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a b s t r a c t

Variable angle tow (VAT) laminates have previously shown enhanced buckling performance compared to
conventional straight fibre laminates. In this study, an analytical method is developed for the buckling
analysis of a novel blade stiffened VAT panel to allow this potential to be more fully exploited. The pre-
buckling and buckling analysis, performed on a representative section of a blade stiffened VAT panel, are
based on a generalised Rayleigh–Ritz procedure. The buckling analysis includes a first order shear defor-
mation theory by introducing additional shape functions for transverse shear and is therefore applicable
to structures with thick skins relative to characteristic length. Modelling of the stiffener is achieved with
two approaches; idealisation as a beam attached to the skin’s midplane and as a rigidly attached plate.
Comparing results with finite element analysis (Abaqus) for selected case studies, local buckling errors
for the beam model and plate model were found to be less than 3% and 2% respectively, whilst the beam
model error for global buckling was between 3% and 10%. The analytical model provides an accurate
alternative to the computationally expensive finite element analysis and is therefore suitable for future
work on the design and optimisation of stiffened VAT panels.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades the ability to tailor the stiffness and strength
of composite structures has seen their increased use in aerospace
applications [1]. Traditional tailoring is achieved by treating the
fibre orientation of each ply as a variable and optimising the stack-
ing sequence for laminate performance. Recent advancements of
automated tape/fibre laying technologies has led to the possibility
of having variable angle tow (VAT) laminates where the fibre
orientation can change over the plane of a ply. This results in
laminates with varying in-plane and out-of-plane stiffnesses in
the xy-plane providing designers with additional degrees of free-
dom and tailorability. Previous research on VAT plates has shown
significant improvement in the stress distribution around holes
[2–4] and buckling and post-buckling performance [5–7]. Increases
in buckling load are primarily attributed to a redistribution of load
to boundaries where the structure is constrained in out-of-plane
displacement.

The majority of work to date on the design and optimisation of
VAT laminates has utilised finite element analysis (FEA). Although
relatively accurate, the fine meshes required to capture the mode
shapes makes FEA of VAT laminates computationally expensive
[8,9].

Recently, the differential quadrature method [10] and Rayleigh–
Ritz energy method [7] have been shown to be viable alternatives

to FEA which are accurate, robust and computationally efficient
and hence suitable for optimisation studies.

Although there has been a significant amount of research in the
area of VAT laminates, in most studies the application is limited to
simple geometries, i.e. plates and shells, with general boundary
conditions. A large gap exists between the current understanding
and analysis techniques of VAT and that required to apply a very
promising technology to practical structural configurations.

A potential application, exploiting the enhanced buckling per-
formance, is to use a VAT laminate as the skin of a stiffened panel.
Here, the VAT skin would redistribute in-plane loads to the stiffen-
ers which are then required to act as ‘panel breakers’ forcing a no-
dal line. Expected gains are an increased buckling performance
allowing the design of lighter structures.

Stiffened panels are commonly used on aircraft as primary
structures such as wing covers and fuselage panels [11]. Stiffened
panels typically consist of a plate braced by longitudinal stiffeners
and are an efficient configuration for carrying compressive loads,
particularly when buckling is a design driver as is the case for air-
craft wing covers [11]. A stiffened panel can fail via a variety of
mechanisms including skin-stiffener debonding [12], material
strength failure and buckling. Buckling failure predominantly
occurs in one of two modes as shown in Fig. 1; local, where the
stiffeners act as ‘panel breakers’ forcing the skin to buckle locally
between the stiffeners and global, where both plate and stiffeners
buckle out-of-plane. Confining the buckling mode to be local is
preferential to global as it, in general, leads to lighter designs
and greater post-buckling stiffness. The local mode’s higher

0263-8223/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compstruct.2013.12.029

⇑ Corresponding author. Tel.: +44 7869681735.

E-mail address: broderick.coburn@bristol.ac.uk (B.H. Coburn).

Composite Structures 111 (2014) 259–270

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2013.12.029&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2013.12.029
mailto:broderick.coburn@bristol.ac.uk
http://dx.doi.org/10.1016/j.compstruct.2013.12.029
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


post-buckling stiffness is due to the unbuckled stiffeners carrying
load in the post-buckling regime.

Buckling of stiffened panels has received considerable attention
dating as far back as 1921 by Timoshenko [13] who used the Ritz-
method to analyse isotropic longitudinally and transversely stiff-
ened plates subject to compression, shear and bending. Continued
interest in this field has seen many publications in the past century
with current research focussing heavily on composite stiffened
panels [14–30]. Local buckling analysis methods can be split into
three categories based on the consideration of the stiffener. The
first method treats the stiffener as a simple support which facili-
tates fast closed-form solutions to be obtained but assumes null
torsional restraint and hence underestimates the buckling load
[14]. The second method models the torsional restraint by replac-
ing the stiffener blade with an equivalent torsional spring or beam
attached to the skin’s midplane [15–20]. This method is often suf-
ficiently simple to obtain accurate closed-form solutions, however
is strictly only valid for an unloaded stiffener and assumes no stiff-
ener blade buckling or warping. Correction factors reducing the
effective restraint in the case of an axially applied load to the stiff-
ener have been proposed and provide improved solutions when
load is carried by the stiffener [16,17]. The third method models
both the skin and stiffener as plates [21,23,24] allowing local buck-
ling modes of the stiffener and the interaction between the skin
and stiffener to be captured. This higher fidelity approach has an
increased computational cost but provides a more robust solution
than the elastic restraint method.

The analysis of global buckling modes can be approached by
either replacing the stiffeners with an equivalent smeared layer
or by treating the stiffeners as discrete elements. The smeared ap-
proach [25,27] replaces the stiffeners with a distributed A-, B- and
D-matrix over the entire panel. This approach is only valid for wide
panels consisting of several closely spaced stiffeners. Alternatively,
treating the stiffeners as discrete elements enables local interac-
tion effects between the skin and stiffener to be captured and
has no restrictions on stiffener spacing [23,25–28]. This is com-
monly achieved by replacing the stiffener with a beam element at-
tached to the skin’s midplane.

In all approaches for both local and global buckling the Ray-
leigh–Ritz method is used extensively due to the ease of including
the stiffener into the formulation and applying boundary condi-
tions [13,19–26].

Several analysis and optimisation packages have been proposed
to solve the linear buckling problem for stiffened panels. PANDA2
[31] uses simple models for the prebuckling, buckling and post-
buckling of composite stiffened panels to obtain optimal solutions
under a variety of loading conditions. Local and general buckling
loads are calculated with the use of either closed-form expressions
or discretised models of panel cross sections. The VICONOPT pro-
gram [32] uses an exact finite strip theory for prismatic strips

where the boundary conditions at the ends are enforced using
either polynomial or trigonometric shape functions.

Most research on the buckling of stiffened panels idealises both
the skin and stiffener as thin plates neglecting transverse shear ef-
fects. However, stiffened panels in aerospace applications often
have thick skins, relative to characteristic length, where transverse
shear effects must be considered. For isotropic materials, a ratio of
thickness to characteristic length of 1/10 results in approximately a
5% error by neglecting transverse shear [33]. For composite mate-
rials the ratio of in-plane to transverse shear moduli can be a factor
of ten or more than isotropic materials and deformations due to
transverse shear become important at even lower ratios of thick-
ness to characteristic length [33,34].

Consideration of shear deformation was first proposed by Tim-
oshenko [35] for a one-dimensional beam and later extended to
plates by Reissner [36] and Mindlin [37]. The first order shear
deformation theory (FSDT) used by Timoshenko, Reissner and
Mindlin requires the use of a shear correction factor to approxi-
mate the distribution of transverse shear strain through the thick-
ness. A FSDT has successfully been incorporated into the buckling
analysis of sandwich structures and thick plates using Rayleigh–
Ritz energy methods by Libove and Bartdorf [38], Dawe and Roufa-
eil [39] and Ko and Jackson [40] by assuming shape functions for
the shear strain in the xz- and yz-direction.

The FSDT provides accurate solutions to moderately thick plates
and is therefore useful for practical cases of stiffened panels used in
aerospace applications, however it is strictly only applicable to iso-
tropic materials and may have significant error for very high thick-
ness to width ratios. Recently the effect of transverse shear
deformations on VAT plates was investigated by Groh et al. [33]
by extending the equivalent single layer approach of Weaver and
Cosentino [41]. VAT plates were found to be more affected by
transverse shear than corresponding homogeneous quasi-isotropic
laminates.

To the best of the authors’ knowledge, the buckling of a VAT
laminate at a structural level remains unexplored. The current con-
tribution extends the work of Wu et al. [7] to develop an analytical
model with a generalised Rayleigh–Ritz approach to solve the pre-
buckling and buckling problem of a blade stiffened VAT panel
including transverse shear deformations. Prebuckling analysis is
first required to determine the varying stress field in the skin
and constant stress in the stiffener. Restricting the model to pris-
matic sections enables the skin and stiffener to be treated in isola-
tion for prebuckling. The buckling analysis is performed with two
approaches for modelling the stiffener; a beam stiffener model
and a plate stiffener model. In both cases the effect of transverse
shear in both the skin and stiffener and the axial loading applied
to the stiffener is explored and quantified. It should be noted, that
although the method presented in this paper is referred to as ana-
lytical it is, strictly speaking, a semi-analytical method; analytical
in formulation but requiring numerical integration. The numerical
routine for the pre-buckling and buckling analysis was imple-
mented in MATLAB R2012a.

The paper is structured as follows. Section 2 provides an over-
view of the analytical method including the assumptions and
boundary conditions. Section 3 introduces the VAT orientation dis-
tribution. Section 4 details the prebuckling analysis of the VAT skin
and straight fibre blade stiffener. Section 5 details the buckling
analysis of the stiffened panel with two approaches for capturing
the stiffener behaviour; a beam stiffener model and a plate stiff-
ener model. Section 6 outlines the FEA model developed and used
for comparison and validation of the analytical method. Section 7
presents results and a discussion of the analytical model and FEA
for different stiffened panel configurations showing the applicabil-
ity of the model to realistic stiffened panel configurations with
thick sections and finally the paper is concluded in Section 8.

Fig. 1. Stiffened panel local and global buckling mode shapes (yz-plane). (a) Full
panel. (b). Representative section.
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2. Analysis overview

During flight an aircraft wing is subject to bending resulting in
the upper wing cover experiencing compressive loading which can
be approximated by uniform end-shortening. In reality, a linear in-
crease in compressive strain from the tip of the stiffener to the
skin’s outer surface would be present, however as the distance of
the stiffened skin from the wing box global neutral axis is signifi-
cantly larger than the depth of the stiffened panel this variation
is considered negligible. Wing covers in general are supported by
spars in the longitudinal direction and ribs in the transverse direc-
tion as shown in Fig. 2. The restraint on the stiffened panel by the
spars and ribs is complex, however for simplicity they are both as-
sumed to provide a simply supported boundary condition (pre-
venting out-of-plane displacement of the skin) resulting in
conservative results. In this study, the spars are additionally as-
sumed to prevent any translation in the y-direction hence inducing
biaxial loading in the panel. Only the skin is assumed to be con-
nected to the ribs which provide a simply supported boundary con-
dition, the stiffener is free to rotate about the skin’s midplane at
the location of the ribs.

Wing covers supported between spars and adjacent ribs are
generally wide and contain several equally spaced stiffeners. When
local buckling occurs, under compressive loading, repeating dis-
placement modes occur between stiffener elements thus allowing
the entire stiffened panel to be modelled by a representative sec-
tion containing a single stiffener element and half a stiffener bay
either side [42] as shown in Figs. 1 and 2.

A symmetry condition is required to be enforced along the
skin’s longitudinal edges to model the repeating mode shape, this
is achieved by setting

dw=dy ¼ 0

cyz ¼ 0
ð1Þ

wherew is the out-of-plane displacement of the skin in the z-direction
and cyz the transverse shear of the skin in the yz-direction. This new
boundary condition is henceforth referred to as the symmetric bound-
ary condition. It shouldbenoted that theuseof this representative sec-
tion with the symmetry condition is not valid for in-plane shear
loading cases or skin laminates with extension-bending (B-matrix),
extension-shear (A16;A26) or bending-twisting (D16;D26) coupling.

When global buckling occurs the representative section no
longer represents a repeating unit as the boundary condition from
the spar creates a shallow curvature in the y-direction, jy (Fig. 1a).
Global buckling behaviour is, however, dominated by x-direction
curvature, jx, due to the energy required to bend the stiffener,
and the shallow jy has minimal influence on the buckling load.
Hence, the representative section used for the local buckling is also

valid for global buckling. Despite not representing global jy, local
jy behaviour between stiffener elements is still captured in global
buckling modes.

The use of a representative section significantly reduces the
problem complexity whilst maintaining sufficient detail to allow
results to be applicable to full, multi-stiffener, panels. Reduction
of the problem complexity additionally allows a deeper under-
standing and physical insight to be obtained for buckling of stiff-
ened VAT panels. Despite the suitability and advantages of the
representative section with the symmetric boundary condition it
seldom appears in literature.

Boundary conditions for the representative section are summa-
rised in Fig. 2 and can be split into prebuckling boundary condi-
tions and buckling boundary conditions. Further details are
provided for the prebuckling and buckling boundary conditions
in Sections 4 and 5 respectively.

3. VAT laminates

In this study, the blade stiffener laminate is constrained to
straight fibres only and VAT laminates are only considered for
the skin with the fibre orientation variation in the y-direction.
The non-linear fibre orientation for each ply is expressed using
the Lagrange polynomials method proposed by Wu et al. [7] in
the form,

hðyÞ ¼
X

N�1

n¼0

Tn

Y

n–j

y� yj
yn � yj

 !

ð2Þ

where yj and yn are the y-coordinates of reference points and the
coefficient of each term, Tn, is the fibre angle at the specific refer-
ence point, yn. For simple interpretation of results all cases used
for model validation only consider a linear variation of fibre angle
and hence the fibre orientation reduces to

hðyÞ ¼ T0 þ 2ðT1 � T0Þ
jyj

b
ð3Þ

where T0 and T1 are the fibre orientations of the skin at the location
of the stiffener and symmetric boundary condition respectively and
b is the width of the representative section (distance between stiff-
eners) as shown in Fig. 3. The fibre orientation of a VAT ply is des-
ignated by hT0jT1i.

4. Prebuckling analysis

Herein, the fibre orientation is limited to variations in the y-
direction only and the stiffened panel is therefore prismatic. For
the loading case of end-shortening no coupling or interaction ef-
fects exists between the skin and the stiffener and they can be

Fig. 2. Representative section in stiffened panel analysis. Coordinate systems shown are the local skin or global (xyz) and local stiffener (x0y0z0). Boundary conditions and
loadings with a ⁄ are only used for determining the prebuckling stress field and are removed for the buckling analysis.
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treated separately in the prebuckling analysis. The approach for
determining the skin’s stress distribution used herein is the same
as in Wu et al. [43] where the in-plane equilibrium equations are
expressed using Airy’s stress function and the condition of compat-
ibility and prescribed displacement boundary conditions are
satisfied through minimisation of the total complementary energy.
A brief overview of the procedure is now provided, full details can
be found in [43].

For the prebuckling analysis the skin’s loaded transverse edges
are subject to uniform end-shortening and the boundary condi-
tions are

uðx ¼ a=2Þ ¼ �Dx=2

uðx ¼ �a=2Þ ¼ Dx=2
ð4Þ

where a is the length of the panel in the x-direction (distance be-
tween rib bays), u is the skin in-plane displacement in the x-direc-
tion and Dx the end-shortening applied to both the stiffener and
skin. Similarly, the same uniform end-shortening is applied to the
stiffener’s loaded transverse edges which have the boundary
conditions

u0ðx0 ¼ a=2Þ ¼ �Dx=2

u0ðx0 ¼ �a=2Þ ¼ Dx=2
ð5Þ

where u0 is the stiffener in-plane displacement in the x0-direction.
The skin’s longitudinal edges, y ¼ �b=2, are constrained in y-direc-
tion translation, inducing biaxial compression and the boundary
condition applied is

vðy ¼ �b=2Þ ¼ 0 ð6Þ

where v is the skin in-plane displacement in the y-direction. The
stiffener’s longitudinal edges along the y0-direction are free to
expand.

The VAT skin considered is confined to laminates with null
B-matrix terms. The total complementary energy of the VAT skin
can be expressed using Airy’s stress function [44] as

Ps ¼
1
2

Z Z

S

a11
@2U

@y2

 !2

þ2a12
@2U

@x2
@2U

@y2
þa22

@2U

@x2

 !2
2

4

þa66
@2U

@x@y

 !2

�2a16
@2U

@y2
@2U

@x@y
�2a26

@2U

@x2
@2U

@x@y

3

5dydx

�

Z b=2

�b=2

@2U

@y2
u�

@2U

@x@y
v

" #

x¼a=2

dyþ

Z b=2
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@2U

@y2
u�
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" #
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dy

0

@

1

A

�
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u

" #

y¼b=2

dxþ

Z a=2

�a=2

@2U

@x2
v�

@2U

@x@y
u

" #

y¼�b=2

dx

0

@

1

A

ð7Þ

where aij are terms of the skin a ¼ A�1 matrix and U is Airy’s stress
function. The in-plane displacements, u and v, along the panel
boundaries in Eq. (7) are defined as per the in-plane loading and
boundary conditions provided in Eqs. (4)–(6).

The total complementary energy is expressed in normalised
coordinates, n ¼ 2x=a and g ¼ 2y=b, and the stress function, U, is
assumed to have the following form:

Uðn;gÞ ¼ U0ðn;gÞ þU1ðn;gÞ ð8Þ

where U0 satisfies the stress distribution along the boundaries and
U1 the stress distribution in the interior region. The form of U0 is as-
sumed to be

U0ðn;gÞ ¼ f1ðnÞ þ f2ðgÞ ð9Þ

with

@2U0

@g2
¼
X

K�1

k¼0

ckw
c
kðgÞ ð10Þ

@2U0

@n2
¼
X

K�1

k¼0

dkw
d
kðnÞ ð11Þ

where K is the number of terms in the series, ck and dk are coeffi-
cients of the stress function along the boundaries and wc

k and wd
k

are admissible functions, here Legendre polynomials are chosen
for the admissible functions. Legendre polynomials were chosen be-
cause they enable localised behaviour, due to VAT, to be captured
accurately with less terms relative to periodic trigonometric func-
tions [45]. The interior region’s stress function is expressed in the
form:

U1ðn;gÞ ¼
X

P�1

p¼0

X

Q�1

q¼0

/pqXpðnÞYqðgÞ ð12Þ

where P and Q are the number of terms and Xp and Yp are admissi-
ble functions in the x and y-directions respectively. To satisfy the
stress free condition for U1 Legendre polynomials are used with cir-
culation functions [7,46,47] for Xp and Yp,

XpðnÞ ¼ ð1� n2Þ
2
LpðnÞ ð13Þ

YqðgÞ ¼ ð1� g2Þ
2
LqðgÞ ð14Þ

where Li is the ith term of the Legendre polynomial. Substituting
Eqs. (8)–(14) into Eq. (7), evaluating the integrals with numerical
integration and minimising the total complementary energy with
respect to the unknown coefficients the following set of linear equa-
tions, expressed in matrix form, are obtained,

U// U/c U/d

UT
/c Ucc Ucd

UT
/d UT

cd Udd

2

6

6

4

3

7

7

5

/

c

d

2

6

4

3

7

5
¼

0

Px0

0

2

6

4

3

7

5
ð15Þ

where for example, U/c is the factor of the unknown coefficient c

that arises from minimising the total complementary energy with
respect to / and Px0 is the constant that arises when minimising
the total complementary energy with respect to c. Further details
regarding the terms in Eq. (15) can be found in Wu et al. [43]. Solv-
ing for the coefficients the prebuckled stress distribution of the VAT
skin subject to uniform end-shortening is obtained.

As the stiffener is constrained to contain only straight fibre lam-
inates the prebuckled stress distribution is constant. The free edge
ensures no biaxial stress state is induced in the stiffener and the
prebuckling stress resultant in the x-direction, Nx;st:, is simply ob-
tained using the stiffener laminate equivalent Young’s modulus,

Nx;st: ¼
Ex;st:Ast:Dx

ah
ð16Þ

where Ex;st: is the equivalent Young’s modulus of the stiffener
laminate in the x-direction given by Ex;st: ¼ 1=ða11;st:tst:Þ; Ast: the

Fig. 3. VAT linear fibre angle variation for h0�j � 45�i. T0 is the fibre variation along
x ¼ 0 (centre line underneath stiffener) and T1 along y ¼ �b=2 (panel longitudinal
edges).
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cross-sectional area of the stiffener in the yz-plane and h the height
of the stiffener blade.

5. Buckling analysis

The Rayleigh–Ritz energy method is used to solve the buckling
problem for the stiffened panel using the stress distribution ob-
tained in the prebuckling analysis. The skin is modelled as a thick
plate and the stiffener is considered with two approaches; a beam
model and a plate model.

The boundary conditions applied to the skin are identical for
both the beam model and plate model. In both cases the prebuck-
ling boundary conditions on u; u0 and v are removed for the buck-
ling analysis. During the buckling analysis the skin’s loaded
transverse edges, x ¼ �a=2, are simply supported and constrained
to have null transverse shear in the yz-direction such that

wðx ¼ �a=2Þ ¼ cyzðx ¼ �a=2Þ ¼ 0 ð17Þ

where cyz is the transverse shear of the skin in the yz-direction. The
skin’s longitudinal edges, y ¼ �b=2, are subject to the symmetric
boundary condition where rotation along the y-direction and trans-
verse shear in the yz-direction are null, hence we have

dw

dy
ðy ¼ �b=2Þ ¼ cyzðy ¼ �b=2Þ ¼ 0 ð18Þ

The total potential energy of the skin is the sum of the bending,
transverse shear (xz- and yz-direction) and in-plane potential
energy,

PTPE;skin ¼ Pbend: þPtrans: shear þPin�plane

� �

skin
ð19Þ

Due to the thickness, tsk:, to width, b, ratio of practical stiffened
panels potentially being as large as 1/20 transverse shear effects
can be significant [33]. A FSDT is included in the analysis by using
a reduced bending energy term and a transverse shear energy term
in the total potential energy [38–40,48]. Eq. (19) expanded for the
case of a VAT laminate with a FSDT is:

PTPE;skin ¼
1
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ð20Þ

where w is the deflected shape of the skin, cxz and cyz the shear
strain in the xz- and yz-directions respectively, Dij the plate bending
stiffness matrix terms which vary over the skin, k the Timoshenko
shear factor which is taken as 5=6 for rectangular sections [39,48],
Gxz and Gyz the transverse shear stiffness in the xz- and yz-directions
respectively and k the loading factor. The total potential energy is
then expressed in normalised coordinates. The unknown function
w, is represented by a series expansion containing Legendre polyno-
mials and circulation functions to enforce boundary conditions,

w ¼
X

M�1

m¼0

X

N�1

n¼0

Amn½ðn
2 � 1ÞLm�

Z

ðg2 � 1Þ
@Ln
@g

dgþ 1

� 	

ð21Þ

where M and N are the number of terms in the x- and y-directions
respectively and Amn the unknown coefficients. The constant of inte-
gration of the indefinite integral is zero. This series expansion en-
sures null out-of-plane displacement at the transverse edges
(n ¼ �1) and null rotation, @w=@g ¼ 0, along the longitudinal edges
(g ¼ �1).

The unknown functions for the transverse shear, cxz and cyz, are
similarly given by:

cxz ¼
X

E�1

e¼0

X

F�1

f¼0

Bef LeLf ð22Þ

cyz ¼
X

G�1

g¼0

X

H�1

h¼0

Cgh½ðn
2 � 1ÞLg �½ðg

2 � 1ÞLhÞ� ð23Þ

where for cxz; E and F are the number of terms in the x- and y-direc-
tions respectively and Bef the unknown coefficients, and for cyz; G

and H are the number of terms in the x- and y-directions respec-
tively and Cgh the unknown coefficients.

5.1. Beam stiffener model

The total potential energy of the panel whenmodelling the stiff-
ener as beam is given by the sum of the skin and stiffener
contributions,

PTPE ¼ PTPE;skin þPTPE;beam-stiffener ð24Þ

where the total potential energy of the beam stiffener is expanded
to

PTPE;beam-stiffener ¼ðPEI;bend:þPAG; trans: shearþPGJ;tors:þPEA;in-planeÞstiffener

ð25Þ

The beam stiffener’s energy terms in Eq. (25) represent an
equivalent beam that lies on the skin’s midplane and are the bend-
ing, transverse shear (xz-direction), torsional due to twisting and
potential due to in-plane loads. The skin and the stiffener are as-
sumed to be rigidly attached and no slipping is allowed between
the two components. Hence, the boundary conditions applied to
the skin along this attachment line translate to the stiffener when
modelled as a beam. The beam is simply supported at its ends,
x ¼ �a=2, allowing the stiffener to rotate about the skin’s midplane
for global buckling modes.

The bending potential energy of a Timoshenko beam is given by

PEI;bend ¼
1
2

Z a=2

�a=2
Ex;st:Ist:

@2w

@x2
�
@cxz;st:
@x

 !2


















y¼0

2

6

4

3

7

5
dx ð26Þ

where Ex;st:Ist: is the flexural rigidity of the beam about the y-axis
and cxz;st: the transverse shear deformation of the beam in the xz-
direction. The displacement of the stiffener is constrained to be
equal to the displacement of the skin’s midplane, however, the nor-
mal to the midplane rotation, /xz;st:, and transverse shear displace-
ment, cxz;st: are free. In reality, the transverse shear displacement
at the interface of the skin and the stiffener must be equal but for
a FSDT an average over the depth of the section is considered and
this is not required to be equal for the skin and stiffener.

Determination of the stiffener’s equivalent Ex;st:Ist: requires esti-
mation of local neutral axis location. The neutral axis lies some-
where between the midplane of the skin and the mid-height of
the stiffener depending on the relative in-plane and flexural stiff-
ness of the skin and stiffener [49]. For most practical cases the loca-
tion of the stiffener neutral axis is only slightly above the skin’s
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midplane and the assumption that the neutral axis lies on the
skin’s midplane is valid [25]. Thus,

Ex;st:Ist: ¼ Ex;st
tst:h

3

3

 !

ð27Þ

The transverse shear strain energy of the beam is given by

PAG;trans:shear ¼
1
2

Z a=2

�a=2
kAst:Gxz;st:c

2
xz;st:

h i

dx ð28Þ

where Gxz;st: is the transverse shear stiffness of the stiffener in the
xz-direction. The value of Gxz;st: is in the xz-direction for the global
coordinate system, however when considering the local coordinate
system of the stiffener as a laminate it is the in-plane shear stiffness
Gx0y0 ;st: where x0 and y0 are local coordinates of the stiffener laminate
(Fig. 2). The layup of the stiffener web significantly influences the
stiffener’s ability to resist global transverse shear deformation,
Gxz;st: can vary from 5 GPa (½0��n) up to 50 GPa (½�45��n) for a typical
aerospace grade prepreg. Additionally, the section over which this
shear acts is very stubby, transverse shear deformations for com-
posite plates is considered important for ratios larger than 1/20,
for the case of blade stiffeners the ratio can be larger than 5/1
and transverse shear effects in the xz-direction can significantly re-
duce global buckling loads.

The torsional restraint of the stiffener is taken into account by
treating the stiffener as a De Saint Venant torsion bar [48] and
determining the energy due to the beam rotation,

PGJ;tors: ¼
1
2

Z a=2

�a=2
GJ

@

@x

@w

@y
� cyz

� �� �2















y¼0

0

@

1

Adx ð29Þ

where GJ is the effective torsional restraint. For thin blade stiffeners
(tst:=h < 1=10Þ GJ is given by

GJ ¼ Gxz;st:
tst:h

3
ð30Þ

For thick blade stiffeners GJ is given by Nemeth [50] as

GJ ¼ Geq:;st:Jeq:;st: ð31Þ

with

Geq: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gxz;st:Gxy;st:

q

ð32Þ

Jeq: ¼
Gxz;st:

Gxy;st:

� �1
2 t3st:h

3
1�

96
p5

tst:
h

Gxz;st:
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� �1
2

 

�
X

1

p¼1;2;3;...

1� ð�1Þp

p5
tanh

pph
2tst:

Gxy;st:

Gxz;st:

� �1
2

 !" #!

ð33Þ

where xy- and xz-directions are in the global coordinate system. Ne-
meth’s formulation for determining GJ takes into account shear
deformation in the xy-direction of the stiffener and is used, unless
otherwise stated, for all cases presented in this study.

The above expressions for GJ are strictly only valid when no ax-
ial load is applied to the stiffener, to account for an axial stiffener
load a reduction factor is applied to GJ [15–17],

GJred: ¼ GJ � r ð34Þ

with

r ¼ 1�
�crit:;sk:;s:s:
�crit:;st:;s:s:

� �

ð35Þ

where �crit:;st:;s:s: and �crit:;sk:;s:s: are the buckling strains of the stiffener
blade and skin respectively assuming both are simply supported
along the skin-stiffener attachment line and r is the torsional reduc-

tion factor. The stiffener buckling strain is calculated with the fol-
lowing closed-form solution [51]

�crit:;st:;s:s: ¼
1

Ex;st:tst:

n2
wavesp

2D11;st:

a2
þ
12D66;st:

h
2

� �

ð36Þ

where nwaves is the number of half waves in the longitudinal direc-
tion and D11;st: and D66;st: are in the stiffener’s local coordinate sys-
tem (x0y0z0). Determination of �crit:;sk:;s:s: is not possible with a
closed-form solution and a full prebuckling and buckling analysis
on the unstiffened VAT skin is required. However, all stiffness
matrices computed for the unstiffened VAT skin are reused in the
full stiffened panel analysis and the computational costs due to this
additional step are minor.

The potential energy due to the in-plane loading is simply given
by

PEA;in�plane: ¼
k

2

Z a=2

�a=2
Ex;st:Ast:

@w

@x

� �2















y¼0

0

@

1

Adx ð37Þ

where Ex;st:Ast: is the stiffener axial stiffness.
The introduction of a beam into the model only requires one

additional shape function, compared to an unstiffened panel, for
the stiffener transverse shear in the xz-direction, cxz;st:, which is gi-
ven in series expansion by

cxz;st: ¼
X

T�1

t¼0

DtLt ð38Þ

where T is the number of terms and Dt the unknown coefficients.
Substituting Eqs. (19)–(23)and (25)–(38) and the prebuckling solu-
tions, U and Nx;st:, into Eq. (24), evaluating the integrals with numer-
ical integration and minimising with respect to all coefficients of
the four shape functions, Amn; Bef ; Cgh; Dt , a set of linear equations
is obtained which are expressed in matrix form,

½ðKsk: þ Kst:Þ þ kðLsk: þ Lst:Þ�A ¼ 0 ð39Þ

where Ksk: contains bending and transverse shear stiffness matrices
of the VAT panel, Kst: the bending, transverse shear and torsional
stiffness matrices of the stiffener, Lsk: and Lst: the stability matrices
of the skin and stiffener due to the in-plane stress fields respectively
and the vector A the coefficients of all the shape functions,

A ¼ ½Amn Bef Cgh Dt �
T ð40Þ

The critical buckling load is given by the lowest eigenvalue of
Eq. (39) which is then used with the prebuckling solutions to
determining the buckling load.

5.2. Stiffener plate model

The stiffener plate model is only applicable to local buckling
modes, with the attachment line connecting the skin’s midplane
and stiffener’s midplane constrained in out-of-plane displacement.
Modelling the stiffener as a plate the total potential energy is ex-
pressed as the sum of the contributions from the skin and stiffener
with an additional penalty term,

PTPE ¼ PTPE;skin þPTPE;plate�stiffener þPTPE;penalty ð41Þ

The penalty term is required to enforce compatibility of rotation
at the line of attachment between the skin and stiffener plate ele-
ments. The total potential energy of the stiffener, similarly to the
skin, is the sum of the potential energy terms for the bending,
transverse shear and in-plane loads,

PTPE;plate�stiffener ¼ ðPbend: þPtrans:shear þPin�planeÞstiffener ð42Þ

As the stiffener is now being modelled as a plate additional
boundary conditions are required. The loaded stiffener’s edges,
x0 ¼ �a=2, are simply supported in the stiffener’s local coordinate
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system, see Fig. 2, and constrained to have null transverse shear in
the y0z0-direction. This boundary condition simulates the stiffened
panel being connected to another stiffened panel section in the
x-direction and is given by

wst:ðx
0 ¼ �a=2Þ ¼ cy0z0 ;st:ðx

0 ¼ �a=2Þ ¼ 0 ð43Þ

where wst: is the stiffener plate out-of-plane displacement in the
z0-direction and cy0z0 ;st: the stiffener transverse shear in the
y0z0-direction. Along the skin-stiffener attachment line, y ¼ y0 ¼ 0,
both the skin and stiffener are constrained in out-of-plane
displacement

wðy ¼ 0Þ ¼ 0;

wst:ðy
0 ¼ 0Þ ¼ 0

ð44Þ

To force a node in the skin at y ¼ 0 the constant 1 in the
deflected shape function, Eq. (21), is replaced with a 0.

The plate stiffener total potential energy, Eq. (42), is expanded
to

PTPE;plate�stiffener ¼
1
2
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ð45Þ

where cx0z0 ;st: and cy0z0 ;st: are the shear strain in the x0z0- and y0z0-direc-
tions respectively, Dij;st: the stiffener plate bending stiffness matrix
terms (constant) and Gx0z0 ;0st: and Gy0z0 ;st: the transverse shear stiffness
in the x0z0- and y0z0-directions respectively, all in the stiffener’s local
coordinate system. Similarly to the analysis procedure for the skin,
the total potential energy is expressed in normalised coordinates,
n0 ¼ 2x0=a and g0 ¼ y0=h, and the unknown functions wst:, cx0z0 ;st:
and cy0z0 ;st: are expanded into the following series, satisfying the re-
quired boundary conditions,

wst: ¼
X

I�1

i¼0

X

J�1

j¼0

Xij½ðn
02 � 1ÞLi�½g

0Lj� ð46Þ

cx0z0 ;st: ¼
X

!�1

t¼0

X

Z�1

z¼0

btzLtLz ð47Þ

cy0z0 ;st: ¼
X

U�1

u¼0

X

V�1

v¼0

suv ½ðn
02 � 1ÞLu�½g

0Lv � ð48Þ

where I � J; !� Z and U � V are the number of terms in the x0- and
y0-directions for the wst:; cx0z0 ;st: and cy0z0 ;st: series’ respectively and
Xij; btz and suv are the unknown coefficients for the wst:, cx0z0 ;st:
and cy0z0 ;st: series’ respectively.

The penalty term in Eq. (41) is analogous to a torsional spring
located along the skin-stiffener attachment line [24,25] and is gi-
ven by

Ppenalty ¼
kpenalty

2

Z a=2

�a=2

dw

dy
�cyz
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y¼0
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dwst:
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 !2
2

4

3

5dx ð49Þ

where kpenalty is the spring torsional stiffness. The value of kpenalty
was determined by increasing the order of kpenalty until convergence
was achieved, in this study 1:0� 106 N was found to be sufficient to
force the compatibility condition.

The solution procedure hereafter is the same as for the beam
stiffener model. Substituting Eqs. (19)–(23)and (42)–(49) and the
prebuckling solutions, U and Nx;st:, into Eq. (41), evaluating the
integrals with numerical integration and minimising with respect
to all six coefficients of the shape functions, Amn; Bef ; Cgh,
Xij; btz; suv , a set of linear equations in the matrix form of Eq.
(39) are obtained, where Kst: now contains the bending and trans-
verse shear stiffness matrices of the stiffener modelled as a plate
and Lst: is the stiffener stability matrix due to the in-plane stress
field. The vector A contains the coefficients of all the shape
functions,

A ¼ ½Amn Bef Cgh Xij btz suv �
T ð50Þ

The critical buckling load is given by the lowest eigenvalue of
Eq. (39).

6. Finite element analysis

FEA for the prebuckling and buckling analysis was performed
with Abaqus. A script was developed to allow specification of fibre
orientation for individual elements as per Eq. (2), simulating a VAT
laminate. The S4R shell element was chosen for the skin and the
compatible S4 shell element for the stiffener. The S4 element
was required for the stiffener due to S4R elements experiencing
hour-glassing when subject to in-plane bending as is the case for
stiffener global buckling.

Uniform end-shortening to the skin and stiffener transverse
edges was applied as stress perturbation only, thereby allowing
the stiffener to rotate about the skin’s midplane during the buck-
ling analysis. The boundary conditions applied as stress perturba-
tion only (prebuckling) were

uðx ¼ a=2Þ ¼ u0ðx0 ¼ a=2Þ ¼ �Dx=2

uðx ¼ �a=2Þ ¼ u0ðx0 ¼ �a=2Þ ¼ Dx=2

vðy ¼ �b=2Þ ¼ 0

ð51Þ

For the buckling analysis all stress perturbation (prebuckling)
boundary conditions were relaxed. Simply supported boundary
conditions were applied on the loaded skin transverse edges and
additionally the rotation of the normal to the midplane in the yz-
direction, /yz, was set to zero. Boundary conditions for the trans-
verse shear profiles were unable to be directly assigned in Abaqus,
instead the rotation of the normal to the midplane in conjunction
with the out-of-plane displacement along edges were used to
achieve the same effect. The boundary conditions along the skin
transverse edges were

wðx ¼ �a=2Þ ¼ /yzðx ¼ �a=2Þ ¼ 0 ð52Þ

The skin’s longitudinal edges, y ¼ �b=2, are subject to the symmet-
ric boundary condition where /yz is set to zero
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/yzðy ¼ �b=2Þ ¼ 0 ð53Þ

For the cases neglecting transverse shear effects setting /yz to zero
is equivalent to setting dw=dy to zero. The loaded stiffener’s edges,
x0 ¼ �a=2, are simply supported in the stiffener’s local coordinate
system and constrained to have null rotation of the normal to the
midplane in the y0z0-direction, /y0z0 ;st: and the boundary conditions
are

wst:ðx
0 ¼ �a=2Þ ¼ /y0z0 ;st:ðx

0 ¼ �a=2Þ ¼ 0 ð54Þ

The prebuckling stiffness and buckling loads were determined by
summing nodal forces along the skin and stiffener shell edges at
the location of the applied displacement.

7. Results and discussion

The stiffened panel dimensions used for model validation were
based on Nagendra et al. [29,30]; width (distance between stiffener
bays) 200 mm, length 750 mm and stiffener height 60 mm. Mate-
rial properties of the carbon fibre unidirectional prepreg selected
for the study are provided in Table 1. A FEA mesh density of
320� 60� 20 elements in the x-, y- and z-directions respectively
was selected to achieve converged results. Four layups were con-
sidered for the skin, �45�, quasi-isotropic (QI), VAT h0�j � 45�i

and VAT h0�j � 90�i and three layups for the stiffener �45�, QI
and 0�. Skin and stiffener thicknesses were fixed by first designing
a �45� skin and QI stiffener panel aiming for local and global buck-
ling to occur at Nx;smeared � 1:0 kN/mm where Nx;smeared is the total
load taken by the skin and stiffener per unit panel width. The cho-
sen thickness for the skin and stiffener was 8 mm.

The layups used for the VAT and �45� laminates were specially
orthotropic ½�h;�h�AS consisting of eight 1 mm thick layers, thus
eliminating extension-shear (A16;A26), bending-stretching (Bij)
and bending-twisting couplings (D16;D26). For QI laminates equiv-
alent smeared properties were used to remove stacking sequence
dependence.

The analytical model initially used 5 terms for prebuckling
shape functions ðP � Q � KÞ, 7 terms for skin and stiffener out-of-
plane deflected shape functions ðM � N; I � JÞ and 5 terms for skin
and stiffener transverse shear shape functions
ðE� F;G� H; T;!� Z;U � VÞ. However, for cases where conver-
gence was not achieved the number of terms was increased.

The speed of the current semi-analytical method is implemen-
tation and platform specific, however, for all cases in this paper
the computation of the results with the analytical method imple-
mented in MATLAB R2012a was found to require less computa-
tional time than Abaqus FEA. The number of degrees of freedom
used in the analytical model for the buckling analysis ranged from
as little as 49ðM � N ¼ 7) for straight fibre cases neglecting trans-
verse shear with the beam stiffener model up to
1026ðM � N; I � J ¼ 15 and E� F;G� H;!� Z;U � V ¼ 12Þ com-
pared to the FEA having 156,006 degrees of freedom.

7.1. Prebuckling

The analytical prebuckling stiffness for all configurations was
found to be in close alignment with FEA with less than 0.3% error
in all cases. Due to all cases being prismatic, the in-plane forces
per unit length in the y- and xy-direction, Ny and Nxy respectively,

Table 2

Comparison of local buckling loads between analytical models and FEA.

Layup FEA Analy.: Beam with GJ Analy.: Beam with GJred: Analy.: Full plate model

Nx;local Nx;local r Nx;local Nx;local

Skin Stiff. (kN/mm) (kN/mm) Error (–) (kN/mm) Error (kN/mm) Error (%)

�45� �45� 0.96 0.97 +0.99% 0.95 0.96 +0.63% 0.96 �0.06
�45� QI 1.14 1.16 +1.80% 0.70 1.14 +0.43% 1.14 �0.01
�45� 0� 1.53a a a a a a 1.53a +0.03a

QI �45� 2.34 2.38 +2.05% 0.91 2.37 +1.49% 2.33 �0.23
QI QI 2.53 2.70 +6.77% 0.47 2.55 +1.16% 2.52 �0.07
QI 0� 2.49a a a a a a 2.51a,b +0.92a,b

h0�j � 45�i �45� 1.88 1.94 +3.03% 0.96 1.93 +2.20% 1.90b +0.70b

h0�j � 45�i QI 1.91 2.01 +4.99% 0.75 1.94 +1.65% 1.92 +0.39
h0�j � 45�i 0� 1.98a a a a a a 1.99a,b +0.31a,b

h0�j � 90�i �45� 2.69 2.76b +2.57%b 0.89b 2.73b +1.15%b 2.68b �0.43b

h0�j � 90�i QI 2.92 3.13b +7.15 %b 0.34b 2.96b +1.45%b 2.92b �0.01b

h0�j � 90�i 0� 2.10a a a a a a 2.14a,c +1.70a,c

Error: <8% <3% <2%

a Local buckling of the stiffener blade occurred prior to skin buckling, this buckling mode is not predicted with the beam model.
b Number of terms increased for convergence, PQK ¼ 10, MNIJ ¼ 10 and EFGH!ZUVT ¼ 8.
c Number of terms increased for convergence, PQK ¼ 12;MNIJ ¼ 15 and EFGH!ZUVT ¼ 12.

Table 1

Carbon fibre unidirectional prepreg mechanical properties used for case studies.

E11 (GPa) E22 (GPa) m12 (–) G12 (GPa) G13 ¼ G23 (GPa)

161 11.38 0.32 5.17 3.98

Fig. 4. Normalised in-plane stress resultant distribution along skin and stiffener
edges for VAT h0� j � 45�i skin and 0� stiffener case. Analytical results are obtained
using K ¼ 5 and K ¼ 10 for the number of terms in the stress function, U0 , along the
boundary. Due to the sections being prismatic there is no variation in the central
region and results are independent of the number of terms of P and Q. The following
stress resultants not shown on the plot are: Nxy;sk: ¼ Ny;st: ¼ Nxy;st: ¼ 0.
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are constant over the planform and only a variation in Nx occurs
along the y-direction. Fig. 4 shows the Nx distribution over the skin
planform for the VAT h0�j � 45�i skin and 0� stiffener case for the
analytical model and FEA. The analytical model error for constant
in-plane stress resultants was less than 0.3%. Whilst the error in
the maximum Nx;skin for the VAT laminates was less than 3% and
1% for 5 and 10 terms in the prebuckling shape functions
respectively.

7.2. Local buckling

Local buckling results for different configurations are provided
in Table 2 for the beam stiffener model (with and without the GJ

reduction factor), the plate stiffener model and FEA. The first local
buckling mode shape for the VAT h0�j � 45�i skin and QI stiffener
panel is provided in Fig. 5 for FEA and analytical models. The first
local buckling mode for all 0� stiffener cases was due to stiffener
blade buckling and is not captured with the beam stiffener model.
The skin and stiffener transverse shear profiles obtained with the
plate stiffener model and FEA are provided in Figs. 6 and 7 respec-
tively for the VAT h0�j � 45�i skin and QI stiffener panel first local
buckling mode. Qualitatively it can be seen that the analytical
model accurately captures the FSDT profiles compared to the
FEA. The transverse shear profile in the y0z0-direction for the stiff-
ener was largely dominated by numerical noise for both the ana-
lytical model and FEA.

The beam model using the thick laminate and unreduced, due
to axial loading, GJ (Eq. (31)) has less than <8% error in local buck-
ling for all cases, the highest error being for cases where the stiff-
ener blade’s buckling eigenvalue, as per Eq. (36), was close to the
skin’s critical eigenvalue as indicated by values of r less than 1 in
Table 2. In these cases, the consideration of the stiffener blade hav-
ing a tendency to buckle out-of-plane in the local coordinate sys-
tem is not considered. Including the reduction factor and using
GJred: (Eq. (35)) in the analyses reduced the local buckling error
for all cases below 3%, those with the lowest r and corresponding
highest error being most affected. The analytical model, consider-
ing both the skin and stiffener as plates, predicted all local buckling
loads to within 2% error and was able to capture buckling modes
originating from stiffener blade buckling. The plate stiffener model
has an increased computational cost compared to the beam stiff-
ener model due to the additional shape functions and larger stiff-
ness matrix. However, the plate stiffener model is expected to be
accurate for a wider range of configurations and different plate
boundary conditions when compared to the beam stiffener model
and can allow VAT laminates in both the skin and stiffener to be
explored.

To gain an understanding of the magnitude of the stiffener tor-
sional restraint, skin transverse shear and stiffener transverse
shear effects on the local buckling load, analyses were performed

with FEA, removing in turn each of the aforementioned effects with
results provided in Table 3.

The effect of removing the torsional restraint, simulated by
replacing the stiffener with a simply supported line, decreased
the local buckling load by up to 18%. All analytical models, being
identical for null torsional restraint, captured this behaviour within
1% of FEA results. This indicates that the current model is able to
accurately capture the buckling of simply supported thick VAT
plates where shear deformations are significant and any error in
the full model with the stiffener is not due to FSDT in the skin.

Removing the FSDT for the skin or stiffener was achieved with
FEA by using a combination of S3 (thick shell) and STRI3 (thin
shell) elements in Abaqus. Removing transverse shear of the skin

Fig. 5. Local buckling mode shapes for VAT h0� j � 45�i skin and QI stiffener panel. (a) FEA. (b) Analytical model with beam stiffener (GJred:). (c) Analytical model with plate
stiffener.

Fig. 6. Transverse shear profile for the first local buckling mode of the VAT
h0� j � 45�i skin and QI stiffener panel in normalised coordinates. (a) Analytical plate
stiffener model cxz . (b) FEA cxz . (c) Analytical plate stiffener model cyz . (d) FEA cyz .
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only increased the buckling load by up to 4% and was captured
accurately by the beam stiffener model, with GJred:, and plate stiff-
ener model within 2% and 1% respectively. However, the beam
stiffener model error using the unreduced GJ was up to 7%. Remov-
ing the FSDT from the stiffener resulted in an increase in buckling
load by up to 6% for the FEA. Removing transverse shear from the
beam stiffener model was achieved by using the thin laminate
expression for GJ provided in Eq. (30). The beam stiffener model
using the reduced GJ was able to match FEA within 4% when stiff-
ener transverse shear was neglected, whilst the plate stiffener
model within 1%.

All three effects investigated (torsional restraint, skin transverse
shear and stiffener transverse shear) introduce significant error if
disregarded and should be captured for practical cases of stiffened
panels. The beam stiffener model using GJred: has less error in all
cases compared to the beam stiffener model using the unreduced
GJ, indicating that neglecting stiffener loading when considering
torsional restraint can be a significant source of error.

The majority of the local buckling error for the beam stiffener
model is expected to be due to difficulty in accurately capturing
the stiffener torsional restraint. More specifically, determining a
value for GJ which is valid for axially loaded stiffeners with trans-
verse shear deformations. Nemeth’s GJ formulation (Eq. (35)) for
thick sections used in conjunction with a linear reduction factor
due to axial loading provides accurate results for the cases

considered, however, it is expected that the validity of this simple
method may not hold for a wider range of cases. The stiffener plate
model is expected to be applicable for a wide range of cases, albeit
with increased computational costs.

7.3. Global buckling

Global buckling analytical results are obtained using the beam
stiffener model which captures out-of-plane (global z-direction)
stiffener displacement by replacing the stiffener with a one-dimen-
sional beam attached on the skin’s midplane. During prebuckling
analysis both the skin and stiffener are subject to the uniform
end-shortening, however for the buckling analysis the stiffener is
free rotate about the skin’s midplane. Global buckling results com-
pared to FEA are provided in Table 4 and the first global mode
shape for the VAT h0�j � 45�i skin and QI stiffener case illustrated
in Fig. 8.

For cases with matching stiffener laminates changing the skin
laminate had little effect on the global buckling load, Nx;smeared,
which differed by less than 9% between the skin laminates. How-
ever, the difference in buckling eigenvalue (end-shortening) dif-
fered between cases of fixed stiffener laminate by up to 90%. This

Fig. 7. Stiffener x0z0-direction transverse shear, cx0z0 ;st: , profile for the first local
buckling mode of the VAT h0�j � 45�i skin and QI stiffener panel in normalised
coordinates. (a) Analytical plate stiffener model. (b) FEA.

Table 3

Effect of stiffener torsional restraint, skin transverse shear and stiffener transverse shear on FEA local buckling results. The value in the parenthesis is the error compared to the
full FEA including all effects.

Layup Nx;local (kN/mm)

Skin Stiff. Full model No torsional restraint No skin transverse shear No stiffener transverse shear

�45� �45� 0.96 0.90 (�6.23%) 0.98 ðþ2:74%Þ 0.98 ðþ2:16%Þ

�45� QI 1.14 1.10 ð�2:83%Þ 1.17 ðþ2:66%Þ 1.14 ðþ1:02%Þ

�45� 0� 1.53a – 1.57 (+2.48%)a 1.53 (+0.14%)a

QI �45� 2.34 2.07 ð�11:58%Þ 2.43 ðþ3:93%Þ 2.40 ðþ2:70%Þ

QI QI 2.53 2.42 ð�3:97%Þ 2.61 ðþ3:29%Þ 2.58 ðþ2:17%Þ

QI 0� 2.49a – 2.52 (+1.27%)a 2.57 (+3.14%)a

h0�j � 45�i �45� 1.88 1.56 ð�17:02%Þ 1.91 ðþ1:26%Þ 1.99 ðþ5:38%Þ

h0�j � 45�i QI 1.91 1.74 ð�8:93%Þ 1.93 ðþ1:18%Þ 1.96 ðþ2:80%Þ

h0�j � 45�i 0� 1:98a – 2.00 (+1.21%)a 2.00 (+1.15%)a

h0�j � 90�i �45� 2.69 2.41 ð�10:46%Þ 2.77 ðþ2:84%Þ 2.80 ðþ3:82%Þ

h0�j � 90�i QI 2.92 2.86 ð�1:84%Þ 2.99 ðþ2:49%Þ 2.98 ðþ1:98%Þ

h0�j � 90�i 0� 2.10a – 2.11 (+0.51%)a 2.19 (+4.45%)a

Error range from full FEA ð�18% ! �1%Þ ð0% ! þ5%Þ ð0% ! þ6%Þ

Analytical error – beam stiffener (GJ) <1% <7% <7%
Analytical error – beam stiffener (GJred:) <1% <2% <4%
Analytical error – plate stiffener <1% <1% <1%

a Local buckling of the stiffener blade occurred prior to skin buckling. Analytical model errors are compared to FEA when neglecting effects.

Table 4

Comparison of global buckling results between the analytical beam model and FEA.

Layup FEA (kN/mm) Analytical (kN/mm)

Skin Stiff. kglo: Nx;glo: Nx;glo: Error (%)

�45� �45� 1.54 0.92 0.95 +3.21
�45� QI 3.46 2.54 2.67 +5.07
�45� 0� 3.72 3.92 4.13 +5.37
QI �45� 1.19 0.94 0.97 +3.20
QI QI 2.91 2.70 2.87 +6.34
QI 0� 3.31 4.13 4.46 +8.00
h0�j � 45�i �45� 0.80 0.97 1.01 +3.48
h0�j � 45�i QI 1.95 2.64 2.81a +6.54a

h0�j � 45�i 0� 2.31 3.87 4.23a +9.46a

h0�j � 90�i �45� 1.28 0.95 0.98a +3.36a

h0�j � 90�i QI 3.15 2.75 2.94a +6.91a

h0�j � 90�i 0� 3.53 4.21 4.67a +8.46a

Error <10%

a Number of terms increased for convergence, PQK ¼ 10; MN ¼ 10 and
EFGHT ¼ 8.
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behaviour indicates that whilst the stiffener alone primarily dic-
tates the buckling load it is the overall in-plane stiffness of the pa-
nel (skin and stiffener) which must be considered when
determining the buckling strain.

The inclusion of transverse shear deformation in the xz-direc-
tion (global coordinate system) for the stiffener significantly af-
fected results. The transverse shear modulus (xz-direction) of the
stiffener in Eq. (28) is the local in-plane shear modulus (x0y0-direc-
tion) of the stiffener laminate and hence is dependant on stacking
sequence. For the material system used this shear modulus can
range from 5 GPa for a 0� laminate up to 42 GPa for a �45� lami-
nate. Maximising Ex;st:Ist: for global buckling, for fixed geometry,
is achieved by increasing the proportion of 0� plies in the laminate
and hence transverse shear deformations can become significant.
For the case of 0� stiffeners the transverse shear deformation re-
duces the buckling load by up to 50%.

The assumption of the stiffener’s neutral axis being located at
the skin’s midplane is expected to be the main source of error in
global buckling results. In reality, it can be located anywhere be-
tween the skin’s midplane and mid-height of the stiffener. For
fixed dimensions and skin laminate the neutral axis shifts away
from the skin’s midplane with increasing Ex;st: resulting in an in-
creased error in the global buckling load for the current model. This
is evidenced by switching, for any fixed skin laminate, from a �45�

to QI to 0� stiffener laminate, i.e. increasing Ex;st:, in Table 4. Im-
proved estimations of Ex;st:Ist: may be obtained by extending the ap-
proach of Seide [49] who considered the relative stiffness and
flexural rigidity of the skin and stiffener to determine an effective
Ex;st:Ist: for isotropic stiffened panels. It should be noted that the 0�

stiffeners which have the largest error are not practical designs due
to the premature buckling of the stiffener blade.

8. Conclusion

In this paper, an analytical model has been presented for the
prebuckling and buckling analysis of novel blade stiffened VAT
panels utilising the Rayleigh–Ritz energy method. The buckling
analysis includes a FSDT and is applicable to practical stiffened pa-
nel configurations containing thick sections. The boundary condi-
tions considered were simply supported for the skin transverse
edges and symmetric, with null y-translation, for the skin longitu-
dinal edges. In all cases, the stiffened panel is subject to uniform
end-shortening.

Prebuckling was performed for the skin and stiffener in isola-
tion, minimising the total complementary energy for the skin
and using a simple Young’s modulus relationship for the stiffener
and was found to be in good agreement with FEA. The buckling
analysis was performed by minimising the total potential energy
of the stiffened panel. The stiffener was modelled with two ap-
proaches; as a beam element and a plate. The beam stiffener model
is applicable to both local and global modes whilst the plate stiff-
ener model is only valid for local modes.

Results for the analytical models and FEA (Abaqus) were ob-
tained for selected cases of straight fibre and VAT laminates. For
practical configurations the capturing of transverse shear and tor-
sional restraint effects where found to be necessary in obtaining
accurate results. The beam stiffener model local buckling error
was less than 3% compared to FEA whilst the plate stiffener model
error was less than 2% compared to FEA. The plate model enabled
local modes originating from stiffener blade buckling to be cap-
tured and allows the possibility of VAT blade stiffener laminates
to be explored. However, the plate stiffener model has addtional
shape functions and consequently an increased computational cost
compared to the beam model. Global buckling analysis was per-
formed using the beam stiffener model with error for the analytical
model ranging from 3% to 10% compared to FEA.

The developed analytical model provides an accurate alterna-
tive to the computationally expensive FEA and is therefore suitable
for design and optimisation of stiffened VAT panels. Future work
will be undertaken to include the stiffener foot in the analysis, im-
prove the estimation of the location of the stiffener local neutral
axis, trial a wider range of cases and boundary conditions and per-
form optimisation studies on the buckling of stiffened VAT panels.
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