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Abstract—Artificial neural networks have been investigated
for many years as a technique for automated diagnosis of
defects causing partial discharge (PD). While good levels
of accuracy have been reported, disadvantages include the
difficulty of explaining results, and the need to hand-craft
appropriate features for standard two-layer networks. Recent
advances in the design and training of deep neural networks,
which contain more than two layers of hidden neurons, have
resulted in improved results in speech and image recognition
tasks. This paper investigates the use of deep neural networks
for PD diagnosis. Defect samples constructed in mineral
oil were used to generate data for training and testing.
The paper demonstrates the improvements in accuracy and
visualization of learning which can be gained from deep learning.
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I. INTRODUCTION

Partial Discharge (PD) is a much-studied phenomenon

associated with insulation weakness and breakdown. In HV

assets, understanding the nature of the defect causing PD is

critical for scheduling appropriate maintenance. One facet of

smart grids is increased online condition monitoring and in-

field processing capabilities, bringing a corresponding need

for automated systems to analyze the large volumes of data

captured by PD monitoring systems.

Machine learning techniques have for many years been

demonstrated as being capable of automatically diagnosing

defects causing PD. These techniques, such as artificial neu-

ral networks (ANNs) [1], [2] and support vector machines

(SVMs) [3], [4], are so-called shallow architectures, where

much engineering effort is required up-front to define a

feature vector for diagnosis by one or two layers of simple

computational units [5]. A variety of features have been trialled

for PD diagnosis, including statistical [6], [3] and shape

descriptors [7], with some attempt to compare their relative

diagnostic powers in specific contexts [8]. However, the level

of expertise required in selecting and calculating appropriate

features can be a barrier to deploying automated diagnostic

systems within utilities.

This paper investigates the use of deep neural networks

(DNNs) for diagnosis of PD. Deep networks, which comprise

more than two layers of computational units, have been shown

to outperform shallow architectures with hand-crafted features

for a range of speech and image recognition tasks [9]. This

paper presents the results of applying deep learning to a
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Fig. 1. A two layer network with three hidden neurons and one output neuron
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Fig. 2. Each neuron calculates a given function on a weighted sum of inputs

PD dataset previously used for shallow learning [2], and

demonstrates the accuracy and visualization improvements

which can be gained.

II. DEEP NEURAL NETWORKS

The standard architecture for a neural network comprises

multiple layers of computational units (neurons) (see Fig. 1),

with each neuron performing a simple function on the

weighted sum of its inputs (see Fig. 2). Each layer is fully

connected to the next layer, with those between the inputs

and the output layer referred to as hidden layers. The weights

between pairs of neurons allow adjustment of the strength of

each connection. The network is trained to find the appropriate

weights, such that the output of the whole network matches

the desired target in the majority of cases.

Training of neural networks was enabled by the backprop-

agation algorithm, first introduced in 1986 [10]. Thereafter, a

variety of network architectures were investigated, testing the

effects of number of layers, and number of neurons in each

layer. Extra neurons in a layer add linearly to training time,

while extra layers of neurons add combinatorially to training

times. As a result, after it was shown that any function could

be approximated by a two layer network in 1989 [11], ANN

work focused on two-layer shallow architectures.



The number of neurons in the output layer is dictated by

the type of function being learnt, with classification networks

tending to have one output neuron per class. There is no clear

heuristic for selecting the number of neurons in the hidden

layer. The inputs to the network dictate how many weights on

the first layer need to be trained, so the size and format of

the input has a significant effect on the training time of the

network.

In the past, raw PD data was generally considered too

large in size to produce an efficient two-layer network. An

alternative to raw data is to extract information-rich features

from the raw data [1], [2], [8]. A feature vector may contain

tens of values, compared to hundreds or thousands of raw data

points, with a significant effect on training. Since the feature

vector is also more information-dense than the raw data, it is

computationally easier to train an accurate network.

However, as computational power has grown over the years,

network size has become less of a constraint than before. In

2006, it was demonstrated that networks with more than two

layers of neurons could be trained to extract features automat-

ically from raw images [12]. Further work has shown methods

of visualization of what each neuron has actually learned to

recognize [13], with intriguing parallels with biological vision.

Initially, deep networks were composed of neurons using the

same types of activation functions as those used in shallow

architectures. Popular choices are bounded and non-linear,

such as the sigmoid (bounded between zero and one), and the

hyperbolic tangent (bounded between negative and positive

one). The non-linearity allows complexity in the learnable

function, while bounds can simplify learning by limiting the

output range.

However, such functions also suffer from various problems.

Neurons can easily saturate, and take many, many training

epochs to return to a useful range of operation. Deep networks

compound this problem, since saturated neurons in one layer

will block good training of the next layer until they return to

non-saturated operation.

Advances in neuroscience suggest that biological neurons

do not saturate, but instead perform the leaky-integrate-and-

fire function [14]. A simplified version of the biological

function was introduced for artificial neural networks, called

the Rectified Linear Unit (ReLU):

f(x) = max(0, x) (1)

ReLU is computationally simpler than sigmoid or hyper-

bolic tangent, while still being non-linear. It does not saturate

in the positive direction, and therefore leads to faster training

times, while still retaining accuracy [14].

As a result of these advances, deep neural networks are

now out-performing techniques such as SVMs for image and

speech recognition tasks [15]. In addition to simply giving

higher accuracy, advances in visualizing the function learned

by a given neuron mean that they are less of a “black-box”

technique than before, and can potentially give a fresh new

perspective on a classification problem.

The following section demonstrates how to apply these

techniques to PD classification.

III. APPLYING DNNS TO PD DIAGNOSIS

The aim of this work is to use deep neural networks to

diagnose defects causing PD. Six different types of defect were

constructed in oil, and PD measured using a UHF sensor [16].

The defect types are:

• Bad electrical contact (BC)

• Object at a floating potential (FL)

• Metallic protrusion, configuration 1 (PRO1)

• Metallic protrusion, configuration 2 (PRO2)

• Freely rolling particle (RP)

• Surface discharge (SD).

Data was captured in 1s bursts and phase resolved, with

a phase window of 5.625◦. This gives a phase resolved PD

(PRPD) pattern containing 50×64 = 3200 values, where each

value represents the relative amplitude of any PD recorded

during that window. This can be represented visually as a pixel

intensity in a 50× 64 pixel image, as shown in Fig. 3.

Approximately 250–300 PRPD patterns were recorded from

each defect type. Due to the higher number of neurons and

weights in a deep network, learning tends to be most accurate

with an order of magnitude more examples than this. As

a result, the original dataset was synthetically increased, as

described below.

A. Generating more data

The original data was recorded with a given level of

amplification, resulting in all PRPD patterns from one defect

type having approximately the same maximum PD amplitude.

The first measure to generate more data was simply to scale the

existing PRPD patterns by a variable amount, to give a basic

simulation of varying amplification in the sensor hardware.

For a given pattern, all values were multiplied by a scale

factor randomly selected from a reasonable range. This was

done multiple times for each pattern until the total number of

patterns for a given defect class was greater than 1000.

A second step involved making slight adjustments to the

phase window of PDs within a scaled pattern. Up to half

the values in a given pattern were swapped with a value

from a neighboring phase window within the same cycle.

This had the effect of slightly altering the pattern, while not

significantly changing the relationship between phase position

and PD amplitude.

In total, these steps increased the dataset from 1341 to 6776

patterns, giving over 1000 examples for each defect type.

Examples of original and generated patterns are shown in

Fig. 3. This full dataset was then split randomly, with 75%

of patterns used for training, and 25% used for testing.

B. Two layer networks

Initially, a shallow two-layer network was constructed, to

test the effect of number of neurons on accuracy. The input

to the network was the data from a PRPD pattern, i.e. 3200
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Fig. 3. Examples of original and generated PRPDs, as 50×64 pixel matrices
with color intensity representing PD amplitude
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Fig. 4. Recall accuracy of two layer ReLU networks

values. The number of output neurons was six: one for each of

the six defect classes, utlizing the softmax activation function.

The number of hidden neurons was varied between 10 and

3500, using the ReLU activation function. The network was

trained for up to 10 epochs, and the recall accuracy calculated.

The results (Fig. 4) show good accuracy beginning around

75 neurons, with an overall peak at 3000 neurons. This is

not surprising, as any function can be learned with two layers

given enough training time and neurons. A reasonable trade-off

between accuracy and number of neurons occurs at the ‘knee-

point’ on Fig. 4, around a layer size of 100 to 150 neurons.

C. Deep networks

Next, layers of neurons were added to investigate the effect

on accuracy. As before, there were 3200 inputs and six output

neurons. The size for every hidden layer was fixed at 100

neurons using the ReLU activation function, and the number

of hidden layers was varied from one to seven.

Fig. 5 shows that adding layers does improve accuracy up

to a certain point. Beyond five hidden layers, there is a drop

 65

 70

 75

 80

 85

 90

 1  2  3  4  5  6  7

R
e
c
a
ll 

a
c
c
u
ra

c
y
 (

%
)

Number of hidden layers of 100 neurons

Fig. 5. Recall accuracy of deep ReLU networks

TABLE I
CONFUSION MATRIX FOR RELU NETWORK WITH FIVE HIDDEN LAYERS

Predicted

Actual BC FL PRO1 PRO2 RP SD

BC 311 0 0 0 0 4

FL 1 204 12 22 27 3

PRO1 0 11 224 6 9 1

PRO2 0 17 4 229 24 12

RP 0 29 4 30 214 0

SD 4 3 1 4 1 283

off in accuracy, suggesting that five is the appropriate number

for this particular architecture. The confusion matrix for the

best performing network is shown in Table I.

D. Comparing activation function

Finally, the choice of activation function was investigated.

Deep networks of 100-neuron layers were constructed as in

the previous experiment, but with the hidden layer activation

function chosen to be sigmoid instead of ReLU.

The results (Table II) show that, as expected, the sigmoid

network struggles to learn appropriately with more than one

hidden layer. The accuracy falls sharply at two hidden layers,

and networks with more than this show a random guess level

of accuracy.

This strongly suggests that the ReLU function does indeed

enable deep learning to take place. In addition, even in the

networks with one hidden layer of 100 neurons, the ReLU

network has an improved accuracy of 81% over the sigmoid

accuracy of 72%. These new approaches to neural network

design offer improved accuracy for PD classification tasks.

TABLE II
RELATIVE ACCURACY OF SIGMOID VERSUS RELU DEEP NETWORKS

Number of hidden layers 1 2 3 4 5 6

Sigmoid accuracy 72% 41% 17% 18% 17% 18%
ReLU accuracy 81% 80% 83% 84% 86% 81%
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Fig. 6. Examples of neuron activation, visualized by input weightings. Each image represents one neuron.

E. Visualizing the learning

An interesting benefit of the deep network is that it tends

to result in sparse networks, where a relatively few number of

neurons are activated by a single input [14]. Previously this

was considered to be wasteful of training resources compared

to a compact network. With current computing resources this

is less of a concern, and holds a significant advantage for vi-

sualizing the learning that has occurred. The input weightings

reveal the specific pattern that has been learnt by that neuron.

In the case of PD diagnosis, this allows a novel way

of examining the core properties of a given defect’s PRPD

pattern. Some neurons respond very clearly to a particular

defect type, and the pattern of weights identifies the critical

information being used to make the diagnosis. Others perform

more of a supporting role, emphasising the effects of half or

quarter cycles, or other parts of the PRPD. Some examples are

shown in Fig. 6. To generate these images, the input weights

to a given neuron have been scaled to values between 0 and

255. A mid grey tone represents a weight close to zero, while

black and white represent very strong weights.

IV. CONCLUSIONS

This paper has introduced the use of deep neural networks

for diagnosis of phase resolved PD data. Data was captured

from defect samples in oil, using a UHF sensor. The effect on

the diagnosis of the number of layers, and the rectified linear

unit activation function have been explored. Compared to

shallow networks with a sigmoid activation function, accuracy

of diagnosis can be increased from 72% to 86%.

However, accuracy is only one of the benefits of deep

architectures. The increased ability to visualize the learning

that has taken place means that neural networks are less

obscure than previously thought. Examination of a neuron’s

activation can reveal interesting information about the invariant

properties of a PRPD pattern for a given defect type, as well

as giving increased confidence in the diagnosis itself.
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