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Aging often leads to general cognitive decline in domains such as memory and

attention. The effect of aging on numerical cognition, particularly on foundational

numerical skills known as the number sense, is not well-known. Early research focused

on the effect of aging on arithmetic. Recent studies have begun to investigate the

impact of healthy aging on basic numerical skills, but focused on non-symbolic

quantity discrimination alone. Moreover, contradictory findings have emerged. The

current study aimed to further investigate the impact of aging on basic non-symbolic

and symbolic numerical skills. A group of 25 younger (18–25) and 25 older adults

(60–77) participated in non-symbolic and symbolic numerical comparison tasks.

Mathematical and spelling abilities were also measured. Results showed that aging

had no effect on foundational non-symbolic numerical skills, as both groups performed

similarly [RTs, accuracy and Weber fractions (w)]. All participants showed decreased

non-symbolic acuity (accuracy and w) in trials requiring inhibition. However, aging

appears to be associated with a greater decline in discrimination speed in such

trials. Furthermore, aging seems to have a positive impact on mathematical ability

and basic symbolic numerical processing, as older participants attained significantly

higher mathematical achievement scores, and performed significantly better on the

symbolic comparison task than younger participants. The findings suggest that aging

and its lifetime exposure to numbers may lead to better mathematical achievement and

stronger basic symbolic numerical skills. Our results further support the observation

that basic non-symbolic numerical skills are resilient to aging, but that aging

may exacerbate poorer performance on trials requiring inhibitory processes. These

findings lend further support to the notion that preserved basic numerical skills in

aging may reflect the preservation of an innate, primitive, and embedded number

sense.

Keywords: aging, numerical cognition, number sense, approximate number system, exact number system,

non-symbolic numerical processing, symbolic numerical processing, quantity discrimination
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Introduction

The current study aims to investigate the effect of healthy

aging on basic numerical processes, often referred to as the
number sense (Dehaene, 2009), by assessing the foundational

non-symbolic and symbolic numerical skills of healthy older
adults in comparison to younger adults with the use of classic

non-symbolic and symbolic numerical comparison tasks. It
is unclear whether basic numerical abilities remain intact in
aging, similar to semantic knowledge, vocabulary, and reasoning

(Hedden and Gabrieli, 2004; Salthouse, 2009), or decline as
do working and episodic memory, attention, and executive

processes (El Yagoubi et al., 2005; Lemaire and Lecacheur, 2007;
Deary et al., 2009; Salthouse, 2009). Research into the cognitive

implications of aging is vital in understanding differences
between normal and pathological aging, and in determining

whether interventions may slow decline (Dixon et al., 2004;
Salthouse, 2009). Numerical cognition in healthy aging has been

under-researched, particularly in terms of basic foundational
numerical skills. These abilities belong to the number sense, an

umbrella term for both symbolic and non-symbolic foundational
number skills.

There are two forms of basic numerical processing: non-
symbolic (quantities, such as sets of dots) and symbolic

(numerical symbols, such as Arabic digits). Both non-symbolic
and symbolic numerical processing are associated with the

‘Number Sense’ (Dehaene, 1997, 2009; Feigenson et al., 2004;
Verguts and Fias, 2004), and both play an important role in the
acquisition of more advanced numerical and arithmetical skills,

such as mathematical achievement (e.g., De Smedt et al., 2009;
Holloway and Ansari, 2009; Piazza et al., 2010). Foundational

non-symbolic numerical skills are usually referred to as the
approximate number system (ANS: Halberda et al., 2008). The

ANS is defined as the ability in infants, children, adults, and
some animal species to approximate non-symbolic numerical

magnitudes without counting, for example when estimating the
amount of sweets in a jar, or choosing the shortest queue at

the supermarket (Gallistel and Gelman, 2000; Feigenson et al.,
2004; Piazza et al., 2004; Dehaene, 2009; Desoete et al., 2009;

Izard et al., 2009; Piazza and Izard, 2009). This primitive non-
symbolic numerical system is thought to be innate, originating

from evolutionary systems (Dehaene, 1997; Feigenson et al., 2004;
Piazza and Izard, 2009; Park et al., 2012). The ANShas been found

to obey Weber’s law, indicated by the consistent observation
of size and distance effects in quantity discrimination tasks

(respectively, slower and less accurate responses as numerosity
magnitude increases, as well as slower and less accurate responses

the smaller the distance between to-be-discriminated quantities,
e.g., Dehaene, 1997; Piazza and Izard, 2009; Roitman et al., 2012).
ANS acuity has been measured and expressed with the Weber

fraction (w: Halberda et al., 2008). The w indicates an individual’s
numerical representation precision, with a higher w indicating

a ‘noisier’ and less accurate representation (Piazza et al., 2004;
Halberda et al., 2008). Several studies have demonstrated that

ANS acuity improves in typical development, reflected by a
decrease in w, with an average w in educated numerate adults

of ∼0.15 (Lipton and Spelke, 2004; Halberda and Feigenson,

2008; Halberda et al., 2008; Dehaene, 2009; Piazza et al., 2013).

Following the acquisition of symbolic numerical knowledge
during development, the ANS is suggested to be progressively

refined into a symbolic exact number system (ENS: Verguts
and Fias, 2004; Dehaene, 2009; Castronovo and Göbel, 2012).

The ENS has been defined as a later-acquired, formal, symbolic,
and linear numerical system, which accounts for automatic

access between symbolic numbers and their corresponding
magnitude (Verguts and Fias, 2004; Dehaene, 2009). The idea

of the refinement of the ANS into the ENS with development
is supported by behavioral data, such as the observation of

improving precise linear pattern of performance on number
line tasks in children with increasing age (e.g., Opfer and

Siegler, 2007; Ashcraft and Moore, 2012), and the gradual
development of an automatic activation of the ENS with age

during symbolic number Stroop paradigms (e.g., Rubinsten et al.,
2002). Neuroimaging data further support the existence of the
ENS alongside the ANS (e.g., Cohen Kadosh et al., 2011). Whilst

the innate ANS has been associated with the right intra-parietal
sulcus and approximate processing of non-symbolic quantities

(Siegler and Opfer, 2003; Dehaene, 2009; Mazzocco et al., 2011),
the acquired ENS has been associated with the left parietal lobe

and symbolic number processing (Ansari et al., 2006; Cantlon
et al., 2006; Piazza et al., 2007; Izard et al., 2008). The ENS also

obeysWeber’s law, but is suggested to be more precise, producing
less pronounced distance and size effects than non-symbolic

stimuli (e.g., Buckley and Gillman, 1974).
Both non-symbolic and symbolic numerical systems have

primarily been studied in children and young adults. Therefore,
the impact of healthy aging on these two foundational numerical

systems is not well-known. Further investigation of this issue is
of clear importance, notably considering evidence that healthy

aging is associated with structural changes such as gray matter
atrophy and declines in regional cerebral metabolic rate for

oxygen in the parietal lobes (for a review see Dennis and Cabeza,
2008), which play a crucial role in foundational numerical
skills (Piazza and Izard, 2009). So far, it is unclear whether

these neurological changes manifest behaviorally in terms of
older adults’ basic numerical abilities. Studies in the field

of numerical cognition and aging have mostly investigated
high-level mathematical skills, such as counting, arithmetic

problem solving, and strategies for quantification (e.g., Duverne
and Lemaire, 2004; El Yagoubi et al., 2005; Gandini et al.,

2008). More recently, a handful of studies have investigated
more foundational skills, such as non-symbolic numerosity

discrimination (Li et al., 2010; Dormal et al., 2012; Halberda et al.,
2012; Cappelletti et al., 2014). However, results are contradictory,

and therefore no clear conclusion can yet be drawn on the
effect of aging on these basic numerical skills (see below).

Moreover, to our knowledge, the question of the effect of aging on
foundational symbolic numerical skills has also yet to be directly

addressed.
Research on the effect of aging on symbolic numerical

skills has mainly focused on exact, complex abilities such as
arithmetical problem solving (e.g., Duverne and Lemaire, 2004;

Lemaire and Arnaud, 2008). In an early study on aging and
symbolic numerical processing, Salthouse and Kersten (1993)
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trained older and younger adults to recognize abstract symbols

as the digits 1–9. The older group made fewer errors than
the younger group in an arithmetic task using Arabic digits,

but recognized the new symbols as digits less accurately than
the younger adults. These results were attributed to a speed of

processing decline in aging rather than to a decline in arithmetical
skills (Salthouse and Kersten, 1993). However, when investigating

the effect of aging on simple (single digit) and complex (three-
digit numbers) arithmetical problems, Duverne and Lemaire

(2004) suggest that arithmetic accuracy and the ability to choose
the correct strategy declines with age, especially with more

complex problems. It has since been suggested that older adults
may have a smaller repertoire of strategies to solve arithmetic

problems and poorer efficiency in selecting an effective strategy
(Duverne and Lemaire, 2004; Lemaire and Arnaud, 2008). This

is supported by ERP data, which demonstrates a left hemisphere
advantage in younger adults during an arithmetic problem-
verification task which is reduced in the older group (El Yagoubi

et al., 2005). The authors concluded that the number of potential
strategies may be reduced in the older group, whereas younger

adults are able to flexibly choose the most effective strategy
for the problem. Alongside the study of high-level arithmetic

skills in aging, basic symbolic numerical skills were only briefly
investigated in Cappelletti et al.’s (2014) study. In this recent

study, older and younger participants took part in a symbolic
comparison task on numbers ranging from 1 to 9 as part of a

battery of arithmetical tasks. Although the results of this task
were neither explicitly presented nor discussed by the authors,

they seem to show no difference between older and younger
adults in terms of comparison accuracy, but reveal a general

slowing in the older group. No clear conclusion can be drawn
from these early findings on basic symbolic numerical skills in

aging, notably because of the use of a small numerical range
which, considering the task’s low level of difficulty, may not allow

clear dissociation between age groups. Furthermore, previous
research on symbolic numerical skills in aging has also provided
mixed results, with some suggesting a decline in such skills

(e.g., Duverne and Lemaire, 2004; Lemaire and Arnaud, 2008),
and others finding no impact of aging or superior symbolic

skills in older adults (Salthouse and Kersten, 1993; Cappelletti
et al., 2014). Moreover, the majority of studies have focused

on higher level symbolic numerical skills, such as arithmetic
problem solving, neglecting foundational symbolic abilities.

Therefore, the question of the impact of aging on foundational
symbolic numerical skills is still very much open and requires

investigation using a classic symbolic numerical task, such as a
symbolic comparison task (Moyer and Landauer, 1967), with a

large enough numerical range to allow discrimination between
participants’ ENS acuity.

A limited number of studies have investigated basic non-
symbolic numerical processing in aging. Further, methods and

stimuli used have varied widely, with some contradictory results.
Firstly, some research has suggested a deterioration of basic

non-symbolic numerical processing with age. Trick et al. (1996)
studied the effect of aging on basic non-symbolic numerical skills

with series of speeded quantity discriminations: 1 vs. 2; 3 vs. 4;
6 vs. 7; and 8 vs. 9. Participants indicated as quickly as possible

whether two arrays presented for up to 7,800 ms contained an

equal number or n+1 dots. In the subitizing range, the results
suggest no decline in quantity discrimination skills with age.

However, older participants performedmore slowly than younger
adults beyond the subitizing range. The authors concluded that

these results suggest a decline in quantity discrimination speed
beyond subitizing in older adults. However, further consideration

of the results on accuracy presented in Figure 4 (Trick et al.,
1996, p. 928) indicates higher accuracy in older compared to

younger participants in the larger quantity discrimination range,
possibly reflecting a speed-accuracy trade-off. On the contrary,

Watson et al. (2005) found similar enumeration performance
between 1 and 9 ‘Os’ in older and younger adults in both the

subitizing and non-subitizing ranges. However, when distracters
were added, enumeration speed decreased for the older group

only, possibly due to increased visual fixations for older adults
in trials containing distracters compared to those without
distracters. Whilst studying estimation skills on small (20–39)

and large (40–65) non-symbolic numerosities in healthy and
pathological aging [Alzheimer’s disease (AD)], Gandini et al.

(2009) showed that healthy aging is associated with poorer
estimation speed but not accuracy, concluding that slower

estimation in aging could reflect a decline in processing speed
rather than a decline in numerical abilities per se. However, lower

accuracy for older compared to younger adults on estimation
of numerosities between 4 and 79 further supports a negative

impact of aging on non-symbolic quantity processing (Gandini
et al., 2009). In view of these initial, somewhat contradictory

data, no clear conclusion can be drawn on a decline in
basic non-symbolic numerical processing in aging. Further,

long stimulus displays used may have encouraged enumeration,
rather than measuring approximate non-symbolic numerical

processing.
More recently, some authors have begun to study non-

symbolic numerosity processing in aging using brief stimulus
presentation times. In Li et al.’s (2010) study, older and younger
participants were submitted to an estimation task on a small

range (1–9), in which target numerosities were presented for
200 ms. The authors found that aging appears to be associated

with poorer performance in small-quantity estimation, with
older adults presenting slower reaction times (RTs) and greater

response variability than the younger adults. However, since
both groups presented similar accuracy overall, the authors

suggested that older participants’ slower performance and higher
response variability in small numerosity estimation may be

better accounted for by declining peripheral cognitive processes,
such as spatial selective attention and visual memory, rather

than by a decline in numerical abilities specifically. In a large-
scale study including more than 10,000 participants ranging

from 11 to 85 years of age, Halberda et al. (2012) studied
ANS acuity over the life-span with the use of ‘Panamath,’ a

paradigm in which participants decide which of a set of blue
and a set of yellow dots is more numerous (http://panamath.

org/). Their results suggested a decrease in ANS acuity (i.e.,
increased w) from around age 30. However, the authors did

not further discuss this observed age-related decline in ANS
acuity.
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Whilst some research suggests a decline in foundational

non-symbolic numerical skills, other studies indicate that such
skills are resilient to aging. Lemaire and Lecacheur (2007)

investigated the effect of aging on approximation, with eye-
movements recorded as younger and older adults estimated the

numerosity of large sets of dots (40–460). Stimuli remained
on-screen until response for up to 6 s. Results showed similar

accuracy but different eye-movement patterns between groups.
Older participants made more numerous but shorter fixations

and scanned stimuli more broadly than younger participants.
The authors suggested that older adults may use compensatory

strategies during estimation to negate the impact of deteriorated
vision. Such eye-movement patterns suggest that participants

were likely using counting strategies rather than approximation.
Dormal et al. (2012) investigated numerosity and duration

processing in healthy aging and Parkinson’s disease (PD).
They used a numerosity comparison task in which participants
compared two series of flashing dots, ranging in numerosity from

5 to 9, and a duration comparison task in which participants
compared two successive sets of flashing dots varying in duration.

Although older adults made more duration comparison errors,
there was no effect of aging on numerosity comparison, with

older, younger and PD participants performing similarly. Further,
Lambrechts et al. (2013) studied spatial and duration processing

in older and younger adults using comparison and bisection
tasks of continuous quantity, such as length and duration.

Lambrechts et al. (2013) concluded that continuous quantity
processing skills were resilient to aging, likely due to their

primitive basis (i.e., their appearance very early in development).
One recent study directly investigated the impact of aging on

non-symbolic numerical processing and ANS acuity. In order
to study whether aging was associated with either refined or

deteriorated basic numerical skills, Cappelletti et al. (2014)
compared older and younger participants’ performance on a

non-symbolic quantity discrimination task, similar to Halberda
et al. (2012). Their results showed a larger mean w for older
adults, initially suggesting a decline in ANS acuity with aging.

However, further analyses suggested that this age difference was
only present in trials requiring participants to inhibit perceptual

information incongruent with numerosity (e.g., fewer but larger
dots). As a consequence, the authors concluded that the observed

decline in ANS acuity in aging may be accounted for by impaired
inhibitory skills (Hasher and Zacks, 1988) rather than a decline in

numerical skills.
As a result of sparse literature and variable methods, a

clear conclusion cannot be drawn on the impact of aging on
numerosity processing. The use of long presentation times in

some studies is problematic, as they may encourage counting
strategies. Therefore, these studies have likely measured counting

rather than approximate, foundational numerical processing
(e.g., Lemaire and Lecacheur, 2007; Gandini et al., 2008).

Others fail to control for continuous perceptual variables such
as size and cumulative area of stimuli (e.g., Gandini et al.,

2008). Most research has also focused on a single measure to
assess ANS performance (e.g., percentage correct in Lemaire

and Lecacheur, 2007; w in Cappelletti et al., 2014). Finally, in
Halberda et al.’s (2012) study suggesting a decline of ANS acuity

in aging, trials requiring inhibitory control were not directly

addressed, which may explain why the findings contradict those
of Cappelletti et al. (2014). In the current study, we address

these issues to gain a clearer understanding of the impact of
aging on foundational non-symbolic numerical skills by: (a)

using a short presentation time to clearly measure numerosity
discrimination skills, rather than counting; (b) controlling

for continuous perceptual variables with the introduction of
congruent and incongruent trials, allowing further dissociation

between impoverished numerosity skills and reduced inhibitory
control (Cappelletti et al., 2014); and (c) using three measures

(accuracy, RTs and w) to assess the global impact of aging on
ANS acuity (Halberda et al., 2008). Moreover, since foundational

numerical skills are not limited to non-symbolic processing, but
are extended to acquired basic symbolic numerical skills, we also

investigate whether aging and its life-long exposure to numbers
is associated with refined or impaired foundational symbolic
numerical skills.

Although the impact of aging on numerical cognition has
recently begun to be investigated, it remains unclear whether

such skills decline in aging. This question is still very much
open in terms of basic symbolic and non-symbolic numerical

skills. In all age populations, clear measures of ANS acuity
have been used infrequently, which has potentially contributed

to inconsistent results found in the literature (Gilmore et al.,
2011; Price et al., 2012; Szűcs et al., 2013). In addition, direct

investigation of basic symbolic abilities in aging has been largely
ignored. The current study aims to measure the number sense,

both non-symbolic (ANS) and symbolic (ENS) basic skills in
younger and older adults, whilst controlling for mathematical

achievement, general cognitive ability and years of education to
establish whether basic numerical skills decline in aging (Duverne

and Lemaire, 2004; Gandini et al., 2008; Lemaire and Arnaud,
2008; Li et al., 2010; Halberda et al., 2012), or remain stable

(Lemaire and Lecacheur, 2007; Dormal et al., 2012; Lambrechts
et al., 2013; Cappelletti et al., 2014). Firstly, we investigate
non-symbolic numerical skills and ANS acuity using the non-

symbolic numerical discrimination task Panamath, which has
been standardized across thousands of participants (Halberda

et al., 2012), a similar paradigm to that used recently in the
literature on ANS acuity in aging (Cappelletti et al., 2014).

Second, basic symbolic numerical skills are investigated with a
symbolic comparison task, using simultaneously presented pairs

of two-digit Arabic numbers (Nuerk et al., 2001). Both tasks
will be investigated using defined age groups (older adults aged

between 60 and 77, and younger adults between 19 and 25),
with the findings adding to emerging research on the effect of

aging on numerical cognition, particularly on basic symbolic and
non-symbolic skills.

Materials and Methods

Participants
Fifty-two participants were recruited; 26 older adults between 60

and 77 (14 males; mean age = 65, SD = 4.5) and 26 younger
adults between 19 and 25 (six males, mean age = 20.5, SD = 1.7).
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Participants were initially screened with an email questionnaire

for history of psychiatric and neurological disorders, depression,
and abnormal vision. Two participants’ data (one from each

group) were removed due to a computer error. As a result,
a total of 50 participants’ data were analyzed (25 per group).

Participants in the older group were recruited voluntarily from
the community, and participants in the younger group through

the University of Hull Psychology Department. Amongst the
younger group, 20 undergraduate students received course

credit for participation. No payment was offered. Years of
education were similar between groups, p > 0.6 (older adults:

M = 16.5 years, SD = 2.6; younger adults: M = 16.2 years,
SD = 1.7). The study was approved by the University of Hull

Psychology Department ethics committee.

Materials and Procedure
First, control measures were used. The Mini Mental State Exam
(MMSE: Folstein et al., 1975; as in Gandini et al., 2009; Dormal

et al., 2012) was administered to the older group, and the
Geriatric Depression Scale (GDS: Yesavage et al., 1982) to all

participants to rule out cognitive impairment and depression
(depressed older adults are more likely to display cognitive

changes than younger adults: Fiske et al., 2009). All older
participants presented healthy MMSE scores over 27. Three

participants from the older group presented a borderline score
of 5 on GDS, and one participant from the younger group

a score of 8, which could indicate depression. Participants
presenting such scores were advised at debrief to seek help from

their GP if they felt depressed. Their data were not excluded,
as in comparing their performance (i.e., symbolic and non-

symbolic RTs, accuracy and non-symbolic w) to the remainder
of the group using a modified t-test (Crawford and Garthwaite,

2002), their results did not significantly differ (ps > 0.1).
The spelling subtest of the Wide Range Achievement Test 4

part 2 (WRAT4: Wilkinson and Robertson, 2006) was used
to control for general cognitive abilities (e.g., Castronovo and
Göbel, 2012; Sasanguie et al., 2013). Forty two words increasing

in difficulty were read out and presented within a sentence,
with participants writing their answers. As in Castronovo and

Göbel (2012), a calculation task based on the Graded Difficulty
Arithmetic Test (Jackson and Warrington, 1986), was used

to measure participants’ mathematic achievement index (MAI;
overall percentage correct). This timed paper and pen task

consisted of three sections, comprised of easy and difficult
subsections: additions (a 30 s sub-section and a 90 s sub-

section); subtractions (a 30 s sub-section and a 90 s sub-
section); and multiplications with a 40 s sub-section and a

4 min sub-section. Participants answered as many questions
as possible. Questions were presented and answered in written

Arabic format.
Second, to investigate basic non-symbolic and symbolic

numerical skills, we used two computerized tasks. Panamath
was used to measure non-symbolic numerical abilities and ANS

acuity (Halberda et al., 2008). In this well-known non-symbolic
comparison task, participants must compare sets of yellow and

blue dots presented simultaneously and judge which colored
set is more numerous. To measure basic symbolic numerical

abilities, a classic symbolic comparison task was used. In this task,

participants decide which of two two-digit Arabic numbers is the
largest (in magnitude; Nuerk et al., 2001). Both computerized

tasks were conducted on anAMDAthlon computer (1280× 1024
res), with participants sitting 50 cm away from the screen and

responding using the keyboard.
Each participant took part in a single testing session split

into two counterbalanced phases. In the first phase, participants
undertook the MMSE, GDS and WRAT 4 spelling task, as

well as the computerized non-symbolic comparison task. In the
second phase, participants undertook the calculation task and

the symbolic comparison task. Participants took short breaks
between tasks, with testing complete within 2 h. Participants

provided written informed consent before participation.

Non-Symbolic Comparison Task
The stimuli were a set of blue and a set of yellow dots
simultaneously presented for 200 ms (as in Halberda et al., 2012).

The study utilized an online version of Panamath downloaded
from www.panamath.org. Fast stimulus presentation was used

(as in Halberda et al., 2008; Cappelletti et al., 2014) to reduce
the likelihood of counting and the influence of working memory,

increasing reliability in terms of directly testing the ANS (Maylor
et al., 2008). Participants decided whether the blue or yellow dots

were more numerous by pressing either ‘A’ or ‘L’ on the keyboard,
which were covered with blue and yellow circles respectively.

The yellow dots always appeared on the left of the screen, and
the blue dots on the right. Total cumulative area of each dot

array was adapted to control for the influence of perceptual
variables: half the trials were non size-controlled, with the size

of the average blue dot equal to that of the average yellow
dot. Therefore, the more numerous set also had a larger total

area (congruent trials). The other half of the trials were size-
controlled, so that the number of blue pixels was equal to the

number of yellow pixels regardless of numerosity (incongruent
trials; Halberda et al., 2008). The size-controlled incongruent
trials require inhibition skills, as participants must inhibit a

response based on perceptual variables to attend to numerosity.
Participants were asked to avoid counting and answer using their

best impression. Each trial started with the participant pressing
the space bar. Two sets of colored dots were then presented

simultaneously for 200 ms. They were immediately followed
by a color-matched backward mask (200 ms). A prompt then

remained on-screen until an answer was provided. In half of
the trials, the blue dots were more numerous, and in the other

half the yellow dots were more numerous. Accuracy, RTs and
the Weber fraction (w) for each participant were measured. Two

trials were first used as practice trials. In total there were 384
trials, split into four ratio bins, as in Halberda and Feigenson’s

(2008) study: Bin 1 = ratio 1.2; Bin 2 = ratio 1.3; Bin 3 = ratio
1.8; and Bin 4 = ratio 3. Ratio bins denote the ratio between

the number of blue and yellow dots (ratio = bigger set/smaller
set). For example, stimuli were categorized as being in Bin 1

(ratio 1.2) when 11 yellow dots and 13 blue dots were presented
(13/11 = 1.2). According to Weber’s law, as the ratio increases,

task difficulty decreases (Halberda et al., 2008). Dot numerosities
ranged from 5 to 21 for each color. In the analysis, the effect of
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ratio and age group on ANS acuity (accuracy, RTs, and w) will be

investigated.

Symbolic Comparison Task
The symbolic comparison task was similar to that used by Nuerk

et al. (2001). Stimuli comprised of a pair of two-digit numbers
(e.g., 46 and 58), presented simultaneously (horizontally), in
black font on a white background. Participants decided whether

the larger number was on the left or right of the screen.
The use of two-digit stimuli involves refined symbolic abilities,

avoiding likely ceiling effects found in adults and older children
when using single-digit stimuli (Lonnemann et al., 2011). The

use of a larger numerical range should therefore allow greater
discrimination between participants’ skills than in previous

studies using a smaller numerical range (e.g., Cappelletti et al.,
2014). Global distances between stimuli pairs were grouped into

four distance bins indicating the total numerical distance between
them: Bin 1 = distances [6–15]; Bin 2 = distances [16–24];

Bin 3 = distances [25–49]; Bin 4 = distances [51–71]. Task
difficulty decreases with increasing distance bin. For example, the

pair [31–81] has a larger global distance (distance of 50, Bin 4)
than [31–51] (distance of 20, Bin 2), and therefore belongs to a

larger distance bin. Stimuli ranged from 21 to 98. Participants
responded as quickly as possible without sacrificing accuracy

using the keyboard (A = left, L = right). The number on the left
was larger in half the trials, and the number on the right was larger

for the other half. There were 16 practice trials with feedback,
followed by 240 randomized trials without feedback in two
blocks. A black fixation cross appeared on a white background

for 1000 ms, followed by stimuli until response (up to 3000 ms).
Accuracy and RTs were recorded.

Results

Group differences for control measures (GDS, Calculation task

and Spelling task) were first investigated using independent
t-tests. Older and younger adults’ mean ws were then compared

using an independent t-test. ANOVAs were conducted on RTs
and accuracy to assess the impact of aging on non-symbolic and

symbolic numerical skills, with ratio/distance bin as a within-
subjects factor and age group as a between-subjects factor.

Additionally, in the non-symbolic comparison task, ANOVAs
were conducted for each age group to determine the effect of

trial type (congruent or incongruent) on RTs and accuracy.
Where sphericity was violated, Greenhouse–Geisser corrections
apply. Ratio effects for each participant were further analyzed

by calculating individual regression slopes. Correlation analyses
were conducted to determine whether mathematical achievement

was related to basic symbolic and non-symbolic numerical skills.
Finally, linear regression analyses further analyze the effect of age,

education, and control measures on symbolic and non-symbolic
skills.

Control Measures
In the calculation task, positive correlations (ps < 0.001) were
found between scores on the three sections (addition, subtraction,

multiplication). For all participants, a MAI was determined by

calculating the total percentage correct of all three sections
combined. Independent-samples t-tests indicated that older

adults (M = 90.55%, SD = 6.90) presented a significantly
higher MAI than younger adults (M = 68.23%, SD = 15.38),

t(33.3) = −6.62, p < 0.001. In the spelling task, older adults
(M = 86.19%, SD = 8.59) also scored significantly higher than

younger adults (M = 78.67%, SD = 5.97), t(48) = −3.60,
p < 0.01. There were also no significant differences between

groups on the GDS (p > 0.2). Overall, these results indicate that
although both groups present similar levels of education, older

people clearly demonstrate greater mathematics achievement.
The results also reflect those of previous findings indicating

greater mathematical abilities in older adults (Cappelletti et al.,
2014), with greater spelling ability in aging also consistent with

an observed increase in verbal knowledge across the lifespan
(see Cappelletti et al., 2014 for vocabulary scores; Hedden and
Gabrieli, 2004; Watson et al., 2005).

Non-Symbolic Comparison Task
In the non-symbolic comparison task, ANS acuity was measured
by accuracy, RTs, and w (Halberda et al., 2008). ANOVAs

were conducted to assess the impact of age and ratio on RTs
and accuracy. Further analyses were carried out to investigate

the effect of aging on performance on congruent trials, where
numerosity and perceptual continuous variables correlated (i.e.,

non size-controlled trials), and incongruent trials (i.e., size-
controlled trials), where task irrelevant but salient information

(e.g., cumulative area) had to be inhibited (Cappelletti et al.,
2014).

First, an independent-samples t-test indicated that there was
no significant difference in w between age groups, calculated after

outlier removal (as below): t(48) = 0.146, p = 0.88. In both
groups, the averagewwas 0.18, (older group SD= 0.182; younger

group SD= 0.184), reflecting a similarw to that found in previous
literature (Piazza et al., 2004).

For further analyses, data were trimmed by applying a 3 SD

cut-off for RTs on correct responses (2.11% of data removed).
Preliminary analyses indicated that neither group showed a

speed-accuracy trade-off (older adults r = 0.18, p> 0.38; younger
adults r = 0.34, p = 0.1). To determine the effect of age and

ratio on RTs, a 4 (ratio bin) × 2 (age group) mixed ANOVA
was conducted, with ratio bin as a within-subject factor, and age

group as a between-subject factor. Ratio bin had a main effect
on RTs, F(1.52, 72.97) = 156.62, p < 0.001. This reflects the

classic ratio effect: the larger the ratio, the faster the responses
(Piazza and Izard, 2009). There was no main effect of age group

on RTs, as both groups presented similar RTs, F(1,48) = 0.784,
p > 0.3 (younger group M = 874 ms, SD = 308, older group

M = 923 ms, SD = 360). However, the ratio bin × age group
interaction was significant, F(1.52,72.97) = 7.21, p < 0.01 (see

Figure 1). To further investigate this interaction, we computed
each participant’s linear regression slope for RTs, with ratio bin as

a predictor (De Smedt et al., 2009; Castronovo and Göbel, 2012).
An independent t-test showed that the non-symbolic ratio effect

was significantly more pronounced in the older group (Mean
regression slope = −90.15, SD = 35.84) than the younger group
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FIGURE 1 | The ratio effect on reaction times in the non-symbolic

numerical comparison task.

(Mean regression slope = −58.70, SD = 38.85), t(48) = 2.98,

p < 0.01.
A 4 (ratio bin) × 2 (age group) ANOVA investigated ratio

and age effects on non-symbolic accuracy. There was a main
effect of ratio bin, F(1.96,93.94) = 474.2, p < 0.001, reflecting

improving accuracy with increasing ratio (Bin 1 M = 74.59%,
SD = 7.04, Bin 2 M = 84.62%, SD = 5.61, Bin 3 M = 98.50%,

SD = 2.00, Bin 4 M = 99.52%, SD = 1.31; Piazza and Izard,
2009). There was no main effect of age group (p > 0.7), with both

groups presenting similar accuracy (older group M = 89.57%,
SD = 3.31, younger group M = 89.33%, SD = 2.97). The ratio

bin × age group interaction was significant, F(1.96,93.94) = 3.57,
p < 0.05. To further investigate this interaction, regression

slopes were calculated for each participant, with ratio bin as a
predictor of accuracy. An independent t-test showed that there
was no significant difference between the groups’ regression

slopes (p > 0.2). This indicates that the interaction cannot be
accounted for by a global difference between the groups’ ratio

effect on accuracy. Independent t-tests also showed that accuracy
scores were similar in both groups in each ratio bin (ps > 0.1).

Therefore, this interaction seems to be likely due to opposite
patterns between the groups’ processing of ratio bins 1 and 2, with

the younger group presenting slightly greater accuracy than the
older group in ratio Bin 1 (M = 75.80%, SD = 6.06 in younger

group;M = 73.38%, SD= 7.83 in older group), whilst the reverse
can be found in Bin 2 (M = 83.31%, SD= 4.78 in younger group;

M = 85.93%, SD = 6.16 in the older group; see Figure 2).
Correlation analyses were conducted between MAI and non-

symbolic acuity (w, RTs and accuracy). Correlations between w
and MAI (p > 0.2) and w and non-symbolic RTs (p > 0.1) did

not reach significance. As expected, w correlated significantly
with non-symbolic accuracy; r = −0.99, p < 0.001. Hierarchical

regression analyses were conducted on RTs, accuracy, and w
to investigate whether an effect of aging on non-symbolic ANS

abilities might appear when controlling for possibly confounding
variables (education, spelling performance, andMAI). Four steps

FIGURE 2 | The ratio effect on accuracy in the non-symbolic numerical

comparison task.

were sequentially included in the analyses: (1) Education (years);
(2) Spelling Score; (3) MAI; (4) Age Group; (5) Gender. All

factors were non-significant predictors of RTs, accuracy and w
(ps > 0.1).

These first results appear to show that non-symbolic
foundational numerical skills are preserved in healthy aging.

However, since recent data has suggested impaired numerosity
discrimination in older participants when inhibition skills are

required (i.e., in incongruent trials: Cappelletti et al., 2014), we
conducted further analyses. In our study, we used both congruent

trials where numerosity and total occupied area correlated (i.e.,
the larger the numerical set, the larger its cumulative area) and

incongruent trials where each colored set occupied the same total
area. To investigate possible decline in non-symbolic numerical
skills in aging when inhibitory processes are required (Cappelletti

et al., 2014), we ran a mixed ANOVA, with condition (congruent
vs. incongruent) as a within-subjects variable and age group as

a between-subjects variable on non-symbolic RTs, accuracy and
w. In line with Cappelletti et al. (2014), we found a main effect

of condition on w, with incongruent trials resulting in reduced
ANS acuity (higher mean w = 0.20, SD = 0.06), compared

to congruent trials (w = 0.16, SD = 0.04), F(1,48) = 39.34,
p < 0.001. However, our results indicated that this condition

effect on w was similar for both age groups (p > 0.7), with
no interaction (p > 0.6). On RTs, there were no main effects

of condition (congruent trials mean RT = 897 ms, SD = 199,
incongruent = 901 ms, SD = 200; p > 0.2) or age group (p > 0.3;

mean RT older group = 923 ms, SD = 360, younger group
M = 874 ms, SD = 309). Nevertheless, the condition × group

interaction on RTs was marginally significant (p = 0.065), since
older adults presented slower RTs in incongruent trials (mean

RT = 929 ms, SD = 202) compared to congruent trials (mean
RT = 919 ms, SD = 200), t(24) = −2.22, p < 0.05. On the

other hand, younger participants presented similar RTs in both
conditions (p > 0.6). Participants were more accurate during
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congruent trials (mean accuracy = 91%, SD = 3.12) than

during incongruent trials (mean accuracy = 87%, SD = 3.91),
F(1,48) = 47.28, p < 0.001. There was, however, no main effect

of age group (p > 0.7), and no interaction (p > 0.2). Our results
indicate that participants’ non-symbolic performance declined in

terms of w and accuracy regardless of age group in incongruent
trials where inhibition of task-irrelevant perceptual information

was necessary compared to during congruent trials, where
numerosity and area correlated. However, in line with Cappelletti

et al.’s (2014) results, healthy aging tends to be associated
with a somewhat more pronounced decline in numerosity

discrimination skills where inhibition is required, since the
older group were significantly slower during incongruent trials

compared to congruent trials, with younger adults showing no
such effect.

Symbolic Comparison Task
In order to investigate the impact of aging on basic symbolic

numerical skills, analyses were conducted on RTs and accuracy.
RT data were trimmed by applying the same 3 SD cut-off as in the

non-symbolic comparison task (1.45% data removed). Neither
group presented a speed-accuracy trade off (older adults: r= 0.25,

p > 0.2; younger adults: r = 0.36, p = 0.1). On RTs, distance and
age group effects were investigated using a 4 (distance bin) × 2

(age group) mixed ANOVA. Distance had a main effect on RTs:
the larger the distance, the faster the response, as explained

by Weber’s law, F(2.09,100.13) = 290.23, p < 0.001 (Piazza
and Izard, 2009). Younger adults were significantly faster (mean

RT = 613 ms, SD = 72) than older adults (mean RT = 768 ms,
SD = 94), F(1,48) = 44.97, p < 0.001. The distance bin × age

group interaction was also significant, F(2.09,100.13) = 12.94,
p < 0.001. This interaction appears to be mainly due to the fact

that younger participants had similar RTs for distance bins 1 and
2 (mean RT = 645 ms, SD = 79; mean RT = 648 ms, SD = 78

respectively; p > 0.6). On the contrary, older participants’ RTs
differed across all distance bins, including bins 1 and 2, illustrated
by significantly slower RTs in distance Bin 1 (mean RT = 831 ms,

SD = 104), than distance Bin 2 (mean RT = 802 ms, SD = 95),
F(1,24) = 22.34, p < 0.001 (see Figure 3).

Similar analyses of accuracy show a main effect of distance in
accordance with Weber’s law, F(2.13,102.25) = 53.46, p < 0.001:

as global distance increases, so does accuracy (mean accuracy
Bin 1 = 93.57, SD = 6.01, Bin 2 = 95.10, SD = 4.24, Bin

3 = 98.29, SD = 2.48, Bin 4 = 99.66, SD = 0.78; Piazza and
Izard, 2009). There was also a main effect of age group, as older

adults (M = 99%; SD = 2) were significantly more accurate than
younger adults (M = 95%; SD = 3), F(1,48) = 62.48, p < 0.001.

The interaction between distance and age group was significant,
F(2.13,102.25) = 19.36, p < 0.001 (see Figure 4). Individual

regression slope analysis showed that the symbolic distance effect
on accuracy was significantly more pronounced in the younger

group (mean regression slope= 3.44) than the older group (mean
regression slope = 0.85), t(48) = 6.46, p < 0.001.

As in the non-symbolic comparison task, correlation analyses
were conducted between MAIs and symbolic RTs and accuracy.

Correlations between MAI and symbolic RTs (r = 0.32, p < 0.05)
and accuracy (r = 0.63, p < 0.001) were significant. Further,

FIGURE 3 | The distance effect on reaction times in the symbolic

numerical comparison task.

FIGURE 4 | The distance effect on accuracy in the symbolic numerical

comparison task.

hierarchical regression analyses were conducted on RTs and
accuracy to determine the effect of age group on symbolic

processing when controlling for education, spelling, MAI and
gender. Education, spelling scores and gender were non-

significant predictors of symbolic performance (ps > 0.3). Both
MAI and age group were significant predictors of RTs (β = −0.38,

p< 0.05, β = 0.90, p< 0.001 respectively). Age strongly predicted
RTs, accounting for 42% of the variance, �F(1,45) = 41.73,

p < 0.001. Crucially, being in the older group was the only
significant predictor of higher accuracy (β = 0.60, p < 0.001).

On all measures, age group accounted for a significant additional
percentage of variance,�F(1,45)= 20.91, p< 0.001), particularly

for accuracy (19%). Overall, age affected symbolic comparison
abilities over and above any other factor, most notably MAI.
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Discussion

The impact of healthy aging on basic numerical abilities has

only recently begun to be researched. In the field of numerical
cognition, much attention has been paid to the number sense in

children, and its link with mathematical achievement (Halberda
et al., 2008; De Smedt et al., 2009; Libertus et al., 2012,

2013; Piazza et al., 2013). Where investigation has turned to
aging, studies have mostly focused on higher-level numerical
skills (e.g., Duverne and Lemaire, 2004; Lemaire and Arnaud,

2008). Those which have researched non-symbolic abilities find
contradictory results, present methodological limitations (e.g.,

variable presentation times of stimuli, little or no control of
perceptual variables), and tend to focus on a single measure

of ANS acuity, such as w. Some studies have found a decline
in non-symbolic numerical abilities with age (Halberda et al.,

2012), whereas others have found no such effect once age-related
inhibitory decline was controlled for (Cappelletti et al., 2014). In

terms of basic symbolic abilities, findings are sparse and methods
limited, with a focus on high-level arithmetical skills or the use

of small numerical ranges in comparison tasks. Overall, some
studies suggest a decline in symbolic numerical processing in

aging (e.g., Duverne and Lemaire, 2004; Lemaire and Arnaud,
2008), whereas others suggest preserved (but potentially slower)

symbolic abilities in older adults (Cappelletti et al., 2014). More
importantly, aging and basic symbolic numerical skills appear

not to have been directly investigated in the literature. As
a result, no clear conclusion can be drawn on the effect of
aging on basic numerical processes, both non-symbolic and

symbolic. The current study addresses these issues in being
the first to study both non-symbolic and symbolic numerical

skills as basic foundational skills in aging. Our findings suggest
that aging does not have a detrimental effect on basic non-

symbolic numerical processing, whilst it seems to have a positive
effect on basic symbolic numerical processing and mathematical

achievement. Additionally, our results further support previous
research showing a positive effect of aging on verbal knowledge

(Hedden and Gabrieli, 2004; Cappelletti et al., 2014), since aging
appeared to be associated with superior spelling performance.

The current findings on aging and foundational non-symbolic
numerical skills support recent research suggesting that healthy

aging is associated with the preservation of non-symbolic
quantity processing (both continuous; Dormal et al., 2012;
Lambrechts et al., 2013; and discrete; Lemaire and Lecacheur,
2007; Cappelletti et al., 2014), as non-symbolic discrimination

skills were preserved in the older group. These results are in
line with the suggestion that basic numerical skills may be

resilient to cognitive aging as they stem from a primitive, innate
system originating from evolutionary abilities (Feigenson et al.,
2004; Lambrechts et al., 2013). Previous contradictory results

suggesting a decline of ANS acuity in aging are likely to result
from different methodological issues. For example, Halberda et al.
(2012) concluded that ANS acuity decreases steadily from age 30.
However, the study’s older group shows a large variability in age

range (45–85 years), which could have led to a large variability
in performance. Additionally, as highlighted by Cappelletti et al.

(2014), no distinction was made byHalberda et al. (2012) between

congruent and incongruent trials. Moreover, as the validity of

ANS tasks using congruent and incongruent trials has recently
been questioned (Szűcs et al., 2013), further research is required

to investigate to what extent the current and previous findings
may be affected by task design.

Our results, in line with previous findings (Li et al., 2010;
Cappelletti et al., 2014), support the idea that inhibition skills

should be considered when assessing numerosity discrimination
skills, particularly in older groups. Indeed, our data on trials

involving inhibition skills (incongruent trials) indicate that all
participants were affected when continuous perceptual variables

were incongruent with numerosity, as both groups were less
accurate and presented larger mean ws. These findings reflect

previous research demonstrating the impact of continuous
perceptual variables on numerosity judgments (Hurewitz et al.,

2006; Dakin et al., 2011; Gebuis and Reynvoet, 2012a). Moreover,
supporting the findings of Cappelletti et al. (2014), aging appears
to be associated with greater sensitivity to interference from

incongruent continuous variables, as older participants were
somewhat slower in incongruent trials than congruent trials,

whilst younger participants presented similar RTs regardless of
congruency. This pattern of response times in the older group

may represent impaired inhibitory control of a response based
on area in order to respond to numerosity (e.g., Cappelletti et al.,

2014). However, that both younger and older participants in
our study, rather than older participants alone as in Cappelletti

et al. (2014), presented declined accuracy and higher w in
incongruent trials may be accounted for by the use of a backward

mask in the current study to eliminate short-term memory
representations of stimuli. The absence of a backward mask

in Cappelletti et al.’s (2014) study may have benefited younger
participants, as they have stronger short-term memory abilities

than older adults (Salthouse and Babcock, 1991), and therefore a
superior ‘after image’ (Sperling, 1960) of stimuli, resulting in less

interference from incongruent trials. Another methodological
difference was that Cappelletti et al. (2014) used intermixed
displays of dots, whereas separate, simultaneous arrays were used

in the current study (as in Fuhs and McNeil, 2013; Gilmore
et al., 2013; Smets et al., 2013). Recent research has suggested that

differences in stimulus display methods may lead to unreliable
ANS measures (Hurewitz et al., 2006; but see Price et al.,

2012; Szűcs et al., 2013). Intermixed displays during a short
presentation time could be more difficult for older participants

due to their reduced useful field of view (Lemaire and Lecacheur,
2007), likely leading to poorer performance on the more difficult

incongruent trials. Our results on incongruent trials are therefore
somewhat in line with Cappelletti et al. (2014), supporting

the hypothesis that previous findings of impaired numerosity
discrimination in aging may reflect inhibitory decline, rather

than impoverished non-symbolic numerical processing per se.
Overall, our findings on non-symbolic numerical comparison

further support the conclusion that aging does not affect basic
non-symbolic numerical abilities, possibly as a result of the innate

nature of the ANS (Feigenson et al., 2004; Lambrechts et al.,
2013).

Secondly, our study highlights a positive impact of aging
on basic symbolic numerical skills, as well as mathematical
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achievement. With the introduction of a larger numerical range,

we were able to study symbolic numerical skills in aging,
whilst avoiding likely ceiling effects of using single-digit stimuli

(Lonnemann et al., 2011). Our data indicate that aging appears
to be associated greater symbolic numerical abilities. Although

older participants presented slower RTs due to processing-speed
decline in aging (Salthouse, 1996), they were more accurate than

younger participants, with a less pronounced symbolic distance
effect on accuracy. These results extend Cappelletti et al.’s (2014)

primary observations of preserved basic symbolic numerical
abiltities in aging on a smaller numerical range. Altogether,

these findings suggest the presence of a better anchored and
more precise symbolic numerical representation, as well as

greater mathematical achievement in aging, as a result of lifetime
experience with numbers. The results are also in line with

the suggestion that symbolic discrimination abilities improve
with age (Salthouse and Kersten, 1993; De Smedt et al., 2013;
Cappelletti et al., 2014).

Symbolic and non-symbolic distance effects have been
found to be affected by individual number knowledge, with

mathematical achievement being negatively associated with the
symbolic distance effect in children (e.g., De Smedt et al., 2009;

Holloway and Ansari, 2009) and adults (e.g., Castronovo and
Göbel, 2012), but positively correlated with the non-symbolic

distance effect (in children Gilmore et al., 2010; in adults,
Castronovo and Göbel, 2012). Likewise, in the current study,

participants in the older group presented greater mathematical
achievement, as well as a decreased symbolic distance effect

on accuracy and an increased non-symbolic distance effect on
RTs compared to the younger group. The results therefore

give further support to the assumption that longer lifetime
exposure to numbers is associated with greater mathematical

knowledge, as well as a better defined symbolic number system
and a greater tendency to automatically transcode non-symbolic

numerosities into their corresponding symbolic representations
(Halberda et al., 2008; Gilmore et al., 2010; Castronovo and
Göbel, 2012).

Further to our findings regarding the effect of aging on
basic non-symbolic and symbolic numerical abilities, the link

between non-symbolic abilities and mathematical achievement
was investigated, as it represents a key theme in numerical

cognition research, particularly in early development. Non-
symbolic acuity and MAI did not correlate in either age group,

reflecting recent findings (Inglis et al., 2011; Castronovo and
Göbel, 2012; Price et al., 2012; but see Libertus et al., 2012),

and reinforcing the hypothesis that ANS acuity may reach a
maximum in adulthood, reducing the strength of a link between

the ANS and mathematical ability in adults (Castronovo and
Göbel, 2012). Alternatively, mathematical achievement may only

correlate with symbolic abilities, both in children (Holloway
and Ansari, 2008, 2009) and adults (Castronovo and Göbel,

2012), a prediction further supported by the current findings,
as well as neuropsychological evidence of a relationship between

specific brain regions used for both basic and advanced symbolic
numerical processing (Ansari et al., 2006; Cantlon et al., 2006;

Piazza et al., 2007; Izard et al., 2008). Therefore, by directly
investigating foundational non-symbolic and symbolic numerical

skills in aging, our study provides further evidence that the ANS

corresponds to a primitive number system resilient to aging,
as well as being unrelated to education and increased practice

with age (Feigenson et al., 2004; Castronovo and Göbel, 2012;
Lambrechts et al., 2013). On the other hand, the ENS, similarly to

other education-related abilities, such as spelling and vocabulary
(Hedden and Gabrieli, 2004), benefits from life-long exposure

and practice associated with aging. Improved basic symbolic
processing and mathematical ability in the older group may

possibly reflect a generational, qualitative difference in terms
of mathematical education (Geary and Lin, 1998). However,

regression analyses suggest that this is unlikely, as increasing
age accounted for significantly more variance in symbolic

discrimination accuracy than mathematical achievement.
The current study further addresses the question of the

impact of aging on cognition in general (Hedden and Gabrieli,
2004), suggesting that foundational numerical processing may
be one of a few cognitive skills along with verbal memory,

implicit memory, and emotional processes to be preserved in
healthy aging. Our results bring to light the effect of cognitive

aging on basic symbolic and non-symbolic numerical abilities.
However, difficulties with using non-symbolic comparison tasks

which control only limited perceptual variables to measure ANS
acuity (Gebuis and Reynvoet, 2012b; Szűcs et al., 2013) mean

that further research is required utilizing newer non-symbolic
numerosity comparison paradigms controlling other perceptual

variables (e.g., Gebuis and Reynvoet, 2011). The current findings
could inform research into the effects of pathological aging

on numerical cognition, such as in AD (Girelli et al., 1999;
Kaufmann et al., 2002; Duverne et al., 2003; Maylor et al., 2005;

Delazer et al., 2006; Khodarahimi and Rasti, 2011). As numerical
cognition is largely dependent on the parietal lobes (Piazza and

Izard, 2009; Roitman et al., 2012), and these regions of the brain
undergo significant atrophy early in the course of AD (Jacobs

et al., 2011, 2012; Bruner and Jacobs, 2013) compared to normal
aging (Dixon et al., 2004), basic numerical tasks could prove a
useful diagnostic tool. Such application may be advantageous as

the tasks used in the current study are straightforward to apply.
Moreover, as the measures remain stable in healthy aging, their

use may provide a specific marker for AD. The discovery of
differences in basic numerical skills between healthy older adults

and those with AD could assist in the detection of the disease
at the earliest stages, which is vital in developing more effective

treatments and creating better outcomes (Salthouse, 2009). In
particular, the non-symbolic comparison task used in this study

(Panamath: Halberda et al., 2008) has been used with populations
of varying abilities, including very young children, demonstrating

its flexibility of application and therefore the potential for use in
clinical populations.
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