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Abstract. We investigate numerically the interaction between ionospheric magnetic field-aligned

density striations and a left-hand circularly polarized (L) mode wave. The L mode wave is scat-

tered into upper hybrid (UH) waves which are partially trapped in the striations, but are leaking

energy to electromagnetic waves in the Z mode branch. For small amplitude (1%) striations, this

loss mechanism leads to a significant reduction in amplitude of the UH waves. For several striations5

organized in a lattice, the leaking of Z mode waves is compensated by influx of Z mode radiation

from neighboring striations, leading to an increased amplitude of the weakly trapped UH waves.

For large amplitude (10%) striations the trapped UH waves rapidly increase in amplitude far be-

yond the threshold for parametric instabilities, and the Z mode leakage is less important. The results

have relevance for the growth of striations and the onset of UH and lower hybrid turbulence during10

electromagnetic high frequency pumping of ionospheric plasma, which require large amplitude UH

waves.

1 Introduction

Powerful electromagnetic high frequency (HF) waves transmitted into the ionosphere excite geo-

magnetic field-aligned plasma density striations. The structuring in the plasma into striations ab-15

sorbs substantial power from the injected pump wave when it has ordinary (O) mode polariza-

tion and its frequency is below the maximum upper hybrid (UH) frequency of the ionosphere

(Cohen and Whitehead, 1970; Stubbe et al., 1982; Mjølhus, 1985, 1998). Typical transverse (to the

magnetic field) sizes of small-scale striations are a few meters up to tens of meters while their parallel

sizes are tens of kilometers due to the strongly anisotropic mobility of the electrons in the magnetic20

field (Kelley et al., 1995; Franz et al., 1999). The striations are typically associated with local density

depletions of the order 5–10%, and are observed to be separated by a few tens of meters. In in situ

measurements at Arecibo it was found that the spatial structure of the plasma density at large scales

across the magnetic field is due to organization of the small-scale striations into bunches of a few
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hundred meters across (Franz et al., 1999; Gurevich et al., 1998). At high latitudes, optical emissions25

show self-organization into filaments of a few kilometers across during pumping in magnetic zenith

(Kosch et al., 2007; Leyser and Nordblad, 2009).

The small-scale striations result from pump-driven UH waves, which as the thermal instability

develops become self-localized in the density depletions of the striations (Vas’kov and Gurevich,

1976; Inhester et al., 1981; Vas’kov and Gurevich, 1984; Gurevich et al., 1995a; Istomin and Leyser,30

1997). This occurs at altitudes where the pump frequency is below the UH frequency outside the

plasma depletion but above the local UH frequency in a region inside the depletion. Large amplitude

UH waves are excited at altitudes where the resonance frequency of the trapped UH waves equals

the transmitted frequency (Dyste et al., 1982; Mjølhus, 1998; Eliasson and Papadopoulos, 2015).

However, it is theoretically predicted that the localized UH oscillations are not perfectly trapped in35

the depletions but radiate electromagnetic waves in the Z mode branch that escape from the striations

(Dyste et al., 1982; Mjølhus, 1983).

The electromagnetic interaction of several striations was first studied in the Wentzel–Kramers–

Brillouin (WKB) approximation for the localized UH field, which showed that the coupling depends

crucially on the phasing of the mean Z mode wave between the striations (Mjølhus, 1983). One-40

dimensional theory predicts that the Z mode leakage from a single striation is so strong that a stri-

ation cannot be excited with presently available pump transmitter powers (Gurevich et al., 1995b).

However, it is proposed that in a system of parallel striations there would be partial influx of Z mode

waves to a given depletion from neighboring striations, to partly compensate for the Z mode leak-

age and thus enable excitation of striations with the available pump power. It has been proposed45

(Gurevich et al., 1996) that for a system of about 40 striations, the total Z mode leakage and the

damping by collisions are of the same order.

Using a scale separation technique, the amplitude of the Z mode wave has been obtained ana-

lytically in terms of eigenfunctions of the localized UH field in a single density depletion in one

dimension (Hall and Leyser, 2003). Several scattering processes are included. The electromagnetic50

ordinary mode pump wave scatters off the density depletion into localized UH oscillations. For a

symmetric striation in one dimension, the pump wave only excites UH modes with the wave electric

field being an even function in space, while odd modes are not excited (Mjølhus, 1998). The UH

oscillations in turn scatter off the cavity into Z mode waves, which also can scatter off the depletion

into localized UH oscillations. The theory (Hall and Leyser, 2003) also includes the scattering of the55

pump wave directly into Z mode waves on the density depletion. For a system of density cavities

(Istomin et al., 2006; Hall et al., 2009), the scattering of the pump wave directly into Z mode waves

leads to the excitation of odd UH modes for an asymmetric distribution of one-dimensional cavities,

although the original pump field and the depletions are symmetric. The system of striations is thus

electromagnetically coupled by the radiation of Z mode waves out from the striations and the influx60

2



from neighboring striations and the strongly inhomogeneous UH turbulence is embedded in a sea of

Z mode waves.

However, in ionospheric radio wave experiments the transverse profiles of the striations are be-

lieved to be two-dimensional and axisymmetric, rather than one-dimensional. As this case corre-

sponds to odd UH resonances in one dimension, the analytic one-dimensional results has been65

used for a first two-dimensional treatment. It is predicted that the Z mode leakage is significantly

weaker for a two-dimensional distribution of parallel striations compared to the one-dimensional

case (Istomin et al., 2006; Hall et al., 2009). This is because the odd UH modes in two dimensional

cavities correspond to dipole distributions of the localized fields while the even modes in the one-

dimensional case correspond to monopole field distributions. The weaker dipole radiation of the70

UH field compared to the monopole radiation of even modes results in weaker Z mode leakage and

therefore larger UH amplitude in the two-dimensional case.

The aim of this paper is to investigate numerically the linear mode conversion of an O mode wave

to UH waves on clusters of two-dimensional striations, and how the leakage of Z mode waves affects

the amplitude of the trapped UH waves. Both large and small amplitude striations are considered, and75

the influence of the size of striation clusters on the amplitude of the trapped UH waves is investigated.

Section II describes the mathematical model used in the numerical work. The properties of trapped

electrostatic UH oscillations in a single striation are discussed in Section III, while the coupling to

Z mode waves in clusters of striations are numerically investigated in Section IV. Finally, the results

are discussed and conclusions are drawn in Section V.80

2 Mathematical model

An O mode polarized continuous wave injected into the overhead ionosphere along the magnetic

field lines will excite UH resonances at quantized heights (Mjølhus, 1998; Eliasson and Papadopoulos,

2015) where the transmitted frequency matches one of the local resonances of the UH waves trapped

in the striations. This leads to the excitation of large amplitude UH waves and to anomalous absorp-85

tion of the O mode wave. When an O mode wave propagates parallel to the ambient magnetic field,

it is in the form of a left-hand circularly polarized (L) mode wave with its electric field directed

perpendicularly to the ambient magnetic field. For simplicity we do not take into account the effects

of the vertical stratification of the plasma on the propagation of the L mode or on the interaction with

the striations. The L mode wave is instead represented by an externally imposed left-hand polarized90

dipole electric field ẼL = ẼL(x̂− iŷ), where x̂ and ŷ are unit vectors in the x- and y-directions. We

use a two-dimensional simulation geometry in the x-y plane, transverse to the ambient magnetic field

B0 = ẑB0, where ẑ is the unit vector along the z-axis. The simulation box size is 200m in both the

x- and y-directions for simulations using 1 striation, while somewhat larger box sizes of 250m and

300m, respectively, are used for clusters of 7 and 19 striations (cf. Fig. 3 below). A pseudo-spectral95
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method is used to calculate derivatives in space accurately, and a 4th-order Runge-Kutta scheme is

used to advance the solution in time.

Superimposed on the background electron and ion density are magnetic field aligned small-scale

striations that are associated with localized density depletions at a fraction of the background density.

The total ion density is of the form n(r) = n0 +ns(r), where100

ns(r) =−αn0
∑

j

exp

[
− (x−xj)

2

D2
str

− (y− yj)
2

D2
str

]
(1)

describes the ion density profiles of the striations, (xj ,yj) is the central position of each striation, α

is the relative amplitude, n0 is the background ion number density, and Dstr is the transverse size of

the striations.

The physics involves very disparate length-scales. The typical transverse size Dstr is a few me-105

ters, while the electromagnetic wave with a frequency of a few MHz has a local wavelength of a

few tens of meters, and UH waves trapped in the striations can have wavelengths of about a meter

or less. For the electromagnetic model, the different length-scales pose a challenge on the numer-

ical scheme, which has to resolve both the large and small scales, while using a sufficiently short

time-step ∆t to maintain stability due to the Courant condition determined by the smallest scale,110

∆t.∆x/c=∆y/c, where ∆x and ∆y are the grid sizes in the x- and y-directions, and c is the

speed of light in vacuum. The wavenumber, and hence the wavelength can be estimated by using

the UH dispersion relation. At the center of the large amplitude striations used in the numerical

work, the electron density is 90% of the ambient density, and therefore at the bottom of the stria-

tion, where the upper hybrid waves have the shortest wavelength, we can use the dispersion rela-115

tion ω2 = 0.9ω2
pe +ω2

ce +3v2Teκk
2 for the wave frequency ω, the electron plasma frequency ωpe,

electron cyclotron frequency ωce, electron thermal speed vTe, wavenumber k and a kinetic cor-

rection coefficient κ (defined below). Using, for example, the frequency equal to the ambient UH

frequency outside the striation, ω2 = ω2
pe +ω2

ce, and eliminating ω, we obtain 0.1ω2
pe = 3v2Teκk

2.

For the simulation parameters ωpe = 20.12× 106, vTe = 2.46× 105 m/s, and κ≈ 2.5, we solve for120

the wavenumber to obtain k ≈ 9.4m−1, corresponding to an upper hybrid wavelength of 0.67m. In

order to resolve the UH waves with more than two grid points per wavelength, the grid sizes are

set to ∆x=∆y = 0.2m in all simulations except in Figs. 4 and 7, where ∆x=∆y = 0.4m were

used since the wave frequency was below the UH frequency and the wavelengths were longer. The

small grid-size puts a limit on the time-step. To relax the Courant condition, we here follow the125

strategy outlined by Eliasson (2013) and use a coarser resolution for the electromagnetic wave. In

doing so, the electric field E=EES +EEM is divided into one curl-free part EES =−∇ϕ primar-

ily associated with electrostatic waves, and one divergence free part EEM =−∂A/∂t associated

with electromagnetic waves, where ϕ and A are the scalar and vector potentials, respectively, and

using the Coulomb gauge ∇·A= 0. High Fourier components of the electromagnetic field E⊥130

and A, corresponding to the wave vector components kx and ky having magnitudes larger than a
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maximum wavenumber kmax, are set to zero. This corresponds effectively to representing the solu-

tion on a coarser grid ∆x=∆y = π/kmax. In order to resolve the electromagnetic wave, the value

of kmax has to be larger than the typical wavenumber of the electromagnetic wave. We choose

kmax ≈ 0.8m−1, while the shortest wavelength of the Z mode in the simulations is 15m, corre-135

sponding to a wavenumber of 0.4m−1, and hence the electromagnetic wave is well resolved. The

effective coarser grid size is ∆x=∆y = π/kmax ≈ 4m, and we can use about 10 times longer time

steps, making the simulations feasible on a standard single processor workstation. The time-step

used in the simulations using the electromagnetic models is ∆t= 5× 10−9 s, while for simulations

using an electrostatic model, the time-step is essentially limited by the inverse of the upper hybrid140

frequency and is taken to be ∆t= 5× 10−8 s.

The HF component of the electric field is assumed to take the form E= (1/2)(Ẽ(z, t)exp(−iω0t)+

Ẽ∗(z, t)exp(iω0t)), where Ẽ represents the slowly varying complex envelope of the HF field, and

ω0 is the transmitted frequency of the L mode wave, and the asterisk denotes complex conjugation.

Similar assumptions are made for the HF magnetic field, scalar potential, and the electron density145

and velocity fluctuations, which are linearly coupled to the HF electric field. Hence, the time deriva-

tives on the fast timescale are transformed as ∂/∂t→ ∂/∂t− iω0 in the governing equations for the

envelopes of the HF fields. We assume that the HF current is carried by the electrons, while the ions

are stationary and contribute only to the neutralizing background and to the density profiles of the

striations. The complex-valued envelopes of the electromagnetic fields are then obtained from the150

linearized evolution equations

∂Ã

∂t
= iω0Ã− ẼEM (2)

and

∂ẼEM

∂t
= iω0ẼEM − c2∇2Ã− e

ε0
∇−2∇× [∇× (nṽe)], (3)

where e is the magnitude of the electron charge and ε0 is the electric vacuum permittivity. Here,155

∇−2 denotes the inverse of the Laplacian operator, which is efficiently calculated in Fourier space

using a pseudospectral method. The envelope of the electrostatic field is ẼES =−∇ϕ̃, where the

scalar potential ϕ̃ is obtained from Poisson’s equation

∇2ϕ̃=
e

ε0
ñe. (4)

The HF electron dynamics is governed by the electron continuity and momentum equation160

∂ñe
∂t

= iω0ñe −∇ · (nṽe) (5)

and

∂ṽe

∂t
= iω0ṽe −

e

me

(
Ẽ+ ẼL + ṽe ×B0

)
− 3v2Te

n
κ∇ñe − νeṽe, (6)
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respectively, where Ẽ= ẼES + ẼEM is the self-consistent electric field, me is the electron mass,

νe is the effective electron collision frequency due to collisions with neutrals and ions, vTe =165

(kBTe/me)
1/2 is the electron thermal speed, Te is the electron temperature, and kB is Boltzmann’s

constant. The coefficient κ= ω2
0/(ω

2
0 − 4ω2

ce), where ωce = eB0/me is the electron cyclotron fre-

quency, is a dispersive effect derived from kinetic theory (Lominadze, 1981; Istomin and Leyser,

2013), in which the UH wave is one of many electron Bernstein modes. For ω0 < 2ωce, the UH

wave changes topology and becomes a backward wave as part of the first electron Bernstein mode,170

and in this case the UH waves are not trapped in density depletions. We use ω0/ωce ≈ 2.5 in the nu-

merical treatment below. To absorb the escaping Z mode radiation, an absorbing layer is introduced

near the boundaries; see Appendix A for details.

3 Trapped upper hybrid modes in a single striation

In the electrostatic limit, the system behaves as a Sturm-Liouville problem which allows a set of un-175

driven standing UH wave trapped in the striations with resonance frequencies below the ambient UH

frequency. To investigate these resonances, we employ Eqs. (4)–(6) in the electrostatic (ẼEM = 0

and Ã= 0) and collision-less (νe = 0) limits with no driving field (ẼL = 0). We assume the solution

to be proportional to exp(iδωt), so that ∂/∂t→−iδω where δω is a frequency shift, and denote the

total frequency ω = ω0 + δω. Eliminating ñe and ṽe from Eqs. (4)–(6) gives180

3v2Teκ∇2ϕ̃+ω2

[(
1−Y 2 −X

n

n0

)
ϕ̃− ψ̃

]
= 0 (7)

where X = ω2
pe/ω

2, Y = ωce/ω, and ψ̃ is defined via

∇2ψ̃+X

[
∇·

(∇n
n0

ϕ̃

)
+ iY ẑ ·

(∇n
n0

×∇ϕ̃
)]

= 0. (8)

In the ambient plasma where n= n0, we have in the long wavelength limit ∇= 0 so that 1−Y 2 −
X = 0, or ω2 = ω2

UH , where ωUH = (ω2
pe +ω2

ce)
1/2 is the UH resonance frequency and ωpe =185

(n0e
2/(ϵ0me))

1/2 is the electron plasma frequency. UH waves with ω < ωUH can be trapped in

striations where n < n0 locally in space (provided ω > 2ωce). In this case ω works as an eigenvalue

for the set of eigenfunctions ϕ̃ and ψ̃.

We next restrict the investigation to one cylindrically symmetric striation centered at x= y = 0.

Introducing cylindrical coordinates x= r cosθ and y = r sinθ, we assume that the potential is of190

the form ϕ̃(r,θ) = Φ̃(r)exp(iNθ) and ψ̃(r,θ) = Ψ̃(r)exp(iNθ), where N = 0,±1,±2, ... are az-

imuthal mode numbers, and the background plasma density n(r) depends only on the radial coordi-

nate r. Inserted into Eqs. (7) and (8), this leads to the system

3v2Teκ

r2

[
r
∂

∂r

(
r
∂Φ̃

∂r

)
−N2Φ̃

]
+ω2

[(
1−Y 2 −X

n

n0

)
Φ̃− Ψ̃

]
= 0 (9)
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Figure 1. (a) The frequency spectrum of UH oscillations (arbitrary units) at the center of a deep striation (α=

0.1), obtained from an electrostatic simulation using a short driving pulse at the beginning of the simulation

to excite oscillations. (b)–(c): Resonances indicated by circles, showing the eigenfrequencies ω and azimuthal

mode numbers N for (b) the coupled system (9)–(10), and (c) the Schrödinger equation (13). For each azimuthal

mode number, there exist one or more radial modes enumerated by the mode number R with R= 1 having the

lowest frequency. Small azimuthal mode numbers N are associated with larger numbers of radial modes. The

vertical dash-dotted and dashed lines indicate the local UH frequency at the center of and outside the striation,

respectively, and vertical solid lines connect the spectral peaks in (a) with the resonances for N =−1 in (b).

(d)–(j): Spatial profiles (arbitrary units) of the radial eigenmodes R= 1, . . . , 7 for the azimuthal mode number

N =−1 in panel (b) for trapped UH waves. The eigenmodes have the number of extrema equal to the radial

mode number R.

and195

r
∂

∂r

(
r
∂Ψ̃

∂r

)
−N2Ψ̃+X

(
r
∂

∂r
−Y N

)(
r

n0

∂n

∂r
Φ̃

)
= 0. (10)
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Figure 2. (a) The frequency spectrum (arbitrary units) of UH oscillations at the center of a shallow striation

(α= 0.01). (b)–(c): Resonances indicated by circles, showing the eigenfrequencies ω and azimuthal mode

numbers N for (b) the coupled system (9)–(10) and (c) the Schrödinger equation (13). The vertical dash-dotted

and dashed lines indicate the local UH frequency at the center of and outside the striation, respectively, and a

vertical solid line connects a spectral peak in (a) with the resonance for N =−1 in (b). (d)–(h) Spatial profiles

(arbitrary units) of the radial eigenmodes corresponding to the resonances [cf. panel (b)], for trapped UH waves.

The term proportional to Y N in Eq. (10) shows that the symmetry is broken between positive and

negative azimuthal mode numbers in the presence of an ambient magnetic field. Appropriate bound-

ary conditions for N ̸= 0 are Φ̃ = 0 and Ψ̃ = 0 at r =∞ and at r = 0. For N = 0, the boundary

condition for Φ at r = 0 can be taken ∂Φ̃/∂r = 0, while Eq. (10) reduces to200

∂Ψ̃

∂r
+
X

n0

∂n

∂r
Φ̃ = 0, (11)
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and it is only possible to impose the boundary condition Ψ̃ = 0 at r =∞, giving

Ψ̃ =

∞∫

r

X

n0

∂n

∂r
Φ̃dr, (12)

which is used to eliminate Ψ̃ in Eq. (9).

To lowest order, neglecting terms containing derivatives of n (hence setting Ψ̃ = 0), we have have205

from Eq. (9) the time-independent, cylindrical Schrödinger equation

3v2Teκ

r2

[
r
∂

∂r

(
r
∂Φ̃

∂r

)
−N2Φ̃

]
+ω2

(
1−Y 2 −X

n

n0

)
Φ̃ = 0, (13)

which is a simplified model for trapped UH waves in a cylindrically symmetric striation.

The solution of the eigenvalue problem provides a set of eigenfrequencies ω = ω1, ω2, . . ., and

corresponding trapped waves for ωj < ωUH . By choosing the pump frequency equal to one of the210

resonances, ω0 = ωj , the respective UH mode is pumped resonantly. First, simulations of Eqs. (4)–

(6) are carried out in the electrostatic limit (EEM = 0 and A= 0) and are compared with solutions

of the time-independent systems (9)–(12) and (13), and the results are presented in Figs. 1 and 2.

Details of the numerical methods used to solve the time-independent equations are given in Appendix

B. We consider one case of a deep striation with a relatively deep striation with α= 0.1 (Fig. 1) and215

one case of a shallow striation with α= 0.01 (Fig. 2). In both cases, the striation has the transverse

size Dstr = 2m. We use the ambient plasma parameters Te = 4000K, B0 = 4.8×10−5T and n0 =

1.272×1011m−3, giving vTe = 2.46×105m/s, ωce = 8.44×106 s−1, ωpe = 20.12×106 s−1, and

ωUH = 21.82×106 s−1. We use κ= 2.67 in all cases. To excite UH oscillations in the simulations, a

short driving pulse of the form ẼL(t) = EL0 sin(πt/2×10−5) for 0≤ t≤ 2×10−5 s and ẼL(t) = 0220

for t > 2× 10−5 s with frequency ω0 = 21.35× 106 s−1 and the reference amplitude EL0 = 1V/m

is used to excite UH oscillations at the beginning of the simulations.

Figure 1a shows the spectrum of trapped electrostatic oscillations in a single deep striation with

α= 0.1. Here, the plasma density at the center of the striation is 10% lower than the ambient density,

leading to the local plasma and UH frequencies ωpe = 19.09×106 s−1 and ωUH = 20.87×106 s−1,225

respectively. Hence, the frequencies of the trapped UH waves are clamped between 20.87× 106 s−1

and 21.82× 106 s−1, indicated by vertical dash-dotted and dashed lines in Figs. 1a–c. The total

simulation time is 5ms, which gives reasonable frequency resolution of the wave spectrum. The

wave energy is concentrated to frequencies correlated with the eigenfrequencies (resonances) of the

system (9)–(10) shown in Fig. 1b. As a comparison, the spectrum for the Schrödinger equation (13) is230

shown in Fig. 1c. The spectral peaks in Fig. 1a are closely aligned with the resonances corresponding

toN =−1 of the system (9)–(10) in Fig. 1b, as indicated by vertical lines. The spatial profiles of the

radial eigenmodes for the azimuthal mode number N =−1 are shown in Figs. 1d–i. Eigenmodes

with higher radial mode numbers R correspond to higher eigenfrequencies (but below the ambient

UH frequency), they have larger number of extrema, their largest amplitude is at the outer edge235
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of the striation, and they are less localized in space since their frequencies are closer to ωUH . In

a similar manner as for one-dimensional striations (Mjølhus, 1998), the number of resonances in

two-dimensional striations can be roughly estimated (using the Schrödinger equation) as

M =
1

12πκλ2Den0

∫ ∫
(−ns)dxdy =

αD2
str

12κλ2De

. (14)

For the used plasma parameters α= 0.1, Dstr = 2m, κ= 2.67, and λDe = 1.22× 10−2m, we have240

M = 84, to be compared with the 82 and 81 resonances found in Fig. 1b and c, respectively. Hence,

the number of trapped eigenmodes is relatively large and forms more or less a continuum of waves

in the deep striation.

In contrast, the shallow striation has only a few resonances, as seen in Fig. 2b and c, and only

two peaks with ω < ωUH are visible in the frequency spectrum in Fig. 2a. For the shallow striation,245

the local plasma and UH frequencies at the center of the striation are ωpe = 20.02× 106 s−1 and

ωUH = 21.73× 106 s−1, respectively. Hence, for this case the frequencies of the trapped UH waves

are between 21.73×106 s−1 and 21.82×106 s−1, indicated by vertical dash-dotted and dashed lines

in Fig. 2a–c. Visible in Fig. 2a are two discrete peaks for ω < ωUH , roughly correlated with the

resonances for N =±1 in Fig. 2b, while a continuum of frequency components corresponding to250

un-trapped waves waves is visible in Fig. 2a for ω > ωUH . The radial profiles of the trapped modes

in Fig. 2d–h are relatively extended in space since the resonance frequencies are close to ωUH .

Figure 3. Close-ups of the density profiles associated with density striations for 1, 7 and 19 striations [panels

(a)–(c)] organized in a hexagonal pattern in the x-y plane. The central distances between nearest neighbor

striations is 24.53m.
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Figure 4. Simulations using a deep striation with α= 0.1, excluding collisions (top) and including collisions

with νe = 10
3
s
−1 (bottom), showing the electromagnetic (EM) field amplitude associated with Z mode waves

[panels (a) and (c)] and electrostatic (ES) amplitude associated with UH waves [panels (b) and (d)]. The driving

frequency ω0 is set equal to resonant frequency 21.127× 10
6
s
−1 corresponding to the lowest radial mode

for N =−1 and R= 1 in Fig. 1(b). The dashed lines in panels (b) and (d) show the result of electrostatic

simulations.

Figure 5. The amplitude of the electromagnetic waves at t= 5ms for a deep striation with relative depth α=

0.1, showing Z mode waves propagating away from the striation. The wavelength of the Z mode is λ≈ 59.23m

at frequency ω0 = 21.127× 10
6
s
−1.
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4 Coupling to Z mode waves in clusters of striations

We next carry out a set of simulations using a continuous wave (CW) driving L mode wave in clusters

of striations to investigate the mode conversion of the L mode wave to UH waves, and the coupling255

to Z mode waves. Figure 3 shows the background ion number density for cases with 1, 7 and 19

striations with transverse size Dstr = 2m, where groups of striations are organized in hexagonal

patterns. The chosen central distance ≈ 25m is consistent with the rocket experiment at Arecibo

1992, where a rocket was flown through the heated region (Kelley et al., 1995; Franz et al., 1999).

Franz et al. (1999) mention a mean spacing between the filaments across the magnetic field along260

the path of the satellite to be s= 45 m. This is roughly supported by the mean distance between

filaments seen in their Fig. 1 and the one-dimensional spectrum in their Fig. 2 which has a spectral

break at k ≈ 0.15m−1 corresponding to a perturbation wavelength of about 40m. The mean width

of the striations at half maximum was measured to be w = 15m. Then the number of striations per

unit area can be estimated to be ns = 1/(ws), and the mean distance between striations in the plane265

perpendicular to the magnetic field d= 1/
√
ns =

√
ws≈ 26m.

Figures 4 and 5 show the results of simulations using 1 deep striation with α= 0.1. The reference

amplitude of the L mode is ẼL = EL0 = 1V/m, and the driving frequency ω0 = 21.127× 106 s−1,

corresponding to the resonance frequency for N =−1 and R= 1 in Fig. 1b. Simulations are carried

out using the fully electromagnetic model and an electrostatic model (setting Ã and Ẽ⊥ to zero),270

and for cases without collisions (νe = 0) and with collisions (νe = 103 s−1). For the collision-less

case (top panels in Fig. 4), the electrostatic field shown in Fig. 4b increases linearly with time to

almost 103EL0 at t= 5ms. The simulations including collisions (bottom panels) show a saturation

amplitude of the electrostatic field at about 300EL0 (Fig. 4d). Figure 5 shows Z mode waves escaping

the striation and propagating to the simulation boundaries where they are absorbed. By using the cold275

plasma dispersion relation for X mode waves,

c2k2 =
(ω2

0 −ω2
pe)

2 −ω2
ceω

2
0

ω2
0 −ω2

UH

, (15)

the wavelength λ= 2π/k of the escaping Z mode wave is estimated to be λ≈ 59.23m. However, as

seen in Fig. 4b and d, there is only a slight difference in the electrostatic wave amplitude between

the electrostatic and fully electromagnetic simulations. Hence, for the deep striation, the Z mode280

leakage plays only a minor role for the UH amplitude, and collisions are more important. If the driv-

ing L mode amplitude EL0 would be of the order 1V/m, the UH wave amplitudes would rapidly

exceed the threshold for nonlinearity, which is only a few V/m for ionospheric conditions. In a non-

linear model, the large amplitude UH waves would excite parametric wave couplings to lower hybrid

waves (see e.g. Ref. (Litvak et al., 1983) for laboratory conditions and Refs. (Gurevich et al., 1997;285

Istomin and Leyser, 1998; Mjølhus, 1998) ionospheric conditions), and the profile of the striation

would be modified by the heating of the plasma.
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Figure 6. The time development of the amplitudes of the electromagnetic field [panel (a)] associated with Z

mode waves and electrostatic field [panel (b)] associated with trapped UH waves, for 1, 7 and 19 deep striations

(solid, dashed and dash-dotted lines, respectively) with α= 0.1. The amplitude of the external wave electric

field ẼL is indicated with dotted lines. The results of purely electrostatic simulations are shown in panel (c).

Simulation results using a short driving pulse are shown in Fig. 6 for clusters using 1, 7 and 19

deep striations with α= 0.1. In the simulations we use the reference amplitude ẼL = 1V/m of the

external L mode wave, with a rise time of about 10−5s, indicated with dotted lines in Fig. 6. We290

choose the pump frequency ω0 = 21.35× 106 s−1, which is equal to the local UH frequency at the

edge of the striation where the plasma density is 95% of the ambient density. A number of different

scattering processes (Hall and Leyser, 2003) can be identified in Fig. 6. The L mode is converted to

UH waves trapped in the striations, which gives a rapid growth of the electrostatic field in Fig. 6b.

As seen in Fig. 6a, the electromagnetic wave amplitude rises initially on the same fast time-scale as295

the pump wave, which indicates that the pump is also scattered directly to Z mode waves. Visible in

Fig. 6b are oscillations in the amplitude of the UH wave with a typical periodicity of 0.5-1×10−4 s.

These oscillations are consistent with groups of trapped UH waves being reflected off the edges

of the striations. This can be understood by using a one-dimensional ray-tracing picture of the UH

wave, whose wave frequency ω and wavenumber k are related through300

ω2 = ω2
pe

(
1+

ns(x)

n0

)
+ω2

ce +3κv2Tek
2 (16)

A wavepacket at position x(t) with wavenumber k(t) obeys approximately the equations of motion

dx

dt
=
∂ω

∂k
=

3κv2Tek

ω
(17)

dk

dt
=−∂ω

∂x
=−

ω2
pe

2ωn0

∂ns

∂x
=−

ω2
pe

2ωn0

αx

D2
str

exp

(
− x2

D2
str

)
(18)305

13



This coupled system for the wave packet describes a nonlinear classical oscillator. For small oscilla-

tions x2/D2
str < 1, the equations can be combined to the harmonic oscillator equation

d2x

dt2
=−Ω2x (19)

where the oscillation frequency is

Ω=
√
3κα

ωpe

ω

vTe

Dstr
. (20)310

Using the plasma parameters vTe = 2.46× 105m/s, ω = 21.82× 106 s−1, κ= 2.5, α= 0.1 and

Dstr = 2m gives Ω= 105 s−1 with a periodicity of 2π/Ω≈ 0.6× 10−4 s. This periodicity is con-

sistent with the typical modulation periods of the UH oscillations in Fig. 6. While there are some

small but visible differences in the time-development for different numbers of striations using the

fully electromagnetic model in Fig. 6a, b, there is almost no difference between the different cases315

using the purely electrostatic model in Fig. 6c. Hence, as expected, the coupling between striations

is through Z mode radiation.

The Z mode leakage is more significant for shallow striations. Figure 7 shows the amplitudes of

the electromagnetic and electrostatic fields for simulations using clusters of 1, 7 and 19 striations

having the relative depth α= 0.01. The driving frequency ω0 = 21.7858× 106 s−1 for the electro-320

magnetic simulations in Figs. 7a,b is near that of the N =−1 and R= 1 mode in Fig. 2b, which

drives the mode resonantly. A purely electrostatic simulation shown as the dotted line in Fig. 7b,

d uses a slightly higher frequency of ω0 = 21.799× 106 s−1, which drives the purely electrostatic

mode resonantly. The main result of the simulations is that a larger number of striations organized

in a cluster leads to a larger amplitude of the UH wave. As seen in Fig. 7b, the electrostatic wave325

amplitude reaches 7EL0 for 1 striation, 23EL0 for 7 striations, and 75EL0 for 19 striations. Hence,

the amplitude increases about a factor 3 for each layer of striations in the cluster. The larger ampli-

tudes of the UH oscillations for larger clusters is due to influx of Z mode radiation from neighboring

striations within the cluster, which partially compensates the Z mode leakage and leads to a longer

confinement time of the wave energy for a larger number of striations in the cluster. For the slightly330

higher frequency used in Fig. 7c,d, the electrostatic amplitude in Fig. 7d is almost the same as in Fig.

7b for 1 striation, while it is significantly lower in Fig. 7d for the less damped case of 19 striations.

The amplitudes of the electromagnetic wave fields at t= 5ms (Fig. 8) show the influence of

groups of shallow striations with α= 0.01 on the radiation field. Here the distance between nearest

neighbor striations is 24.53m and the wavelength λ= 2π/k of the Z mode is estimated using the335

dispersion relation (15) to be λ≈ 13.46m. The most important observation is that for the larger clus-

ter of 19 striations, shown in Fig. 8c, the amplitude of the radiated field is relatively small compared

to the field within the cluster of striations.
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Figure 7. Simulations using shallow striations (α= 0.01) and a collision-less model (νe = 0) showing the

electromagnetic (EM) field amplitude associated with Z mode waves [panels (a) and (c)] and electrostatic (ES)

amplitude associated with UH waves [panel (b) and (d)] using a pump frequency of ω0 = 21.7848s−1 [panels

(a) and (b)] and a slightly higher frequency ω0 = 21.7858s−1 [panels (c) and (d)], for 1 striation (solid lines),

7 striations (dashed lines) and 19 striations (dash-dotted lines). The wave frequency for the electromagnetic

simulations was set to ω0 = 21.786× 10
6
s
−1. The dotted line in panels (b) and (d) shows the result of an

electrostatic simulation on the resonant frequency ω0 = 21.799× 10
6
s
−1, corresponding to the lowest radial

mode for N =−1 and R= 1 in Fig. 2b.

5 Conclusions

The mode conversion of an L mode wave to UH waves on small-scale striations has been investi-340

gated with numerical simulations. In particular we have addressed how the amplitude of the trapped

UH wave depends on the leakage to Z mode waves escaping the striation. The leakage to Z mode

waves is important for small amplitude striations and may arrest the growth of the striations. The

Z mode leakage is inhibited in groups of striations by multiple scattering of the Z mode wave. In

clusters of striations, the Z mode leakage is inhibited by multiple scattering of the Z mode and UH345

waves on striations. In this case, the UH wave may reach significant amplitude, beyond the threshold

for parametric instabilities leading to UH and lower hybrid turbulence, and to thermal instabilities

further enforcing the striations. For large amplitude striations, the mode conversion to UH waves

is more efficient and the Z mode leakage is less important. In this case the UH amplitude quickly

15



Figure 8. The amplitude of the electromagnetic waves at t= 5ms for different configurations of striations

(cf. Fig. 3) for shallow striations with relative depth α= 0.01, showing significant Z mode leakage for 1 striation

[panel (a)], but less Z mode radiation for 7 striations [panel (b)] and 19 striations [panel (c)]. The separation

between nearest neighbor striations is 24.53m, while the wavelength of the Z mode is λ≈ 13.46m.

reaches the threshold for nonlinearity and other processes than Z mode leakage become more im-350

portant. The present study is relevant for ionospheric high frequency pump experiments, where the

anomalous absorption of O and L mode waves on field-aligned striations is important and the stria-

tions are observed to be clustered in bunches a few hundred meters to kilometers across (Franz et al.,

1999; Kosch et al., 2007). The self-consistent formation of clusters of striations and the nonlinear

evolution of the system in the presence of Z mode leakage are interesting questions which we hope to355

address in future works. In particular, large amplitude UH waves exceeding the threshold for nonlin-

earity leads to upper hybrid and lower hybrid turbulence (Litvak et al., 1983; Gurevich et al., 1997;

Istomin and Leyser, 1998; Mjølhus, 1998), which would dynamically change the spatial profiles of

the striations and the resonance conditions for the partially trapped UH waves.

Appendix A: Absorbing layer near boundaries360

To absorb escaping Z mode waves, an absorbing layer is introduced near the simulation boundaries.

A naive implementation by increasing the electron collision frequency νe near the boundary in Eq.

(6) artificially excites electromagnetic waves near the boundary, since the dipole field ẼL accelerates

the electrons, giving a zeroth-order current in the whole simulation domain. Therefore it is desirable

to first eliminate the zero-order current and to localize the external source to the striations, before365
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introducing the damping. In doing so, we introduce a change of the velocity variable, ṽe = ṽe1+ṽe0,

where ṽe1 is the new velocity variable and ṽe0 is the zeroth order electron velocity, defined via

iω0ṽe0 −
e

me

(
ẼL + ṽe0 ×B0

)
− νeṽe0 = 0. (A1)

In this manner, the external source ẼL is eliminated from Eq. (6), which now reads

∂ṽe1

∂t
= iω0ṽe1 −

e

me

(
Ẽ+ ṽe1 ×B0

)
− 3v2Te

n
κ∇ñe − νeṽe1, (A2)370

and new source terms via ṽe0 are instead introduced into Eqs. (3) and (5), giving

∂ẼEM

∂t
= iω0ẼEM − c2∇2Ã− e

ε0
∇−2∇×{∇× [n(ṽe1 + ṽe0)]}, (A3)

and

∂ñe
∂t

= iω0ñe −∇ · [n(ṽe1 + ṽe0)], (A4)

respectively. Solving for ṽe0 in Eq. (A1) gives375

ṽe0 =− 1

(ω0 + iνe)2 −ω2
ce

e

me

[
i(ω+ iνe)ẼL +

e

me
ẼL ×B0

]
. (A5)

The source terms are now effectively localized around the striations, since the spatial derivatives of

nṽe0 in the right-hand sides of Eqs. (A3) and (A4) vanish far away from the striations. As a last step,

the collision frequency νe is increased near the boundaries only in the momentum equation (A2). In

the simulations of the electromagnetic model, a term ω0 exp[−(r−Lx/2)
2/152] for r < Lx/2 and380

ω0 for r ≥ Lx/2 is added to νe in Eq. (A2), where r =
√
x2 + y2 is the radial coordinate and Lx is

the width of the simulation domain.

Appendix B: Calculation of resonance frequencies and profiles of trapped UH waves

To calculate the resonance frequencies in Fig. 1b,c and 2b,c for different azimuthal and radial modes

of the system (9)–(10) or of Eq. (13), we rewrite Eqs. (9)–(10) as385

1

r

∂

∂r

(
r
∂Φ̃

∂r

)
− N2

r2
Φ̃−

ω2
pe

3v2Teκ

(
n

n0
− 1

)
Φ̃− ω2

3v2Teκ
Ψ̃−λ= 0, (B1)

1

r

∂

∂r

(
r
∂Ψ̃

∂r

)
− N2

r2
Ψ̃+

X

r2

(
r
∂

∂r
−Y N

)(
r

n0

∂n

∂r
Φ̃

)
−

(ω2 −ω2
pe −ω2

ce)

3v2Teκ
−λ= 0, (B2)

and Eq. (13) as

1

r

∂

∂r

(
r
∂Φ̃

∂r

)
− N2

r2
Φ̃−

ω2
pe

3v2Teκ

(
n

n0
− 1

)
Φ̃−λ= 0, (B3)390

where λ=−ω2(1−X−Y 2)/(3v2Teκ) =−(ω2−ω2
pe−ω2

ce)/(3v
2
Teκ) is treated as an eigenvalue of

the system. Once λ is found, the wave frequency is obtained as ω =
√
ω2
pe +ωce2 − 3v2Teκλ. The
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two last terms in the left-hand side of Eq. (B2), which will add up to zero, have been added to cast

Eq. (B2) as an eigenvalue problem of the same form as Eq. (B1).

The next step is to convert the ordinary differential equations into coupled algebraic equations,395

which is done by discretizing the variables Φ̃ and Ψ̃ on an equidistant grid r = rj = j∆r with

j = 0,1, . . . ,M and grid size ∆r, such that Φ̃(rj)≈ Φ̃j and Ψ̃(rj)≈ Ψ̃j , and using centered dif-

ference approximations of the spatial derivatives, for example ∂Φ̃/∂r ≈ (Φ̃j+1− Φ̃j+1)/(2∆r) and

∂2Φ̃/∂r2 ≈ (Φ̃j+1 − 2Φ̃j +Φ̃j+1)/∆r
2. Typical numerical parameter values used were M = 400

and δr = 0.1 m. The boundary conditions forN ̸= 0, e.g. Φ̃0 = 0, Ψ̃0 = 0, Φ̃M = 0, and Ψ̃M = 0 are400

used to eliminate Φ̃0, Ψ̃0, Φ̃M , and Ψ̃M from the system. The continuous boundary value problems

are then converted into standard matrix eigenvalue problems of the form (A−λI)V = 0, whereA is a

sparse matrix representing an approximation of the differential equations, λ is the eigenvalue, I is the

unit matrix, and V is the eigenvector containing Φ̃j and Ψ̃j . For the system (B1)–(B2) the unknowns

are organized as a column vector V = [Φ̃1 Ψ̃1 Φ̃2 Ψ̃2 · · · Φ̃M−1 Ψ̃M−1]
T (where T denotes the trans-405

pose of the matrix) and for Eq. (B3), the unknowns are organized as V = [Φ̃1 Φ̃2 · · · Φ̃M−1]
T . The

system has in total M − 1 eigenvalues and eigenvectors, but eigenvalues that are of interest are only

those that are real-valued and positive, which give oscillation frequencies ω smaller than the ambient

UH frequency and to trapped UH waves. The eigenvalue problem can be solved numerically with

any standard package: We used Matlab’s ’eigs’ function, which gives both the eigenvalues and the410

corresponding eigenvectors. For Eq. (B3), a numerical solution of the eigenvalue problem gives im-

mediately the frequencies of the trapped eigenmodes. For the system (B1)–(B2), an approximation

of ω is first given as a starting estimate, which is used to calculate the values ofX and Y , after which

the eigenvalue problem is solved to find λ for the mode of interest. Then λ is used to calculate a new

value of ω, and the process is repeated until convergence.415

For the particular case of purely radial oscillations with N = 0, Eq. (B3) was solved as it stands,

whole we replaced Eq. (B2) by Eq. (12) to eliminate Ψ̃ in Eq. (B1). The integral was approximated

with the trapezoidal rule
∫
∞

r
f dr ≈ (fj/2+ fj+1 + fj+2 + . . .+ fM−1)∆r, where fj ≈ f(rj) =

(X/n0)[(∂n/∂r)Φ̃]r=rj . The approximation of the boundary condition at r = 0, ∂Φ̃/∂r ≈ (Φ̃1 −
Φ̃0)/∆r = 0, was used to eliminate Φ̃0 from the system.420
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