
Strathprints Institutional Repository

Liu, Yongqian and Gao, Xiaoli and Yan, Jie and Han, Shuang and Infield, 

David G. (2014) Clustering methods of wind turbines and its application 

in short-term wind power forecasts. Journal of Renewable and 

Sustainable Energy, 6 (5). ISSN 1941-7012 , 

http://dx.doi.org/10.1063/1.4898361

This version is available at http://strathprints.strath.ac.uk/53896/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any  correspondence  concerning  this  service  should  be  sent  to  Strathprints  administrator: 

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42591303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk


Clustering methods of wind turbines and its application
in short-term wind power forecasts

Yongqian Liu,1 Xiaoli Gao,1,a) Jie Yan,1 Shuang Han,1 and David G. Infield2
1State Key Laboratory of Alternate Electrical Power System with Renewable Energy
Sources, North China Electric Power University, Changping District, Beijing 102206, China
2Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow,
United Kingdom

(Received 19 June 2014; accepted 30 September 2014; published online 14 October 2014)

Commonly used wind power forecasts methods choose only one representative

wind turbine to forecast the output power of the entire wind farm; however, this

approach may reduce the forecasting accuracy. If each wind turbine in a wind farm

is forecasted individually, this considerably increases the computational cost,

especially for a large wind farm. In this work, a compromise approach is developed

where the turbines in the wind farm are clustered and a forecast made for each

cluster. Three clustering methods are evaluated: K-means; a self-organizing map

(SOM); and spectral clustering (SC). At first, wind turbines in a wind farm are clus-

tered into several groups by identifying similar characteristics of wind speed and

output power. Sihouette coefficient and Hopkins statistics indices are adopted to

determine the optimal cluster number which is an important parameter in cluster

analysis. Next, forecasting models of the selected representative wind turbines for

each cluster based on correlation analysis are established separately. A comparative

study of the forecast effect is carried to determine the most effective clustering

method. Results show that the short-term wind power forecasting on the basis of

SOM and SC clustering are effective to forecast the output power of the entire

wind farm with better accuracy, respectively, 1.67% and 1.43% than the forecasts

using a single wind speed or power to represent the wind farm. Both Hopkins statis-

tics and Sihouette coefficient are effective in choosing the optimal number of clus-

ters. In addition, SOM with its higher forecast accuracy and SC with more efficient

calculation when applied into wind power forecasts can provide guidance for the

operating and dispatching of wind power. The emphasis of the paper is on the clus-

tering methods and its effect applied in wind power forecasts but not the forecast-

ing algorithms.VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4898361]

I. INTRODUCTION

As the increasingly serious problems of fossil energy depletion, environmental pollution, and the

demand for electrical energy, it is urgent to exploit the renewable energy. Wind energy is the fastest

growing renewable energy source and is now playing an important role in electricity supply.1,2

However, the intermittence and variability of wind power will bring great challenges to the

stability and power quality of the grid. In order to help solve these problems, accurate and reli-

able wind power forecasts models should be developed.3 Many researchers have made signifi-

cant efforts to develop and optimize algorithms for wind power forecasting. Commonly used

forecast methods target a single wind turbine or choose only one representative wind turbine

(RWT) to forecast the entire output power of a wind farm. Artificial neural networks in combi-

nation with the wavelet transform have been proposed for short-term wind power forecasts.4

Two neural network algorithms were studied to predict wind power which were radial basis

function (RBF) and back propagation.5
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Nevertheless, the characteristics of the output power of the entire wind farm cannot be

effectively represented by only one wind turbine. If each wind turbine is modelled separately to

forecast wind power, this will lead to huge computational costs.6 In order to reduce the risk

associated with use of a single wind turbine, as well as ensure the high computational effi-

ciency, clustering methods are adopted to cluster wind turbines of a wind farm into different

groups by identifying the similarity between them. Forecast models are then established for

each cluster, improving forecast accuracy. A novel methodology was proposed to cluster wind

turbines of a wind farm into different groups based on a particular distance measure.7 A group-

ing mechanism was established by optimized relevance vector machine to divide wind turbines

into several groups and tested the validity of the proposed model.8 However, there is limited

research on clustering methods applied in wind power forecasts; especially there is less research

for their comparison, let alone the methods to determine the optimal cluster number.

In this paper, a compromise approach of short-term wind power forecasts based on three

clustering methods, K-means, self-organizing map (SOM), and spectral clustering (SC), are

employed to cluster wind turbines into groups by capturing the similarity of wind speed and

wind power, decreasing the forecast error by smoothing effects of multi-clusters. Sihouette

coefficient and Hopkins statistics indices are used to determine the optimal cluster number. The

forecasting wind information like speed and direction are usually employed to forecast the out-

put power. However, there is no available matured numerical weather prediction (NWP) data.

So this work employs the real wind speed in replace of the NWP data and historical output

power of each wind turbine in a wind farm for forecasting. Comparing three models, the better

model can be used to provide scientific guidance for the operation and dispatch of wind farms.

This paper has a five-section structure. Section I describes the published work and the gen-

eral content of this paper. Section II describes the principles of the proposed clustering meth-

ods. Section III clusters a wind farm into groups with K-means, SOM, and SC, then determines

the optimal cluster number by Sihouette coefficient and Hopkins statistics. Section IV uses the

clustering results to forecast the output power of the entire wind farm, as well as studies an

influence of the cluster numbers on forecast accuracy and compares three clustering methods.

Section V makes the final conclusions.

II. PRINCIPLE OF PROPOSED CLUSTERING METHODS

The clustering methods employed for clustering the wind turbines of a wind farm into dif-

ferent groups are introduced below in brief.

A. K-means method

K-means clustering (MacQueen, 1967) is an unsupervised learning algorithm which is pop-

ular in cluster analysis. K-means method aims to partition a given data into k groups.9,10

Given a set of n data points (x1, x2,…, xn), where each point is a d-dimensional real vector,

K-means clustering is designed to minimize the within-cluster sum of squares. The objective

function is written as11

V ¼
X

k

j¼1

X

nj

i¼1

kxðjÞi � cjk2; (1)

where kxðjÞi � cjk2 is a distance measure between the data point x
ðjÞ
i and the cluster centre cj; k

is the number of clusters, nj is the number of data points in j cluster. For the numeric features

of data from wind farm, in this paper, the Euclidean metric is chosen as the distance measure.

K-means selects k initial cluster centres at random from the n data points, so that it may lead to

different clustering results. Another issue is how to choose the number of clusters.

B. Self-organizing map

SOM (Kohonen, 1982) is a widely used artificial neural network that is based on unsuper-

vised learning to produce a low-dimensional map from high-dimensional data. SOM includes
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an input layer and an output layer which is referred to competitive layer or Kohonen layer,

both containing several nodes. Each node of the input layer is linked to that of the output layer

by weight.12,13

Given a set of n data points X¼ (x1, x2,…, xn), where each point is a d-dimensional feature

vector, the output layer has m nodes organised in a lattice that is commonly one- or two-

dimensional. The process of the SOM algorithm is as follows:

(1) Network initialization. The weights {wj, j¼ 1, 2,…, m} from the n input nodes to the m output

nodes are initialized randomly.

(2) Input vector. The input vector X¼ (x1, x2,…, xn)
T is input to the input layer.

(3) The distance calculation. The distance from wj to input vector X is calculated by using

Euclidean metric. Seek out the winning output node x with the least distance as

x ¼ argmin
j

kX � wjk ; j ¼ 1; 2; � � �;m : (2)

(4) The learning of weights. The weight vectors are updated by the following equation:

wjðtþ 1Þ ¼ wjðtÞ þ gðtÞkXðtÞ � wjðtÞk; (3)

where g(t) is the learning rate of the t iteration, it gradually decreases to 0 as t increases. The

function is described as

g tð Þ ¼ 1

t
or g tð Þ ¼ 0:2 1� t

10000

� �

: (4)

(5) Compute the output. The output ok is continuously computed according to Eq. (5) by using the

updated weights until meeting the requirement of iteration t� tmax,

ok ¼ f ðmin
j

kX � wjkÞ: (5)

When tmax is set as 100–200, there is no noticeable change in the feature map. The output

of SOM is k winning output nodes (k � m) which are the clustering results.

C. Spectral clustering

Spectral clustering (Fiedler, 1973), written in SC, is newly developing technique in recent

years. Unlike the traditional clustering algorithms, SC is based on spectral graph theory to solve

the clustering of non-convex sphere of sample spaces, and converged to global optimal

solution.14

The basic idea of the SC is to make use of the spectrum of the similarity matrix which can

capture the nonlinear and low-dimensional manifold structure of the data to get a clustering

result of the data points.15

Given a set of n data points (x1, x2,…, xn), where each point is a d-dimensional real vector,

these vectors are clustered into k groups. The process of SC algorithm is as follows:16

(1) From the similarity matrix A�Rn�n, which is a symmetric matrix, Aij denotes the weights of

connecting the i point to the j point. Aij is denoted as

Aij ¼ exp �kxi � xjk2
r2

� �

0

i 6¼ j

i ¼ j;

8

<

:

(6)

where r is the parameter to control the spread of neighbours.

(2) The Laplacian matrix is defined as L ¼ D�1=2AD�1=2, where D is a diagonal matrix as below
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Dii ¼
X

j

Aij: (7)

(3) Find the k largest eigenvectors of L, which are orthogonal to each other, to form the matrix

C¼ (c1, c2,…, ck)�Rn�k by stacking the eigenvectors in columns.

(4) Form the normalized matrix Y from C according to the following equation:

Yij ¼
Cij
ffiffiffiffiffiffiffiffiffiffiffiffiffi

P

j C
1
ij

q : (8)

(5) In the k-dimensional space, taking each row of Y as a vector, K-means or any other algorithm

can be employed to cluster these vectors into k clusters.

(6) Assign the data point xi to cluster j only if row i of the Y is assigned to cluster j.

As SC algorithm captures the main feature of the data rather than the minor one, it has

strong robustness that is not sensitive to the irregular data.

III. CLUSTER ANALYSIS OF WIND TURBINES IN AWIND FARM

A. Clustering models structure

The structures of three proposed clustering models (K-means, SOM, and SC) are all illus-

trated in Fig. 1, containing selection of input samples, normalization processing, clustering of

wind turbines by the employed methods and determination of the optimal cluster number.

B. Clustering validity indices

In cluster analysis, the key to the quality of clustering is to choose the optimal cluster num-

ber. For K-means, SOM, and SC, the cluster number is a vital parameter. The cluster number

should be chosen appropriately, considering not only clustering the wind turbines as effectively

as possible but also ensuring higher computational efficiency of the wind power forecasts in

Sec. IV. The ideal clustering result has the feature of the smallest distance within clusters and

the largest distance among different clusters. There are many clustering validity indices to

FIG. 1. The structure of three clustering models.
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assess the validity of clustering as well as make a choice of the optimal cluster number, such

as Calinski-Harabasz index,17 Davies-Bouldin index,18 and Sihouette coefficient index.19 In this

paper, two clustering validity indices are used to evaluate the quality of clustering and deter-

mine the optimal cluster number, which are Sihouette coefficient (written as S) and Hopkins

statistics (written as H).20,21

The Sihouette coefficient in d-dimensions is defined as

si ¼
bi � ai

max ai; bi½ � ; (9)

ai ¼
1

nc � 1

X

i;j2Cc;i 6¼j

d i; jð Þ; (10)

bi ¼ minp;p 6¼c

1

np

X

i2Cc;j2Cp

d i; jð Þ
" #

; (11)

where n is the number of samples, c is the number of clusters, ai is the average distance from i

sample to j (j 6¼ i) samples within the same Cc cluster, bi is the minimum average value from i

sample within the Cc cluster to j samples with the Cp cluster which i does not belong to.

si� [�1, 1], when it is closer to 1, the clustering result is more effective.

Given a set of n data points X¼ {xi, i¼ 1 to n}, where each point is a d-dimensional vec-

tor, the Hopkins statistics is defined as

H ¼

P

m

j¼1

uj

P

m

j¼1

uj þ
P

m

j¼1

wj

; (12)

uj ¼ min
v2X

fdistðyi; vÞg; (13)

wj ¼ min
v2X;v6¼yi

fdistðzj; vÞg; (14)

where Y¼ {yj, j¼ 1 to m} is m sampling points randomly chosen from the d-dimensional sam-

pling window (m � n), uj is the minimum distance from yj to its nearest point in X, and wj is

the minimum distance from a randomly selected point zj in X to its nearest point in X, but not

Y. When uj is the same as wj (H is about 0.5), it implies the data points are evenly distributed.

However, if the points are unevenly distributed and can be clustered into different groups, H is

supposed to be larger or much less than 0.5. Therefore, the optimal cluster number can be cho-

sen by comparing the average H of each cluster at the k cluster number.

C. Cluster analysis of an example

1. Data

The data are from a wind farm in north China only including mean wind speed and wind

power of each wind turbine from SCADA. The wind farm has 33� 1.5MW wind turbines. All

the data points are at 2 h intervals covering from January 4th to September 15th in 2011. The

total number of the time-series of wind speed and output power is 3004.

2. Data preprocessing

In order to ensure the accuracy and efficiency of the clustering models, the primitive data

needs to be preprocessed to guarantee its validity. The improper wind speed which caused by

malfunction of the anemoscope and the missing or improper output power which is normal or
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abnormal stop of 33 wind turbines is eliminated to make wind speed and output power have a

one-to-one correspondence in time-series. After the process of deletion, 10.5% of the primitive

data has been removed.

Wind power output from each wind turbine is affected by wind speed, wind direction, tem-

perature, pressure, and other factors. While wind speed is the main factor affecting power out-

put alone it will not allow the best forecasts of power. Therefore, wind power as well as wind

speed are taken as the inputs for clustering. It is difficult for clustering methods to capture the

similarity and major features of input data with high dimensions and a wide range. In order to

diminish the difficulty, the input samples are reduced into low-dimensional ones by the Eqs.

(15)–(18), as well as normalized within the range between 0 and 1 via Eqs. (19)–(22),22 mini-

mizing the difficulty of clustering and maintaining correlation among the data set,

pmean ið Þ ¼

P

n

j¼1

pj ið Þ

n
; (15)

vmean ið Þ ¼

P

n

j¼1

vj ið Þ

n
; (16)

psd ið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

j¼1

pj ið Þ � pmean ið Þ
� �2

v

u

u

t ; (17)

vsd ið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

j¼1

vj ið Þ � vmean ið Þ
� �2

v

u

u

t ; (18)

where vj(i) and pj(i) indicate the j wind speed and power of i wind turbine, n is the number of

data points. pmean(i) and vmean(i) express average wind power and speed of i wind turbine, psd(i)

and vsd(i) represent standard deviation of wind power, and speed of i wind turbine,

pmean1 ið Þ ¼ pmean ið Þ � pmean minð Þ
pmean maxð Þ � pmean minð Þ ; (19)

psd2 ið Þ ¼ psd ið Þ � psd minð Þ
psd maxð Þ � psd minð Þ ; (20)

vmean3 ið Þ ¼ vmean ið Þ � vmean minð Þ
vmean maxð Þ � vmean minð Þ ; (21)

vsd4 ið Þ ¼ vsd ið Þ � vsd minð Þ
vsd maxð Þ � vsd minð Þ ; (22)

where pmean1(i), psd2(i), vmean3(i), and vsd4(i) are the normalized input samples, pmean(min),

pmean(max) and psd(min), psd(max) are the minimum and maximum of pmean and psd, so are

vmean(min) vmeans(max) and vsd(min) vsd(max).

Then, the input samples matrix X�R33�4 is assigned as

X ¼

pmean1ð1Þ psd2ð1Þ vmean3ð1Þ vsd4ð1Þ
pmean1ð2Þ psd2ð2Þ vmean3ð2Þ vsd4ð2Þ

� � � � � � � � � � � �
pmean1ð33Þ psd2ð33Þ vmean3ð33Þ vsd4ð33Þ

2

6

6

6

6

4

3

7

7

7

7

5

:
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The input data points of 33 wind turbines after preprocessing are given in Fig. 2. Four

groups of data have the similar trend from 1 to 33 wind turbine. This implies the wind speed

and output power samples with large mean value have large standard deviation.

3. Clustering validity results

Due to the variability of K-means and SOM clustering results, the clustering result with the

maximum S in 10 iterative computations is chosen at the k number of clusters. The proposed

clustering models are carried out to cluster the wind turbines, respectively, at 2 to 8 cluster

numbers.

The average Sihouette coefficient (S) and Hopkins statistics (H) plotted against cluster

number are shown in Figs. 3(a) and 3(b). As can be seen in Fig. 3(a), the average S of three

clustering methods is basically increasing with number of clusters. When k is more than 5, the

average S grows very slowly or even decreases a bit, mainly because the real cluster number is

less than the set value. For one clustering method and the same samples, clustering results with

larger cluster number have the higher average S, which means the clustering results are more

reasonable. However, too high cluster number will cause more computational costs during the

cluster and forecast modelling. Hence, as for this index, balancing clustering effect and compu-

tational efficiency, k¼ 5 may be the optimal cluster number.

Fig. 3(b) shows the average H falls as cluster number (k) rises. When k varies from 1 to 5,

the decline from 0.72 to 0.5 or so of the average H is because the distribution of the data

within the same cluster becomes more symmetrical and random. When k is more than 5, aver-

age H decreases less than 0.5. As all clusters with the average H of 0.5 at k cluster number are

evenly distributed, H¼ 0.5 is taken as the requirement of selecting the optimal cluster number.

For K-means, k¼ 5 (average H¼ 0.53) is closer to the requirement of H¼ 0.5 than k¼ 6 (aver-

age H¼ 0.41). For SOM, k¼ 5 (average H¼ 0.50) corresponds to the requirement. For SC,

k¼ 5 (average H¼ 0.51) is closer to the requirement than k¼ 6 (average H¼ 0.46). Hence,

k¼ 5 could be taken as the partition to identify the natural clusters in the data sets.

It can be seen that it is much easier to determine the optimal cluster number quantitatively

by Hopkins statistics index than by Sihouette coefficient one. Combining the two indices, the

optimal cluster number of 33 wind turbines is chosen as 5.

4. Clustering of wind turbines results

The clustering results of three clustering methods are shown in Table I. It can be seen that every

cluster of three methods has more than four wind turbines, avoiding the situation of the cluster with

one isolated wind turbine. The wind turbines in the first and fifth cluster of three methods are identi-

cal. While in other clusters, there are some differences among the methods, indicating the similar-

ities of the corresponding wind turbines are a little obscure and not easy to identify.

FIG. 2. The preprocessed input data of 33 wind turbines.

053119-7 Liu et al. J. Renewable Sustainable Energy 6, 053119 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

111.207.1.72 On: Wed, 15 Oct 2014 15:03:32



For each cluster, the RWT is selected by wind power correlation coefficients of wind tur-

bines in the same cluster. For example, one cluster has five wind turbines which are 29#, 30#,

31#, 32#, and 33#. The correlation coefficients between five turbines’ output power are shown

in Table II. 32# wind turbine with the highest average correlation coefficients (it is 0.966) is

chosen to represent the cluster.

IV. SHORT-TERM WIND POWER FORECASTS WITH CLUSTERING METHODS

A. The fundamentals of radial basis function

In this study, the RBF neural network is used to conduct the short-term wind power fore-

casts 72 h in advance. RBF neural network is a three-layer feed forward network, including the

input layer, hidden layer, and output layer.23 RBF can give a reasonable solution for such a

TABLE I. Clustering results of K-means, SOM, and SC.

Cluster

K-means SOM SC

WT in the cluster RWT WT in the cluster RWT WT in the cluster RWT

1 1,4,9,18,21,22 1 1,4,9,18,21,22 1 1,4,9,18,21,22 1

2 2,5,23,26,28 23 2,5,23,25,26,28 25 2,23,24,26–28 23

3 6,7,10–14,24,25 10 7,10–13,24,27 10 5–7,10–14,25 7

4 27,29–33 32 6,14,29–33 29 29–33 32

5 3,8,15–17,19,20 16 3,8,15–17,19,20 16 3,8,15–17,19,20 16

FIG. 3. Average S and H plotted against number of clusters.
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highly nonlinear problem as wind power forecasts due to its structure characterized by a combi-

nation of non-supervised (in the hidden layer) and supervised (in the output layer) training.24

Given an input vector x�Rn, the output of the network f(x) is given by

f ðxÞ ¼
X

N

i¼1

wiGðkx� cikÞ; (23)

where N is the number of neurons in the hidden layer, ci is the cluster centre for neuron i, and

wi is the weight between hidden layer and output layer. Gðkx� cikÞ is Gaussian function, it is

expressed by

G kx� cikð Þ ¼ exp �kx� cik2
2r2i

 !

; (24)

where ri is the width of nonlinear transforming unit.

B. Evaluation indices

Two commonly used statistical error evaluation indices are employed to judge the perform-

ance of the wind power forecasts based on K-means, SOM, and SC methods. Root mean square

error (RMSE) in Eq. (25) is calculated for all validation period, which can give a better evalua-

tion of prediction error.8,25 Mean absolute error (MAR) is another used error criteria in Eq. (26),

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

Pai � Ppið Þ2
s

Cap� ffiffiffi

n
p ; (25)

MAE ¼

P

n

i¼1

jPai � Ppij

Cap� n
; (26)

where Pai and Ppi, respectively, signify the actual and forecast value of wind power at i time;

Cap indicates the installed capacity of a wind farm; n is the number of forecast samples involved.

C. Case study

1. Selection of training samples

With the same data in Sec. III, considering lack of the numerical weather prediction infor-

mation at the spot of each wind turbine as well as wind direction plus other factors of each

wind turbine collected from SCADA, historical wind speed data of the representative wind tur-

bine in each cluster is the main input data to the forecasting network, while the total output

TABLE II. Wind power correlation coefficients in the cluster. The boldface value shows the highest average correlation

coefficient.

WT 29# 30# 31# 32# 33#

29# 1

30# 0.974 1

31# 0.968 0.961 1

32# 0.962 0.964 0.965 1

33# 0.945 0.944 0.949 0.972 1

Average 0.962 0.961 0.961 0.966 0.952

053119-9 Liu et al. J. Renewable Sustainable Energy 6, 053119 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

111.207.1.72 On: Wed, 15 Oct 2014 15:03:32



power of wind turbines in the same cluster is taken as training target. 80% of the available

wind speed and power data are considered as training samples, and 20% as test samples, to

evaluate the accuracy of short-term wind power forecasts with the proposed clustering methods.

2. Verification results of optimal cluster number

The wind power forecast errors (RMSE and MAE) on the basis of three clustering methods

plotted against cluster number are shown in Figs. 4(a) and 4(b). The red lines in Figs. 4(a) and

4(b) represent the RMSE and MAE values of forecast power without clustering methods. The

black curves are beneath the red lines, shown that the proposed clustering methods are effective

to improve wind power forecasts. Both RMSE and MAE values basically reduce with the

increase of cluster number, it proves that cluster number is an important parameter to forecast

accuracy. At 2 to 5 cluster numbers, the downward trend of RMSE and MAE is obvious, while

it gets to 6, 7, or even larger, the improvements of forecast accuracy is much smaller.

As a result, the cluster number of 5 in this case can ensure better forecast accuracy as well

as lower computational costs caused by too large cluster number. Meanwhile, it verifies the

optimal cluster number got by Sihouette coefficient and Hopkins statistics is feasible.

3. Comparison results of three clustering methods

The wind power forecast errors of three clustering methods at optimal cluster number of 5

are shown in Table III. Non-clustering represents wind power forecasts by using an optimal

wind turbine of all the ones. The results show that owing to the smoothing effects of multiple

FIG. 4. Forecast errors plotted against number of clusters.
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clusters than only one wind turbine, the forecasts with the proposed clustering methods all have

better forecast accuracy than non-clustering, improving the RMSE of forecast values by

(6.21%–4.86%)¼ 1.35% with K-means, (6.21%–4.54%)¼ 1.67% with SOM, and

(6.21%–4.78%)¼ 1.43% with SC.

Comparing the K-means, SOM, and SC models, the forecast with SOM by the RMSE

4.54% performs better than K-means 4.86% and SC 4.78% because of its strong capacity resist-

ant to the interference of input data by neural nodes.

The real and forecast values of output power for 5 days are shown in Fig. 5. Forecasts

with three clustering models have more accurate forecast value which is more approximate to

real value by smoothing effect than non-clustering. Figs. 6(a)–6(d) show the relative error prob-

ability distribution of forecast value and real value of output power. The shapes of power

relative error probability distribution of three clustering models are tighter and higher than non-

clustering model. It shows K-means with 80.1% power relative error between �5% and 5%,

SOM with 84.1% and SC with 81.1% have effectively decreased the forecast errors in contrast

to the commonly used forecast method (non-clustering) with 69.2%. In addition, the improve-

ment of SOM is more significant than the others.

The 4th row of Table II shows the runtime of the clustering process of three models. The

runtime of K-means and SOM clustering is more than SC, because SC clustering result is con-

stant, while K-means and SOM clustering results are changeable. It is necessary for K-means

and SOM to iterate 10 times to select the best clustering result, that leading to longer runtime.

Hence, SC is more suitable for clustering large-scale wind farms because of its stability of clus-

tering result. While the iteration clustering of K-means and SOM may run for a longer time,

largely reducing the effectiveness.

As a result, short-term wind power forecasts on the basis of SOM and SC methods are

both effective to lower the risk of forecast errors and can supply more scientific guidance for

TABLE III. Forecast errors comparison of non-clustering and clustering methods.

Methods RMSE(%) MAE(%) Runtime(s)

Non-clustering 6.21 4.18 —

K-means 4.86 3.15 18.98

SOM 4.54 2.81 47.20

SC 4.78 3.01 0.11

FIG. 5. The real and forecast values of output power for 5 days.
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the operating and dispatching of wind power. It is effective and feasible to use Sihouette coeffi-

cient and Hopkins statistics to select the optimal cluster number which is important to power

forecast effect, especially Hopkins statistics, which can quantitatively make a choice of the

number.

V. CONCLUSION

This paper employs three clustering methods (K-means, SOM, and SC) for improving

short-term wind power forecasts. The following conclusions can be drawn:

(1) The clustering models of K-means, SOM, and SC are effective in generating clusters of wind

turbines within a wind farm. Using the clusters can improve the short-term wind power fore-

cast accuracy, respectively, by 1.35%, 1.67%, and 1.43% in relation to the non-clustering anal-

ysis. Among the proposed methods, SOM, and SC methods are the most effective in terms of

power forecast accuracy. For forecast accuracy, SOM model is best, while for computational

efficiency, SC model is best.

(2) For the adaptability of clustering models, SOM is more suitable for clustering the medium-

scale wind farms, since it provides the highest forecast accuracy. While for large scale wind

farms, the computing efficiency of SC can make it more useful.

(3) Cluster number should be chosen reasonably which is important to wind power forecast accu-

racy. It is demonstrated that both the Hopkins statistics index and the Sihouette coefficient

index are effective in selecting the optimal number of clusters, especially Hopkins statistics,

which can quantitatively make a decision of the number.
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