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Abstract

The main objective of this study is to develop a CAE-based application with a convenient GUI for identification and verification of material

parameters for hyperelastic models available in the current release of the FE-code ANSYS Mechanical APDL. This Windows-application

implements a 2-step procedure: 1) fitting of experimental stress-strain curves provided by user; 2) verification of obtained material parameters

by the solution of a modified benchmark problem. The application, which was developed using Visual Basic .NET language, implements a

two-way interaction with ANSYS as a single loop using the APDL-script as an input and text, graphical and video files as an output. With this

application, 9 isotropic incompressible hyperelastic material models are compared by fitting them to the conventional Treloar’s experimental

dataset (1944) for a vulcanised rubber. The ranking of hyperelastic models is constructed according to the models efficiency, which is

estimated using a fitting quality criterion. The models ranking is done based upon the complexity of their mathematical formulation and

ability of accurately reproducing the test data. Recent hyperelastic models (Extended Tube and Response Function) are found more efficient

compared to conventional ones. The verification is done by the comparison of an analytical solution to a FEA result for the benchmark

problem of rubber cylinder under compression proposed by Lindley (1967). In the application, the classical formulation of the benchmark

is improved mathematically to become valid for larger deformations. The wide applicability of the proposed 2-steps approach is confirmed

using stress-strains curves for 7 different formulations of natural rubber and 7 different grades of synthetic rubbers.
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Introduction

This study addresses nine isotropic incompressible hypere-

lastic models for rubber-like materials, which are available in

the current release of FE-code ANSYS 1 . ANSYS Mechan-

ical APDL v. 15.0 has been chosen for the implementation of

the WARC research project C22, since it has been a leading

CAE product for FE-analysis for over 40 years. Moreover, it

is capable of all the essential FE-simulation features required

for the analysis of elastomeric components and comprises

recently developed hyperelastic models. Totally, ANSYS

includes the following models1:

• Nearly-incompressible isotropic models: Neo-

Hookean3,4, Mooney-Rivlin5,6, Polynomial Form7,

Ogden Potential8, Arruda-Boyce9, Gent10, Yeoh11,

and Extended Tube12.

• Compressible isotropic models: Blatz-Ko13 and Ogden

Compressible Foam14 options are applicable to com-

pressible foam or foam-type materials.

• Nearly-incompressible isotropic response function

hyperelastic model. The “response function” model in

ANSYS is equivalent to the Marlow model15 imple-

mented in ABAQUS and Sussman-Bathe model16

implemented in ADINA. This model is an exception
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from classification, because it obtains the constitutive

response functions directly from experimental data.

• Invariant-based anisotropic strain-energy potential.

It should be noted that anisotropic and compressible

isotropic models are out of the scope of this study.

Over the last decade, a significant number of reviews

and comparative studies on hyperelastic constitutive models

has been published. Availability of these studies is caused

by a great choice of hyperelastic material models and rec-

ommendations17–19 for their selection and application in

FEA. To describe the elastic behaviour of rubber-like mate-

rials, numerous specific forms of strain energy functions

have been proposed in the literature so far. They are per-

manently evolving and improving in mathematical formu-

lations, because of a great demand for a reliable constitu-

tive model to be used in FE-simulations for a variety of

applications. Generally, these studies address the ability of

hyperelastic models to capture the complex behaviours of

rubber-like materials including the material model stability

aspect and quality of experimental data fitting. Seibert and

Schöche20 compared six different models using their own

experimental data obtained with uniaxial and biaxial ten-

sion tests on the 17 wt % carbon black-filled HNBR rubber.

Boyce and Arruda21 compared five models using the classi-

cal data set by Treloar22 for uniaxial and biaxial tension and

pure shear tests on 8%S vulcanised rubber. Xia et al.23 com-

pared three compressible hyperelastic models using their

own experimental data obtained with uniaxial tension tests

on five variants of rubber compounds. Chagnon et al.24

compared three recent models using Treloar’s22 set of exper-

imental data. Attard & Hunt25 considered experimental data

of different authors for five different deformation modes to

demonstrate the efficiency of their proposed model. Mar-

ckmann & Verron26 published a thorough comparison of

twenty hyperelastic models using two classical sets of exper-

imental data – Treloar’s22 and biaxial extension of the sheet

specimens made of isoprene rubber vulcanizate by Kawa-

bata et al.27. Moreover, a ranking of these twenty models

with respect to their ability to fit test data is established

by Marckmann & Verron26, highlighting new efficient con-

stitutive equations that could advantageously replace well-

known models. The corresponding material parameters for

both sets of experimental data22,27 are identified using own

fitting procedure and reported in Ref.26 Ruíz & González28

present a review of the application of hyperelastic mod-

els to the analysis of fabrics using FEA. For this purpose

seven models available in ANSYS were compared using

own experimental data obtained with uniaxial and biaxial

tension and simple shear tests on a fabric. In result, a com-

parison and ranking of models were implemented through

the 3D benchmark problem of a rigid body in contact with

a hyperelastic fabric. Vahapoǧlu & Karadeniz29 provided

a comprehensive bibliography (1930 – 2003) containing a

list of references on the strain energy functions for rubber-

like materials on isothermal condition. The classification of

models29 includes eighty seven material models, and it is

based on either specific strain energy function formulations

or the discussions on such suggested forms using the phe-

nomenological approach. Another bibliographic review on

constitutive models used in FEA packages for analysis of

rubber components was proposed by Ali et al.30 Dimitrov31

discussed three classes of hyperelastic models (phenomeno-

logical, response-type and micromechanical), which are

available in ANSYS 13. The ranking31 of models is also pro-

posed according to their capability of accurately reproducing

the multiaxial loading states observed in reality. Li et al.32

compared classical Mooney-Rivlin5,6 and Ogden8 models

using their own experimental data obtained with uniaxial,

biaxial and planar tension tests on natural rubber specimens

filled with 46 phr carbon black. One of the most recent and

comprehensive comparative studies of hyperelastic models

is presented by Steinmann and his co-workers33,34. They

provided both accurate stress tensors and tangent opera-

tors for a group of totally twenty five phenomenological

and micromechanical models at large deformations (14 con-

ventional models in Ref.33 and 11 more recent models in

Ref.34). For comparison of all selected models in repro-

ducing the well-known Treloar’s experimental data22, the

analytical expressions for the three homogeneous deforma-

tion modes (uniaxial tension, biaxial tension and pure shear)

have been derived and the performances of the models are

analysed in Refs33,34. Finally, Beda35 developed a mathe-

matical approach for the best way to structure incompress-

ible hyperelastic models, and applied it to the estimation

of convectional phenomenologicalmodels using Treloar’s22

dataset.
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Table 1. Comparison of estimated parametric errors for all incompressible isotropic hyperelastic material models supported by ANSYS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Mooney-Rivlin 5.192 7.677 5.968 2.544

2 Ogden 5.189 3.643 4.381 5.792 1.366 1.964 1.548

3 Polynomial 5.192 5.968 2.544 1.166

4 Yeoh 2.848 3.595 2.922 3.779 3.583 4.232 4.922 5.624

5 Extended tube 0.686

6 Arruda-Boyce 2.499

7 Gent 2.161

8 Neo-Hookean 2.848

9 Response function 0.184

number of parameters
material modelno.

Assessment of hyperelastic models effi-

ciency

Curve fitting tools

The ANSYS curve fitting tool36 is an application embedded

into ANSYS for estimating material constants by inputting

user’s experimental data. Quality of the fitting is assessed

by comparing visually the curves obtained with hyperelas-

tic material models to experimental data. User’s stress-strain

curves can be converted to any of the supported hyperelastic

models mentioned above. The curve fitting can be performed

either interactively (GUI) or via batch commands by doing

the 7-steps procedure36. In this study, ANSYS curve fitting

tool is operated in batch mode by the external application

using APDL commands.

Alternative curve fitting tools for hyperelastic and other

non-linear material models are available as stand-alone

applications and add-ins for other CAD/CAE products:

1. MCalibration37 – a software, which enables semi-

automatic extraction of pertinent material parameters

from test data for a number of advanced non-linear

material models.

2. Hyperfit38 – a curve fitting utility for automatic param-

eter identification for a large number of hyperelastic

constitutive models.

3. Curve fitting tools incorporated into FE-codes of alter-

native CAE-systems (e.g. ABAQUS, COMSOL and

MSC Marc) and FE-addins of CAD-systems (e.g. Creo

Simulate and SolidWorks Simulation).

These tools are different in their functionality, mathematical

methods for fitting, number and types of supported material

models. All applications support conventional hyperelastic

material models like Mooney-Rivlin5,6, Ogden8, Arruda-

Boyce9, Gent10, Yeoh11, etc. Some of these tools support

more recent advanced material models, which require more

computational efforts, like Extended Tube model12.

Least squares fit analysis

The curve fitting process is based upon a regression anal-

ysis using the computational method called least squares

method39. By performing a least squares fit analysis the

material constants can be determined from experimental

stress-strain data and constitutive equations for the principal

true stress σ11 under uniaxial and biaxial tension and pure

shear correspondingly:

σ11 = 2
(

λ 2
1 −λ−1

1

)

[

∂W

∂ I1

+λ−1
1

∂W

∂ I2

]

, (1)

σ11 = 2
(

λ 2
1 −λ−4

1

)

[

∂W

∂ I1

+λ 2
1

∂W

∂ I2

]

, (2)

σ11 = 2
(

λ 2
1 −λ−2

1

)

[

∂W

∂ I1

+
∂W

∂ I2

]

, (3)

where λ1 – 1st principal stretch ratio, W – strain energy den-

sity function defined by material model, I1 and I2 - 1st and

2nd principal strain invariants correspondingly. Equations

(1)-(3) are fitted simultaneously to the available experimen-

tal curves. Briefly, the least squares fit minimises the sum of

squared error (SSE) between experimental and Cauchy pre-

dicted stress values. The sum of the squared error or error

norm is defined by:

Err =
n

∑
i=1

wi

[

σ
exp
i −σ

eng
i (c j)

]2
, (4)

where Err – SSE or least squares residual error; σ
exp
i – exper-

imental stress values; σ
eng
i – engineering stress values as
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functions of hyperelastic material constants; n – number of

experimental data points; and wi – weights associated with

different data points, if a non-normalised or weighted error

norm is used. For example, if the error in the ith observation

is approximately ei, then the weight is defined as wi = 1/ei.

If a normalised (non-weighted) error norm is used for the fit

analysis then wi = 1.

Equation (4) is minimised by setting the variation of the

squared error to δErr2 = 0. This yields a set of simultane-

ous equations which are used to solve for the hyperelastic

constants:

∂Err2

∂c1

= 0,
∂Err2

∂c2

= 0, . . . etc. (5)

For the pure shear case, the hyperelastic constants can-

not be uniquely determined from Eq. (3). In this case, the

shear data must by supplemented by either or both of the

other two types of test data to determine the constants using

Eqs (1) and (2).

Fitting quality criteria

In order to choose an optimal or the most efficient hyperelas-

tic model from the variety of the available models based upon

the fitting results, some choice criteria are required. These

criteria were proposed by Chagnon et al.24 as follows:

1. The model should be able to accurately reproduce the

whole “S”-shaped form of experimental stress-strain

curves at large deformation;

2. The change of deformation modes should not be prob-

lematic, i.e. if the model behaves satisfactorily in uni-

axial tension, it should also be quite accurate in simple

shear or in biaxial extension;

3. The number of relevant material parameters must be

as small as possible, in order to reduce the number of

experimental tests needed for their identification;

4. The mathematical formulation has to be quite simple

to render possible the numerical implementation of the

material model.

This list can be extended by recommendations from ANSYS

documentation36 as follows:

1. Error norm (or SSE), defined by Eq. (4) using least

squares fit analysis, should have a minimum value for

the model when compared to other less efficient models;

2. A hyperelastic model based on a high-order polynomial

for a strain-energy function should pass a stability check.

This requirement36 means that a nonlinear material model is

stable if the secondary work required for an arbitrary change

in the deformation is always positive: dσi j dεi j > 0, where

dσi j – change in the Cauchy stress tensor corresponding to

a change in the logarithmic strain dεi j.

Since the simplicity of the material model is as much

important as a goodness of fitting provided by it, a new fitting

quality criterion is proposed. This criterion is a parametric

error Errp – product of the error norm Err using Eq. (4) and

number of non-zero material parameters in the hyperelastic

model Np:

Errp = Err ·Np, (6)

where both Err and Np need to be minimised to provide an

optimal quality material model. Minimum Np indicates the

simplest material model, while minimum Err indicates the

most accurate fitting.

Hyperelastic models ranking

ANSYS documentation36 provides the following recom-

mendation for the selection of optimal hyperelastic model

according to the strain range ∆ε of their applicability:

• Neo-Hookean model is valid at ε < 30% (defined by 1

parameter),

• Mooney-Rivlin model is valid at ε < 100% (for 2 and 3

parameters) and at ε < 200% (for 5 and 9 parameters),

• Polynomial Form model is valid at ε < 300% (for 3rd

order),

• Arruda-Boyce and Gent models are valid at ε < 300%

(both contain 2 parameters),

• Yeoh model is valid at ε < 300% (for 3rd order),

• Ogden model is valid at ε < 700% (for 3rd order).

This recommendation includes only conventional models

and defines the Neo-Hookean model3,4 as an optimal choice

for a narrow strain range ∆ε , Arruda-Boyce9 and Gent10

models – for a moderate ∆ε , Ogden model8 – for a wide ∆ε .

Analogically to comparative studies by Steinmann et

al.33,34, Dimitrov31, Ruíz & González28, Marckmann &

Verron26, an assessment of the fitting quality and efficiency

for hyperelastic models was done. The given comparative

study is based on Treloar’s22 set of experimental data includ-

ing uniaxial, biaxial and planar curves. This study of natural
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Fig. 1. Comparison of estimated parametric errors for all incompressible isotropic hyperelastic material models supported by ANSYS

vulcanised 8%S rubber is one of the earliest comprehensive

experimental studies of elastomers under various types of

deformation. This set of data has been used later in many

theoretical studies for the formulation, validation and cali-

bration of several hyperelastic models, e.g. Ogden8, Arruda-

Boyce9, Extended Tube12, etc. It also has been used as the

basis for comparison of material models in many reviews,

such as Boyce and Arruda21, Attard & Hunt25, Marckmann

& Verron26, Steinmann et al.33,34, Li et al.32

In contrast to26,33,34, the number of models participating

in this assessment was limited to only nine isotropic incom-

pressible models supported by ANSYS for non-linear FEA.

Compared to the studies28,31 dealing with ANSYS models

only, current work employs a strict mathematical criterion

(6) for the model assessment and provides a corresponding

hyperelastic model ranking presented in Table 1 and illus-

trated on chart in Fig. 1. Table 1 lists the values of Errp for

all formulations of the models with different Np highlighting

the minimum values of Errp by colour. Figure 1 illustrates

Table 1 in a convenient chart form, which demonstrates the

effect of Np on the model efficiency – smaller bars indicate

better efficiency.

The error norm Err defined by Eq. (4) and required for

Eq. (6) was calculated twice for each formulation of model.

For the models with small number of parameters (Np ≤ 5),

a normalised Err produced better fitting, while for the mod-

els with many parameters (Np > 5), a non-normalised Err

was better. Hence, a smaller value of Err was considered

for each model in the assessment in Table 1 and Fig. 1. As a

result, the following hyperelastic models ranking in order of

their efficiency using the parametric error criterion (6) was

produced with corresponding constants for Treloar’s data22:

1. Response Function (RF) model1 with Errp = 0.184.

2. Extended Tube (ET) model12 with Errp = 0.686

and parameters: Gc = 0.19232455 [MPa], Ge =

0.19235307 [MPa], β = 0.25976733, δ = 0.095741511.

3. 4th order of Polynomial Form (PF) model7 with Errp =

1.166 and parameters: C10 = 1.659 ·10−1, C01 = 2.147 ·

10−2, C20 = −4.511 · 10−3, C11 = 5.276 · 10−4, C02 =

−2.241 ·10−4, C30 = 6.504 ·10−4, C21 =−1.031 ·10−3,

C12 = 9.082 ·10−4, C03 = −3.074 ·10−4, C40 = 8.674 ·

10−6, C31 = −8.553 · 10−5, C22 = 7.326 · 10−5, C13 =

2.273 ·10−7, C04 =−5.564 ·10−9 [MPa].
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Fig. 2. Comparison of FE-simulations of the basic hyperelastic tests using the Response Function model1 with Treloar’s experiments22

4. 5th order of Ogden model8 with Errp = 1.366 and

parameters: µ1 =−6.23 ·107 [MPa], α1 = 3.991 ·10−3,

µ2 = 1.80355 · 10−21 [MPa], α2 = 24.6764 · 101, µ3 =

2.3324 ·10−3 [MPa], α3 = 4.67, µ4 = 2.235 ·107 [MPa],

α4 = 6.29735 · 10−3, µ5 = 1.0854 · 108 [MPa], α5 =

9.94115 ·10−4.

5. Gent model10 with Errp = 2.161 and parameters µ =

0.273 [MPa], Jm = 84.623 and Arruda-Boyce (A-

B) model9 with Errp = 2.499 and parameters µ =

0.269 [MPa], λL = 4.635.

6. 9-parameters form of Mooney-Rivlin (M-R) model5,6

and 3rd order of PF model7 with Errp = 2.544 and

parameters: C10 = 1.7225 · 10−1, C01 = 9.5227 · 10−3,

C20 = −1.9484 · 10−3, C11 = 3.4357 · 10−4, C02 =

−1.2422 · 10−4, C30 = 4.6579 · 10−5, C21 = 5.2889 ·

10−8, C12 = 3.56 ·10−6, C03 =−1.2791 ·10−7 [MPa].

Overview of the efficient models

In this ranking all the material parameters for the first 6

places were obtained using the non-normalised form of

SSE (4). The ranking recommends the models, which are

quite different from the ANSYS recommendations36 above.

However, this ranking complies well with previous compar-

ative studies and corresponding rankings26,28,31,33,34. The

RF model taking the 1st place was denoted in the ranking

of ANSYS models31 as the most effective model, which is

able to fit experimental data in the complete range and not

requiring material parameters identification. According to

Dimitrov31, the RF model uses experimental data to deter-

mine the derivative of the hyperelastic potential with respect

to the three principal invariants (constitutive response func-

tions). Based on this information further, the material tangent

matrix (second derivative of the hyperelastic potential) is

calculated and used in the construction of the element incre-

mental stiffness matrices. Therefore, the RF model is differ-

ent from other hyperelastic models, formulated using strain

energy function W , since it is a kind of computational model

rather than a material model. Due to a not possible direct

comparison of the RF model to experimental data in the

ANSYS Curve Fitting Tool, the numerical results for uniax-

ial, biaxial, planar tests were obtained using FE-simulations

with 3D models of specimens using SOLID285 FEs. Since

the RF model doesn’t contain any explicit material parame-

ters, it matches ideally the experimental data22 as shown in

Fig. 2. Its only disadvantage is that it is not valid for extrap-

olation, since out of the experimental range the RF model

produces purely elastic flow with zero stiffness E = 0.

It should be noted that the error norm Err evaluation for

the RF model was done in different way than for the rest

of the models in ANSYS Curve Fitting Tool. The results

of FE-simulations for each of the test (uniaxial, biaxial and
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Fig. 3. Comparison of FE-simulations of the basic hyperelastic tests using the Extended Tube model12 with Treloar’s experiments22

planar) were fitted by polynomials of the 6th order in Excel:

σu =−6.88038 ·10−5
· ε6 + 4.46440 ·10−3

· ε5

−5.47669 ·10−2 · ε4 + 2.89142 ·10−1 · ε3

−6.94797 ·10−1 · ε2 + 1.01823 · ε,

(7)

σb =−2.86815 ·10−2
· ε6 + 3.15550 ·10−1

· ε5

−1.35293 · ε4+ 2.90999 · ε3

−3.26396 · ε2+ 2.19104 · ε,

(8)

σp =−8.94005 ·10−3
· ε6 + 1.17005 ·10−1

· ε5

−5.96681 ·10−1 · ε4 + 1.51540 · ε3

−1.99955 · ε2+ 1.58411 · ε.

(9)

These polynomial functions σu(ε), σb(ε) and σp(ε) then

were calculated at the same strain ε values as experimental

curves and compared to experimental stress σ values. Thus,

the normalised error norms Err were calculated for each

curve using Eq. (4) and then summed up as Errp = 0.184

producing the results reported in Table 1 and Fig. 1.

The second place is given to the ET model, which

took the first place in rankings26,31,33,34. Referring to Dim-

itrov31, from the hyperelastic models requiring determina-

tion of material parameters the best one is the ET model

because it involves only four parameters and its derivation

is physically-motivated. Thus, the ET model matches the

experimental data22 almost perfectly as shown in Fig. 3.

Moreover, it is valid for extrapolation, since out of the exper-

imental range the ET model keeps the realistic slope of the

stress-strain curve.

An important feature of the ET model is that it is very

sensitive to the initial values of parameters used as an input

for fitting analysis when compared to all other models.

Therefore, in most cases only a good guess of parameters,

which all are 0 < par < 1, can guarantee a successful fit-

ting result. There are several sets of material parameters for

the ET model available in literature26,34 to fit the Treloar’s

data22. The very first one is the original set after Kaliske &

Heinrich12 (developers of the ET model), which gives the

following values: Gc = 0.1867 [MPa], Ge = 0.2169 [MPa],

β = 0.2 and δ = 0.09693. Therefore, this set of particular

values was used as the initial values of hyperelastic param-

eters for fitting analysis. It was found that it provides a

successful fitting with the ET model not only for the Treloar’s

data22 in Fig. 3, but for a number of the experimental sets

for rubbers-like materials reported in2 including:

• vulcanised natural rubber from ANSYS Mechanical

APDL Technology Demonstration Guide40,

• filled natural rubber after Mars and Fatemi41,

• cured natural rubber types EDS 19, 16, 15 and 14 after

Gough et al.42,
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r δ
rubber hyperelastic FEs

contact FEs

target FEs

a
b

Y X

Fig. 4. Rubber cylinder benchmark: a) problem sketch and parameters, b) representative FE-model and deformed result

• synthetic rubbers (polyurethane, butyl, neoprene, viton,

silicon, santoprene, hypalon) from SolidWorks material

database43.

The third place in ranking is given to the 4rd order for-

mulation of the Polynomial Form (PF) model7, which has

the best fitting ability among all phenomenological models.

It is based on both first Ī1 and second Ī2 strain invariants, and

presents the most general mathematical formulation includ-

ing all terms, when compared to other phenomenological

models. According to Dimitrov31, this group of constitu-

tive formulations is derived based on macromechanics of

deformation. Specific is that material parameters are gener-

ally difficult to determine, and the phenomenological models

have their deficits when used out of the deformation range in

which their parameters were identified. Nevertheless, high

order formulations of the PF model appear to have a very

good fitting efficiency in the range of experimental data

availability.

The fourth place in ranking is given to the 5th order

Ogden model8, another phenomenological model, which is

in contrast directly based on the principal stretch ratios λ̄n

rather than the strain invariants Īn. Since it is based on λ̄n

directly, it is capable of providing better data fitting. In gen-

eral, Ogden model may be applicable for strains up to 700%,

but it is more computationally expensive than the rest of the

models. Ogden model also took the fourth place in the rank-

ing by Marckmann & Verron26, the highest place among

conventional phenomenological models in that study.

The fifth place in ranking is given to Gent10 and A-B9

models, which both belong to the group of micro-mechanical

models. According to Dimitrov31, the models of this group

are derived based on careful study of stochastic kinetics of

deforming polymer chains. Such models lead to hyperelas-

tic potentials depending on micro-mechanical deformation

mechanisms observed in the elastomer. The A-B model, also

known as the eight-chain model, is a statistical mechanics-

based model. This means that its form was developed as a

statistical treatment of non-Gaussian chains emanating from

the centre of the element to its corners. A-B model and sim-

ilar Gent model, both having only 2 material parameters,

appear to be quite effective due to an advanced background

and sophisticated mathematical form.

The sixth place in ranking is given to the 9-parameters

formulation of the M-R model5,6, which is similar to the 3rd

order formulation of the PF model7. This model was histor-

ically one of the first hyperelastic models, and also belongs

to the group of phenomenological models. It is based on

the observation that rubber response is linear under sim-

ple shear loading conditions. The 9-parameters M-R model

was denoted as the best in the comparative study by Ruíz &

González28 for application to elastomeric fabrics. Despite

of an old mathematical formulation, this model proves to be

effective as well.

Modification of the benchmark problem

Purpose of benchmark problems

The concept of benchmarks is widely used in computa-

tional mechanics and particularly for modelling of non-

linear material behaviour. The reference solutions of bench-

mark problems are usually presented by analytic or semi-

analytic solutions called design equations. In case of elas-

tomeric structures, they are available for a number of simple

shapes18. For each geometry considered, the equation pro-

duces the stiffness, the force per unit displacement, or the

force per unit length or width. Referring to Bauman18 there

are several circumstances when design equations are useful:

• FE-code is expensive to lease and engineers proficient

in its use are not readily available;

• a feasibility study is required, so formulas are adequate;
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• only simple shapes described by the formulas are used;

• the part is not structurally critical;

• stress-strain data required to determine the coefficients

for the constitutive law for FEA are not available.

In this study, the benchmark problem is used for the basic

verification of the hyperelastic material input by comparing

the FEA solution to a corresponding reference solution.

The subdivision into two broad categories of formu-

las is proposed by Bauman18. The first set consists of

the traditional ones that depend on small rubber deforma-

tions (typically < 30%), approximately linear rubber stress-

strain behaviour, and incompressible material. These equa-

tions have been studied and systematised by Lindley44 and

Gent45. The second category, developed by Yeoh, Pinter and

Banks46 applies to larger strains, allows for slight compress-

ibility and approximates FEA solutions for some simple

shapes. However, this study presents a modification of the

reference solution for a conventional benchmark from the

first category, which extends its applicability to large strains

of about 150%.

Compression of rubber cylinder

Referring to Lindley44, when a curved surface of a rubber

component is compressed against a rigid plane, the stiffness

generally increases as the area of contact increases during

the deformation. Thus, the load-deformation characteristics

tend to be markedly non-linear. For the rollers (solid, hollow

and rubber-covered) the relationships apply for plane strain

conditions, i.e. for length ≫ rubber thickness.

This conventional benchmark problem for elastomers

is comprehensively studied by Sussman and Bathe47 using

a displacement-pressure (u/p) FE-formulation for the geo-

metrically and materially nonlinear analysis of compressible

and almost incompressible solids. One of the study objec-

tives47 was a determination of the force-deflection curve

for the cylinder and also the location and magnitude of the

maximum stresses when the applied displacement equals

one-half of the initial diameter of the cylinder. The geome-

try is defined in Fig. 4a and shows r as the outside radius of

the roller and δ as the compressive displacement.

For small displacements, the Hertz contact assump-

tions are valid, and the following force per unit length ( f )

vs. deflection (δ ) relationship48 results in:

δ =
4 f

π

1−ν2

E0

(

1

3
+ ln

[

4r

b

])

,

with b = 1.6

√

2r f
1−ν2

E0

,

(10)

where E0 and ν are the small strain Young’s modulus and

Poisson’s ratio correspondingly.

For larger displacements during compression of solid

rubber rollers, an approximate solution based on experi-

ments is given by Lindley44 for the force per unit length

as follows

f

6r G
= 1.25

(

δ

2r

)1.5

+ 50

(

δ

2r

)6

, (11)

which doesn’t account for the effect of friction. Using

incompressibility assumption ν ≈ 0.5 in formula for shear

modulus

G =
τ

γ
=

E

2(1+ν)
, (12)

the Eq. (11) is simplified to the following form:

f = E0 r

[

2.5

(

δ

2r

)1.5

+ 100

(

δ

2r

)6
]

, (13)

where the Young’s modulus E0 is assumed to be constant.

In order to assess the accuracy of the available analytic

solutions presented by Eqs (10) and (13), a sample bench-

mark case has been analysed numerically in the FE-code

ANSYS. This case is based upon the sample benchmark for-

mulation used by Sussman & Bathe47 for FE-code ADINA

shown in Fig. 4a, which comprised:

• cylinder radius of r = 200 mm;

• plane strain consideration with infinite cylinder length;

• frictionless contact using node-to-surface contact type;

• maximum displacement of the plate as δ = 200 mm.

The objective is to determine the force-deflection

response using FEA and compare it to the reference solu-

tions (10) and (13). Due to geometric and loading symmetry,

the FE-analysis is performed using one quarter of the cyclin-

der cross section with 14 FEs per radius as shown in Fig. 4b.

All nodes on the left edge (X = 0) are constrained in UX .

All nodes on the top edge (Y = 0) are coupled in UY . An

imposed displacement of δ/2 acts upon the coupled nodes.

The quasistatic problem is solved using the 2D lower order
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Fig. 5. Comparison of analytical solutions, Lindley’s Eq. (13), Hertz’s Eq. (10) and their average Eq. (15), to FEA results obtained in

ANSYS using Mooney-Rivlin5,6 and Ogden8 material models

solid elements (PLANE182), rigid target (type TARGE169)

and contact (CONTA175) elements. The solution is obtained

in a number of substeps using large deformations assumption

and default contact algorithm.

Modification of the reference solution

There are a few improvements in the formulation of the cur-

rent benchmark when compared to the previous one47 as

explained below. Firstly, The maximum imposed displace-

ment is increased from original δ = 200 to 273 mm, which

corresponds to εt = 150% of equivalent true strain in struc-

ture or εe = 350% of equivalent engineering strain on the

stress-strain curve.

Secondly, the Treloar’s experimental data set22 is used

in this study instead of hyperelastic model fits47 based upon

the 3-terms form of Mooney-Rivlin model5,6 and the 3rd

order of Ogden model8. The corresponding solution of the

benchmark problem, previously obtained in ADINA47, was

derived in ANSYS as illustrated in Fig. 5. It should be noted

that for displacements up to δ = 200 mm, FE-results with

both material models are quite close to Lindley’s Eq. (13) as

obtained by Sussman & Bathe47. However, for the larger dis-

placements up to δ = 273 mm, the FE-result with the Ogden

model deviates from Lindley’s solution, while FE-result with

M-R model keeps close to it. Moreover, the material fit

using 6-terms Ogden model is more accurate than the fit

with 3-terms M-R model. This fact reveals that the Lindley’s

solution (13) is non-conservative for large displacements and

significant compression of the cylinder, since the FE-result

with Ogden model is more realistic. The stress-strain curve

of the M-R fit provides a much softer material response than

the more advanced Ogden fit.

Since the experimental data for the rubber in the original

benchmark is unavailable, the hyperelastic model fits47 have

been replaced with the most accurate Response Function

model1 fit of the Treloar’s data22. The RF model doesn’t

need any curve fitting procedures, so it is used directly

in FE-simulation of the benchmark problem by attaching

available experimental stress-strain curves. The obtained

FE-results shown in Fig. 6 appear to be in between two

conventional analytical solution. The Lindley’s Eq. (13) is

an upper bound providing a non-conservative prediction for

softer elastomers, while the Hertz’s Eq. (10) is a lower bound

providing a conservative prediction for harder elastomers.

This yields into the third improvement been proposed,

which is related to the accuracy of the analytic predictions

in the benchmark problem. Based upon the obtained FE-

results for the benchmark, an average of two conventional

analytical solutions (13) and (10) is proposed. The problem
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Fig. 6. Comparison of analytical solutions, Lindley’s Eq. (13), Hertz’s Eq. (10) and their average Eq. (15), to FEA results obtained in

ANSYS using the Response Function material model1

of this combination is that the Lindley’s solution is given

as force dependent on displacement f (δ ), while the Hertz’s

solution is given as displacement dependent on force δ ( f ).

Since they are not dependent on one variable, one of them

needs to be reversed mathematically to become compatible

for their combination. The direct mathematical reversion is

problematic for both of the formulas (13) and (10), since

the dependent variables are presented twice in both of them

within the power-law functions with different power expo-

nents. Thus, a non-direct recursive approach is applied here

to reverse the function δ ( f ) in (10) as

fn+1 =
δ

π

4

E0

1−ν2

1

3
+ ln













4r

1.6

√

2r fn
1−ν2

E0













, (14)

where n ≥ 10 and the initial iteration f0 is defined by (13).

This recursive approach is similar to the one used by Gorash

& Chen49,50 to reverse the formula for bending moment

dependent on total strain, which is applied to a beam with

a square cross-section to deform it plastically using the

Ramberg-Osgood material model.

Then a simple averaging is applied to Eqs (13) and (14)

f ave(δ ) =
f H
n+1(δ )+ f L(δ )

2
, (15)

where f H
n+1(δ ) is the Hertz’s Eq. (14) in the reversed form

and f L(δ ) is the Lindley’s Eq. (13).

The average solution (15) of the benchmark problem

using Treloar’s data22 illustrated in Fig. 6 matches perfectly

the FE-results obtained with the RF model1, which is the

most accurate compared to other hyperelastic models. Thus,

an introduction of the average solution using Eqs (14) and

(15) extends the applicability of the benchmark problem

to large displacements. The conventional Lindley’s solution

(13), limited to about 50% of true strain, becomes valid for

about 150% of true strain in combination with the reversed

Hertz’s solution (14).

It should be noted that the analytical benchmark input

requires only one material parameter – E0, elasticity modu-

lus or initial slope of the hyperelastic stress-strain curve. It

is defined by application of the trendline in Excel to the ini-

tial range of the uniaxial stress-strain curve. The regression

type of the trendline is usually a polynomial of the 5th or 6th

order, which intercepts the coordinates origin [0,0]. There-

fore, the coefficient of the 1st order component represents

E0, since it is the only non-zero number of the polynomial
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derivative defined in the location [0,0]. An example of the

E0 estimation is illustrated in Figs 2 and 3, where the 5th

order polynomial is applied to the strain range of [0,1.17] of

uniaxial curve, and correspondent E0 = 1.468 MPa.

Benchmark applied to other elastomers

Apart from Treloar’s data22, the benchmark was applied to

other natural and synthetic rubbers investigated in report2.

Each set of stress-strain curves2 has a polynomial trendline

attached with a correspondent equation, last component of

which represents E0. Numerical solutions of the benchmark

were derived with the Response Function model used to fit

stress-strain curves, while analytical solutions (13), (10) and

(15) were obtained using a correspondent value of E0. All

the range of FE-solutions is located between Lindley’s (13)

and Hertz’s (10) solutions. Harder rubbers with a steeper

initial slope are closer to the Hertz’s (10) solution, while

softer rubbers with less steep initial slope are closer to the

Lindley’s (13) solution. The full classification of material

response according to the numerical benchmark response is

following:

Pure soft: Neoprene and butyl rubbers43;

Soft-average: Vulcanised natural rubber40 and hypalon rub-

ber43;

Pure average: Filled natural rubber41, rubber EDS 1942 and

polyurethane43;

Hard-average: Rubber EDS 1442, silicon rubber and viton

fluoroelastomer43;

Pure hard: Santoprene43;

Mixed (initially hard): Rubbers EDS 16 and 1542.

It should be noticed that the proposed benchmark enables

verification of material model fits for a wide number of

elastomers, which are quite different in the shape of experi-

mental stress-strain curves. Since the numerical solution for

the majority of the tested elastomers tends to the average

analytical solution (15), the proposed modification of the

benchmark proves to be quite significant.

Functionality of the developed CAE-based

application

Fitting of test stress-strain curves by hyperelastic models

and verification of obtained material parameters by the

solution of an improved benchmark problem, which are

described in previous sections, are implemented in a stan-

dalone Windows-application. This application was devel-

oped using Visual Basic .NET language in Microsoft Visual

Studio 2010 environment. Different inter-process commu-

nication mechanisms are used in interactions with several

external applications. The most important component of its

functionality is an implementation of a two-way interaction

with ANSYS as a single loop using the APDL-script as an

input and text, graphical and video files as an output. Each

time when the analysis is run in the application, the following

3-steps procedure is executed:

• generation of the input APDL-script in a text file

according to the above defined options;

• starting of ANSYS executable file in batch mode, which

reads and executes the input APDL-script;

• text, graphical and video files generated by ANSYS are

uploaded into the application for review.

The Windows API functionality is used by the applica-

tion to start ANSYS executable file as a process and to wait

until it is completed. The hyperelastic identification module

of the application has the following structure as shown in

Fig. 7:

1. ComboBox with choice of available experimental data

for a number of elastomers considered in this work2.

2. ComboBox with choice of isotropic hyperelastic mate-

rial models supported by ANSYS1 as indicated in

Introduction.

3. TextBox with a small strain (initial) elasticity modulus

E0 identified using a uniaxial stress-strain curve in Excel

as explained in the Benchmark Modification. It is a part

of the data set provided by a user along with stress-strain

curve in separate text files.

4. Options for a hyperelastic model formulation com-

prising a choice of polynomial order or number of

constants.

5. CheckBox for a choice of normalised or non-normalised

error norm used in fitting analysis as explained in the

Least Squares Fit Analysis.

6. TextBox defines a maximum number of iterations in

fitting analysis governing the accuracy and duration of

analysis.
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Fig. 8. Structure of GUI of the CAE-based application – interface for setting up of the benchmark and viewing results
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7. TextBoxes with a mandatory initial guess of the ET

model12 parameters, which is explained in the Overview

of the Efficient Models.

8. Button for running of the fitting analysis in ANSYS.

9. TextBox for fitting analysis output in text form:

• error norm or SSE defined by Eq. (4);

• number of non-zero parameters in a material

model;

• fitting quality criterion, called parametric error,

which is explained in the Fitting Quality Criteria

and defined by Eq. (6).

10.TabPages for fitting analysis output in graphical form,

which display the comparisons of material model fit to

experimental data for all available stress-strain curves.

The hyperelastic verification module of the application

has the following structure as shown in Fig. 8:

11.ComboBox with choice of license for ANSYS product.

12.ComboBox with number of CPUs requested for FEA.

13.TextBoxes define variable parameters (r and δ ) of the

benchmark geometry as discussed in the Compression

of Rubber Cylinder.

14.TrackBar governs the default size of finite elements

by specifying the number of radius divisions for the

FE-mesh.

15.TextBox defines a number of substeps in non-linear

FE-analysis of the benchmark as discussed in the Com-

pression of Rubber Cylinder.

16.TextBox (currently suppressed) defines a substep, when

the remeshing is required due to excessive FE distortion.

This option will be implemented in the next version.

17.RadioButton specifies the application of a custom mate-

rial model chosen by a user for the benchmark FE-

analysis.

18.RadioButtons specify the application of conventional

hyperelastic models and corresponding material con-

stants47 as explained and illustrated in the Benchmark

Modification. This option is implemented for testing

purpose.

19.Button for running of the benchmark FEA in ANSYS.

20.TabPages for FEA output in graphical form including:

• final deformed shape of the FE-mesh,

• contours of equivalent von Mises stress and strain,

• animation of the cylinder deformation over time.

21.TabPage with diagram of force vs. deflection response,

which allows to compare FEA result with 3 reference

solutions as explained in the Benchmark Modification

and conclude about the hyperelastic model suitability as

explained in the Application to Other Elastomers.

Button “About” highlighted as item no. 22 in Figs 7 and

8 contains the technical information regarding application

development. FEA results for the deformed shape and con-

tours of equivalent von Mises stress and strain are output

by ANSYS in 3D form using VRML files. These files are

uploaded into the application immediately after the FEA

execution and run for viewing in corresponding TabPages

shown as position 9 in Fig. 8. Viewing of the VRML files

is implemented by the integrated graphical components of

Cortona3D Viewer, which typically works as a VRML plug-

in for popular Internet browsers and Microsoft Office appli-

cations on Windows platform, and it needs to be installed

before running the application. The animation of the cylin-

der deformation over time in AVI file is implemented by the

integrated graphical component of Windows Media Player,

which is used for playing audio, video and viewing images

on Windows platform. The AVI file is produced from the

sequence of JPEG files generated by ANSYS at every FEA

substep using FFmpeg, which is a cross-platform and free

software to record, convert and stream audio and video. The

application interacts with FFmpeg executable file included

in the installation folder in the same way as with ANSYS.

Conclusions

This paper presents a theoretical background on the CAE-

based application for identification and verification of hyper-

elastic material parameters and an overview of its function-

ality. The most important outcomes of this study are:

• Ranking of hyperelastic models efficiency, which was

estimated using a new fitting quality criterion.

• Recent hyperelastic models (Extended Tube and

Response Function) were found as the most efficient.

• Modified reference solution for the classical bench-

mark, which made it valid for large deformation.

• Developed application interacting with ANSYS for the

effective implementation of the study.

http://www.cortona3d.com/cortona3dviewer
http://www.ffmpeg.org
http://www.ffmpeg.org
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Section “Introduction” presents an overview of the

isotropic hyperelastic models supported by ANSYS and lit-

erature review on comparative studies, rankings and hyper-

elastic model assessments over the last years. Section

“Assessment of hyperelastic models efficiency” includes

curve fitting tools overview, basics of least squares fit analy-

sis, formulation of the new fitting quality criteria, ranking of

isotropic incompressible hyperelastic models supported by

ANSYS, and analysis of the most efficient models. Section

“Modification of the benchmark problem” includes expla-

nation of benchmark problems purpose, formulation and

FEA of a classical benchmark for rubber cylinder com-

pression, proposed modification of the reference solution

for this benchmark, and application of this benchmark to

available experimental data for other elastomers. The last

section presents the overview of the programming, structure

and functionality of the developed CAE-based application.

The wide applicability of the developed approach and CAE-

based application has been confirmed using experimental

stress-strains curves for 7 natural and 7 synthetic rubbers.

However, one important aspect of elastomeric compo-

nents modelling has not been investigated in this work. It

is the effect of friction on the force response of the O-ring,

which has quite a significant contribution. In general, the

friction between elastomers and solid materials is a complex

phenomenon, where the coefficient of friction µ is depen-

dent on the normal pressure in contact surface, e.g. in the

power-law form as discussed by Wriggers51. The significant

contribution of the friction on contact pressure compared

to other factors in a seal mechanism has been experimen-

tally studied by Ma et al.52, who indicated an increase of

µ (e.g. from 0.3 to 0.7) with increase of external loading.

Moreover, Lindley53 also studied experimentally the effect

of friction on the load-compression behaviour of an O-ring

for different values of µ (0.02, 0.1, 0.7) and indicated a lift

of load-deformation curve with increase of µ . Equation (11)

has also been extended by inclusion of µ providing an oppor-

tunity to study the effect of friction analytically. However,

the numerical simulations with consideration of friction (µ

> 0.1) get obstructed by highly distorted elements for large

displacement of the plate δ > 100 mm. In order to inves-

tigate the compression of O-ring with friction by FEA for

the larger displacements up to δ = 273 mm, an application

of adaptive remeshing technique in ANSYS is required. The

initial study54 of this relatively new numerical technique has

recently been carried out by simulation of the extrusion of

rubber O-rings through the gaps in flanges. The work on con-

sideration of frictional contact with application of adaptive

remeshing for the simulations of elastomeric components

undergoing large deformation is currently in progress.

Supplementary files

This paper is supplemented with the above-discussed

Windows-application “Hyperelastic fitting & verification”

in the form of ZIP-archive containing the following files:

• main executable file of the application titled

“hyper_fit_n_verify.exe”;

• 4 dynamic-link libraries (DLL) used for interaction with

Cortona3D Viewer and Windows Media Player;

• folder with experimental stress-strain curves for the

hyperelastic materials investigated in this work;

• text file “readme.txt” with short instruction related to

prerequisites and proper running of this application.
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