecular diversity or
classification tasks should also be investigated. Since solvation and desolvation effects are important in many
biomolecular processes, we believe that the RISM-MOL-INF variables will find many applications in biophysical
and biomedical property prediction. Further work to address the points raised in this paragraph is ongoing in
our laboratory.
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