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Application of the functional renormalization group method to classical free energy

models

Leo Lue1, a)

Department of Chemical and Process Engineering, University of Strathclyde

James Weir Building, 75 Montrose Street, Glasgow G1 1XJ,

United Kingdom

(Dated: 31 May 2015)

A simple functional renormalization group method is presented to correct the behavior of

classical free energy models near the critical point. This approach is applied to the Soave-

Redlich-Kwong equation of state to illustrate its ability to better reproduce the phase behavior

of simple fluids and to understand the influence of its parameters on the shape of the vapor-

liquid phase diagram. The method is then extended to account for the correlations induced

by intramolecular bonds. It is then applied to a first order thermodynamic perturbation theory

for chain fluids to examine fluids composed of linearly bonded Lennard-Jones atoms. Unlike

previous approaches for applying renormalization group corrections to chain fluids, this is

able to accurately reproduce the critical point without predicting an overly flat liquid-vapor

coexistence region.
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INTRODUCTION

Large-scale density fluctuations lead to universal scaling behavior of the free energy of a fluid

near the critical point. These take the form of non-analytic behavior of the free energy, which are not

present in the classical free energy models typically used by engineers to describe the thermodynamic

behavior of fluids. As a consequence, there can be significant deviations of the predictions of these

free energy models from experimentally observed results.

Much of the early work in describing this non-classical phenomena originally focused only on

states near the critical region. Phenomenological approaches have been used to combine the results of

this work with classical thermodynamic models in order to construct a free energy model that has the

correct scaling behavior in the critical regime and the classical behavior of the original model away

from the critical point. This crossover approach has been applied to several classical free energy

models, including cubic equations of state1–3, the perturbation theory for square-well fluids4, and

statistical associated fluid theory (SAFT)5,6.

Another method which gained popularity is the phase-space cell approximation, which was orig-

inally developed by Wilson7,8 and extended to describe the behavior of simple fluids by White and

coworkers9–11. This approach was later modified12, including mixtures13, and cubic equations of

state14. This method is relatively easy to apply to any free energy model.

There have been several attempts in recent years to apply the phase-space cell method to fluids

containing chain molecules15–17. Typically, these formulations are based on the SAFT or related

equations of state. These types of theories account for the connectivity of the molecules only in a

local fashion. When the phase-space cell method has been applied to long chain systems, it has been

observed that the predicted vapor-liquid coexistence curve becomes spuriously broad and flat15–17.

This artifact is due, in part, to the neglect of density correlations that arise from the intramolecular

bonding in the system.

It has been recognized that forms of the free energy of chain molecules that only depend on the

polymer concentration through the monomer packing fraction lead to the wrong scaling behavior of

the second virial coefficient with polymer molecular weight18. These include SAFT and the Flory-

Huggins models. Attempts have been made to combine the renormalization group for polymers with

the SAFT equation for linear19 and star polymers20, however, these were limited to the good solvent

regime and do not apply to phase separating systems.

A rigorous, molecularly based approach to applying the renormalization group method to classical

fluids is the hierarchical reference theory (HRT)21–23. This method accounts for the influence of long

range density fluctuations by examining the changes in the free energy of a fluid with changes in the

underlying interaction potential. By using a theory for fluid structure, such as an integral equation
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theory, a direct connection is made with the underlying molecular properties of the system. HRT

is able to accurately describe the crossover from the universal behavior of the free energy near the

critical point to its more specific, molecularly dependent properties outside the critical region. This

method has been successful in describing the properties of simple fluids21,22 and mixtures24. The main

shortcomings of this approach are its complexity and computational requirements.

Still another approach is the functional renormalization group (FRG) method25, which has found

many applications in the areas of quantum field theory and condensed matter physics. Recently, a

close connection between FRG and hierarchical reference theory has been found26.

Ionescu and co-workers have formulated27 a sharp cut-off version of HRT and demonstrated its

application to the φ4 model. This functional renormalization approach offers a simple method for

providing critical corrections to classical free energy models. In this work, we demonstrate its appli-

cation. In addition, we provide a slight generalization of this method to account for the correlations

in chain molecules.

The remainder of this paper is organized as follows. In the next section, we discuss the functional

renormalization method and present a rough derivation for its application to free energy models for

classical fluids. Afterward we apply this functional renormalization method to a cubic equation of

state. We then discuss the issue of critical corrections for chain molecules, and then generalize the

method to apply to fluid composed of extended molecules. Finally, this method is used to describe

the phase behavior of a Lennard-Jones chain fluid.

FUNCTIONAL RENORMALIZATION GROUP METHOD

In this section, the basic ideas behind the functional renormalization group method and its applica-

tion to classical fluids are discussed. We consider a simple fluid that interacts with a pairwise additive

potential u, which can be divided into a

u(r) = uref(r) + ul(r) (1)

where ul is the attractive portion of the interaction potential between molecules in the system, and

uref is the shorter ranged repulsive portion of the interaction potential. Typically, we assume that the

free energy functional Fref [ρ] (where ρ(r) is some density profile) of a fluid that interacts only with

the reference portion of the potential uref is known.

The grand partition function Ξ of the classical molecular system can be formally written as a

functional integral12

Ξ[γ] =

∫

Dρ(·) exp

{

∫

drγ(r)ρ(r)−
β

2

∫

drdr′ρ(r)ul(|r− r
′|)ρ(r′)− Fref [ρ]

}

(2)
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where β = (kBT )
−1 with T being the absolute temperature of the system and kB being the Boltzmann

constant, and γ is an applied external field. The functional integral over ρ represents the summation

of the exponential term evaluated at all permissible “shapes” of the density profile in the system This

expression is formally exact, however, in practice it is not possible to evaluate without making further

approximations.

One method to approximate the functional integral is to completely neglect the fluctuations in

the density profile, and to simply take the largest value of the integrand. This leads directly to the

mean-field approximation28:

F [ρ] ≈ Fref [ρ] +
β

2

∫

drdr′ρ(r)ul(|r− r
′|)ρ(r′). (3)

where F is the free energy function of the fluid with the pairwise interaction potential u = uref + ul.

This approximation is fairly good away from the critical point; however, near the critical regime,

density fluctuations make a significant contribution to the properties of the system, and the mean-field

approximation becomes increasingly poor.

Rather than attempting to evaluate the entire contribution of the density fluctuations at once, an-

other approach is to try to sequentially integrate the density fluctuations of increasing wavelength in

order to obtain a series of approximations to the free energy. The rationale behind this is that it may

be easier to approximate the change of the free energy due to a limited set of fluctuations. This is the

idea behind the renormalization group method.

The starting point of this method is to assume that we know the free energy functional FΛ[ρ], which

is the free energy functional that includes fluctuations on length scales less than 2πΛ−1 and neglects

those with a lower wavenumber. Note that a good approximation for FΛ[ρ] is easier to obtain than

F [ρ], because small wavelength fluctuations (i.e. fluctuations with wavenumbers greater than 2π/σ,

where σ is the size of a molecule) are usually strongly suppressed by excluded volume interactions.

We assume that a good approximation for the functional FΛ is available, for some value of Λ ∼ 2π/σ.

The grand partition function given in Eq. (2) can be rewritten as12

Ξ[γ] =

∫

Λ

Dρ(·) exp

{

∫

drγ(r)ρ(r)−
β

2

∫

drdr′ρ(r)ul(|r− r
′|)ρ(r′)− FΛ[ρ]

}

(4)

where the functional integral over the density is now restricted to fluctuations with wavenumbers less

than Λ.

To implement the renormalization group method, we construct a series of approximations to the

grand partition function ΞQ, where only density fluctuations of wavenumber greater than Q and less

than Λ are integrated over. If Q ≥ Λ, then the free energy functional associated with ΞQ will be equal

to

FΛ[ρ] +
β

2

∫

drdr′ρ(r)ul(|r− r
′|)ρ(r′),
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as all density fluctuations will be suppressed, and the mean-field approximation will be valid.

The grand partition function of a system in the absence of density fluctuations with a wave number

below Q can in principle be evaluated by adding an additional two-body interaction RQ to the system

which will suppress long range fluctuations:

ΞQ[γ] =

∫

Λ

Dρ(·) exp

{

∫

drγ(r)ρ(r)−
β

2

∫

drdr′ρ(r)ul(r, r
′)ρ(r′)

−
1

2

∫

drdr′ρ(r)RQ(|r− r
′|)ρ(r′)− FΛ[ρ]

} (5)

The precise form of the cut-off function RQ is arbitrary, however, it must satisfy some key requirements23.

First, its Fourier transform R̂Q(q) must be a monotonic function of q and vanish rapidly as q becomes

very large. This ensures that it does not influence the functional integration over density profiles with

a short wavelength. In addition, it should become large as q ≤ Q; this is the mechanism by which

it suppresses the contribution of large wavelength fluctuations. In this work, we use the “optimized”

cut-off function suggested by Litim29,30

R̂Q(q) = K(Q2 − q2)Θ(Q− q) (6)

where Θ is the Heaviside step function, and K is an arbitrary constant.

We do not want to directly evaluate the functional integral in Eq. (5). Rather, we want to know

how the free energy changes with respect to changes in Q, given by changes in RQ which can be

interpreted as changes in the interaction potential in the system. The functional derivative of the free

energy functional with respect to the pair potential u between molecules in the system is given by28,31

δF

δu(|r− r′|)
=

β

2
ρ2(r, r

′) (7)

where ρ2 is the two-body density function.

Therefore, the change in the free energy FQ of the system, corresponding to the grand partition

function ΞQ, due to a change in Q can be written as:

∂FQ

∂Q
=

1

2

∫

drdr′ρ
(2)
Q (r, r′)

∂RQ(|r− r
′|)

∂Q
. (8)

For convenience, a modified free energy FQ is introduced, which excludes the interaction energy

introduced by the cut-off function

FQ[ρ] = FQ[ρ]−
1

2

∫

drdr′ρ(r)RQ(|r− r
′|)ρ(r′), (9)

which approaches the original free energy functional in the limit Q → 0. This removes the influence

of the cut-off function on the properties of the system at a mean-field level. The variation of the

modified free energy with Q is then given by

∂FQ

∂Q
=

1

2

∫

drdr′
[

ρ
(2)
Q (r, r′)− ρ(r)ρ(r′)

] ∂RQ(|r− r
′|)

∂Q
(10)
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The term in the square brackets in Eq. (10) can be written in terms of the direct correlation function

cQ of the system, which is related to the free energy functional as

δ2FQ

δρ(r)δρ(r′)
=

1

ρ(r)
δd(r− r

′)− cQ(r, r
′). (11)

where δd is Dirac delta function in d dimensions (d = 3 in this work). Substituting the direct correla-

tion function, we find27

∂FQ

∂Q
=

1

2

∫

drdr′
[

1

ρ(r)
δd(r− r

′)− cQ(r, r
′) +RQ(|r− r

′|)

]

−1
∂RQ(|r− r

′)|

∂Q
. (12)

For a uniform fluid, where the average properties of the system do not vary spatially, this reduces to

∂fQ
∂Q

=
ρ

2

∫

dq

(2π)3

[

1− ρĉQ(q) + ρR̂Q(q)
]

−1 ∂R̂Q(q)

∂Q
(13)

where fQ = FQ/V is the modified free energy density. This equation is exact and gives the flow of

the free energy with respect to the cut-off wavenumber Q27.

In order to implement this renormalization process, we require a model for the direct correlation

function in the fluid. Within the HRT, this is typically done through using the Ornstein-Zernike equa-

tion combined with an approximate closure relation (e.g., mean spherical approximation, hypernetted

chain approximation, self-consistent Ornstein-Zernike approximation, etc.).

The key element of HRT is that although simple approximations do not lead to the correct long

range behavior of the correlation function, they do give a fairly accurate description of the short

ranged correlations in a fluid. Consequently, rather than directly trying to compute all the correlations

in a fluid, a better strategy is to approximate the difference in the correlation function between fluids

with slightly differing interaction potentials.

In order to develop a practical procedure, we assume that the free energy can be approximated by

a local functional given by a truncated gradient expansion in terms of the density:

FQ[ρ] ≈

∫

dr

[

fQ(ρ(r))−
B

2
∇ρ(r) · ∇ρ(r) + · · ·

]

(14)

where B is a parameter that is related to the range of the interactions/correlations in the system. In

general, when a free energy functional is put through the RG process, new terms will be generated. A

free energy which is originally local will have non-local terms. Non-local terms that are generated by

the renormalization process are neglected.

For this simple form for the free energy, the direct correlation function is given by (see Eq. (11)):

ρ−1 − cQ(q) = f ′′

Q(ρ(r)) + Bq2 + · · · . (15)

where prime denotes a derivative with respect to density. This makes the assumption that the parame-

ter B is independent of density, although it can still be temperature dependent. To get a rough idea of
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the value of B, we note that the direct correlation function is equal to the interaction potential at very

large separations. Therefore, at small values of q, we have approximately28

ĉQ(q) ≈ −βûl(q) + · · · (16)

By expanding the above relation in powers of q, we can estimate

B ≈ −
4π

3!

∫

∞

0

drr4βul(r) (17)

From this, we ascertain that B is roughly proportional to the strength of the attractive potential and

inversely proportional to temperature.

By substituting the simple approximation for the direct correlation function given in Eq. (15) into

Eq. (13) and choosing K = B in the cut-off function (see Eq. (6)), we find that the integral over the

wavevector q, which appears in Eq. (13), can be performed analytically. This leads to a non-linear

partial differential equation for the free energy as a function of the cut-off wavevector Q27:

Q
∂fQ
∂Q

=
KdBQ5

f ′′

Q +BQ2
(18)

where in three dimensions the constant Kd = 1/(6π2).

In general, Eq. (18) can be applied to any free energy model in order to correct its behavior near

the critical point. This non-linear partial differential equation can be solved to determine the evolution

of the free energy with Q, where density fluctuations of larger and larger wavelengths are taken into

account. The initial condition is taken at the cutoff Q = Λ of the original free energy27:

fΛ = f.

where f is the original, classical model for the free energy. The corresponding boundary conditions

are that fQ is fixed at the original value of f at ρ = 0 and for some high value of ρ, which is always

far from the critical density. The actual free energy of the system corresponds to the limit Q → 0.

Typically, the original free energy will have classical values of the critical exponents, which are

summarized in Table I. This renormalization process leads to a free energy with non-classical critical

exponents27, which are shown in the final column of Table I. Note that the critical exponent β, which

is related to the shape of the coexistence curve, should not be confused with the inverse temperature

β = (kBT )
−1. As a comparison, estimates of the “exact” values of the critical exponents32, as well as

the predictions from the phase-space cell renormalization method, are also shown.

APPLICATION TO A CUBIC EQUATION OF STATE

In order to concretely illustrate the utility of Eq. (18), we apply the approximate FRG method

presented in the previous section to the Soave-Redlich-Kwong (SRK) equation of state33,34. This is
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a cubic equation which is widely used in industry to describe the thermodynamic properties of fluids

and fluid mixtures. The pressure is given by

p =
ρkBT

1− ρb
−

ρa(T )

1 + ρb
(19)

where a(T ) is a temperature dependent parameter relating to the strength of the intermolecular attrac-

tions, and b is a parameter relating to the size of the molecules. The corresponding expression for the

Helmholtz free energy density is

f(ρ, T )b = (ρb)(ln ρb− 1)− (ρb) ln(1− ρb)− (ρb)
βa(T )

b
ln(1 + bρ). (20)

The critical point of the SRK equation of state is33,34

kBTcb/a(Tc) = 0.202677

pcb
2/a(Tc) = 0.0175999

ρcb = 0.259921

where Tc is the critical temperature, pc is the critical pressure, and ρc is the critical density. The critical

compressibility factor for this equation of state is Zc = 1/3. The vapor-liquid coexistence curve of the

SRK equation is shown in as the dashed line in Fig. 1(a). Because the SRK equation is analytical at

the critical point, it has a critical exponent β = 0.5 — the classical value. As a result, the coexistence

curve has a shape which is much too sharp as compared to that typically found experimentally.

In order to apply the renormalization group transformation to the model free energy, the parameters

Λ and B must first be specified. The parameter Λ represents the length scale for which fluctuations

have already been incorporated in the classical free energy. For this, we expect Λb1/3 of the order or

smaller than one and use it as a dimensionless parameter that can be varied. The parameter B which

appears in the free energy functional shown in Eq. (14) relates to the gradient term of the density.

Consequently, we expect it to be proportional to the strength of the intermolecular interactions. In

addition, its range should be on the order on which the fluctuations have already been captured in the

system. Therefore, for the SRK equation of state, we select B as

B = βa(T )Λ−2B̄ (21)

where B̄ is a dimensionless parameter, which can be adjusted to fit experimental data, and β =

(kBT )
−1.

The nonlinear partial differential equation in Eq. (18) is solved using the method of lines. The

partial derivatives of the free energy with respect to density are performed using the central difference

method. The resulting set of first-order ordinary differential equations are solved using the SUNDI-

ALS 2.5.0 software library35.
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Figure 1 shows the vapor-liquid phase diagram as predicted by the SRK equation of state and

as modified by the renormalization group transformation given by Eq. (18). In this figure, the B̄

parameter is held fixed, while Λb1/3 is varied. Note that we assume that density fluctuations with a

wavelength smaller than 2π/Λ have already been incorporated into the original free energy. Applying

the renormalization group process will incorporate density fluctuations of larger wavelengths 2π/Q by

integrating the flow equation, Eq. (18), over Q towards increasingly smaller values. If the parameter

Λ is set to zero, then the original free energy is retained because all size fluctuations have already been

incorporated. The larger the value of Λ, the more fluctuations need to be added to the original free

energy, which tends to have a stabilizing influence. From Fig. 1(a), we see that increasing the value

of Λ decreases the critical temperature and increases the flatness of the vapor-liquid phase envelope.

This is a consequence of increasing the size of the critical region. Inside the critical region, the

system is dominated by fluctuations, and the value of the critical exponent β (which is equal to 0.330

within the approximate FRG method that is used in this work) dictates the shape of the vapor-liquid

coexistence curve. Outside this region, the shape of the coexistence curve is well described by mean-

field theory, which has β = 0.5, leading to a “sharper” shape. In addition, the coexistence pressure

tends to increase (see Fig. 1(b)).

The affect of varying the parameter B̄, while holding Λ fixed, on the phase diagram is shown

in Fig. 2. Increasing the value of B̄ decreases the critical temperature, gradually flattening the top

of vapor-liquid phase envelope. Recall that the B parameter is the prefactor to the gradient term in

the free energy functional (see Eq. (14)). It gives a penalty for variations in the density distribution

in the system: large values of this parameter disfavor density fluctuations. Therefore, increasing

B̄ suppresses these stabilizing fluctuations and, consequently, increases the size of the vapor-liquid

coexistence region.

The parameter B̄ does not have as pronounced an affect on the vapor pressure curve, as on the

coexistence phase envelope (see Fig. 2(b)). The vapor pressure curves calculated with different values

of B̄ appear to be quite similar, although they stop at lower values of the pressure and temperature for

larger values of B̄.

THE INFLUENCE OF INTRAMOLECULAR CORRELATIONS

The renormalization group method described above accounts for large scale density fluctuations,

where different sections of the system are coupled mainly by intermolecular interactions. The ex-

tent and strength of these correlations are characterized by the parameter B. However, the method

does not account for other types of correlations that may occur in the system. In the case of chain

molecules, the bonds which connect the monomers within the molecule lead to correlations between
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them. While at moderate to high monomer concentrations these correlations are typically screened

down to monomer length scales, at low densities, these correlations extend to the size of the molecules,

which for polymers or other macromolecules can be much larger than the monomer size.

These correlations tend to reduce the density fluctuations in the system36. In the renormalization

group methods developed to correct the critical behavior of classical free energies for simple liquids

(such as the phase-space cell method or the method described in the previous section of this work), the

correlations due to intramolecular bonding are neglected. As a consequence, attempting to empirically

adjust the parameters of the method to fit empirical or simulation data can lead to anomalies, such as

the vapor-liquid coexistence curve being much too flat (e.g., see Figs. 1 and 7 in Ref. 15 or Fig. 5 in

Ref. 16).

To better understand the influence of chain connectivity on the correlations in a solution, we exam-

ine an ideal gas of linear chains, each consisting of N bonded monomers. In this case, the scattering

function S(q) of the monomers in the system36

S(q) ≈ N [1 + q2R2
g/3 + · · · ]−1 (22)

where Rg is the radius of gyration of the molecules, and ρ is the monomer number density. The

corresponding expression for the direct correlation function is

ρ−1 − ĉ(q) ≈
1

Nρ
[1 + q2R2

g/3 + · · · ] (23)

The prefactor outside the square brackets on the right of Eq. (23) represents the inverse isothermal

compressibility of an ideal gas. This characterizes the strength of the monomer density fluctuations

in the system. The second term inside the square brackets denotes the influence of bonding on the

correlations in the system.

Generalizing this ideal gas expression for the direct correlation function to a system where the

monomers have size and interact, we find36

ρ−1 − ĉQ(q) = f ′′

Q(ρ) + Bq2 +
1

3

R2
g

Nρ
q2 + · · · (24)

The first two terms in Eq. (24) are precisely the same as those for the simple liquid. The third term

represents the correlations in the system due to the connectivity of the monomers in the chain. At low

densities, the connectivity induces correlations in the monomer density profile on length scales larger

than the monomer size. As the density increases, these correlations are screened, with a characteristic

decay length λ that varies as36:

λ2 =
1

3

R2
g

Nρf ′′

Q(ρ)
.
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Substituting this expression for the direct correlation function into Eq. (13), we can again analyti-

cally evaluate the integral over q. In this case, the flow equation for the free energy becomes:

Q
∂fQ
∂Q

=
KdBQ5

(f ′′

Q +BQ2)

3

(Ql)2

[

1−
1

Ql
arctanQl

]

(25)

where ξ2 = R2
g/(3N) is a length scale relating to a scaled size of the molecules in the system, and

l2 = ρ−1ξ2/(f ′′

Q +BQ2).

In the limit that the molecules are small compared to the other correlation lengths in the system,

ξ → 0, and this equation reduces to Eq. (18). The critical corrections only become significant when

the wavelength of the density fluctuations becomes larger than the size of the molecules (which may

be much larger than the monomer size).

APPLICATION TO CHAIN MOLECULES

In this section, the properties of linear chains composed of atoms interacting through the Lennard-

Jones potential (where ε is the energy scale, and σ is the size parameter) are examined. Each chain

in the system consists of N Lennard-Jones atoms bonded to each other with a bond length l. The

thermodynamics of the system is modeled using the first order thermodynamic perturbation theory

(also referred to as the soft-SAFT theory) developed by Johnson and coworkers37.

The Helmholtz free energy is considered to be composed of a contribution from a fluid of discon-

nected Lennard-Jones atoms f ref and a contribution due to the bonding of the atoms within the chains.

The resulting expression for the residual Helmholtz free energy density f res (the difference between

the Helmholtz free energy density of the system and that of an ideal gas at the same temperature and

density) is

f res = f ref + f chain. (26)

where f ref is the residual Helmholtz free energy density of a Lennard-Jones monomer fluid, and f chain

is the chain bonding contribution to the Helmholtz free energy density of the chain system.

The free energy of the monomer Lennard-Jones fluid is computed from the equation of state de-

veloped by Johnson and coworkers38. The chain contribution is given by the work required to hold

two Lennard-Jones atoms together at a distance of the bond length l in the monomer fluid:

f chain =
ρ

N
(N − 1) ln yref(l)

where yref is the indirect correlation function of the disconnected Lennard-Jones fluid. The mathe-

matical form for this term is taken from Ref. 37.

The predictions of the first order thermodynamic perturbation theory (TPT) for the vapor-liquid

coexistence curve of Lennard-Jones chains with bond length l = σ are shown as the dashed lines
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in Fig. 3. The corresponding Monte Carlo simulation data39,40 are given by the symbols. TPT con-

sistently predicts a much larger coexistence region and a higher critical temperature than found by

simulation.

We apply the functional RG method to a first order thermodynamic perturbation theory approxi-

mation for the free energy. For the chains with N = 4, 8, 16, and 32, the solid lines are the results

of the RG transformation with the parameters Λσ = 1, BΛ2/(βεσ3) = 5, and ξ/σ = 0. While the

RG predictions are reasonably good for N = 4, they get progressively worse as N increases for these

fixed values of the parameters, severely underestimating the height of the coexistence curve.

For the same chain lengths, the dotted lines for the RG transformation with the parameters Λσ = 1,

BΛ2/(βεσ3) = 5, and ξ/σ = 0.5. By adding the size correction, given by the parameter ξ, the low

density arm of the coexistence curve shifts slightly up and to the left, leaving the high density arm

relatively unmoved for the longer chain lengths. These curves are able to describe the coexistence

curve fairly well for all these chain lengths.

For the case N = 100 shown in Fig. 3, the solid line corresponds to the RG transformation with

Λσ = 0.5, BΛ2/(βεσ3) = 5, and ξ/σ = 0, and the dotted line corresponds to the parameters

Λσ = 0.5, BΛ2/(βεσ3) = 5, and ξ/σ = 0.5. Based on these results, it appears that to get a good

description of the phase behavior of chain molecules, the parameter Λ should decrease slightly with

chain length.

CONCLUSIONS

In this work, we have examined the application of a simple functional renormalization group

method to provide fluctuation corrections for classical free energy models. This method can be readily

applied to any model to better reproduce the non-analytical behavior of the thermodynamic properties

near the critical point.

In this work, we only illustrated the applicability of the functional renormalization group method

to general classical free energy models that are commonly used by engineers to describe fluid ther-

modynamic properties. The quantities Λ, B, and ξ appearing in the flow equation (see Eq. (25)) have

been left as adjustable parameters. This approach does, however, have a more rigorous molecular

basis, and, in principle, the parameters can be linked more closely to the molecular features of the

system.

More sophisticated approximations for the renormalizing free energy functional, beyond the sim-

ple gradient approximation28, can be used to obtain a more rigorous approach. However, this would

come at a cost of increased complexity and computational burden.

The functional renormalization group method has been extended to account for the influence of

12



intramolecular correlations which result from bonds between atoms within a molecule. These cor-

relations tend to suppress the density fluctuations in the system and, as a consequence, shrink the

critical region. The neglect of this effect when applying the renormalization group method to systems

composed of large molecules has probably led to the calculation of vapor-liquid coexistence curves

that are much too flat compared to that observed experimentally. By including intramolecular corre-

lations, the FRG method is able to provide a good description of phase behavior of Lennard-Jones

chain fluids, as compared to computer simulation results.

One of the key practical limitations of current RG corrections has been the practical difficulties

in applying these methods to mixtures. While most of these methods can be straightforwardly gen-

eralized to account for multicomponent systems, such as the phase-space cell approximation and the

functional renormalization group approach described here, they rapidly become impractical as the

number of components in the system increases. This severely limits their usefulness in addressing

real engineering problems. It is hoped that in presenting this different approach to implementing the

renormalization group idea may stimulate new approximate methods to attacking multicomponent

systems.
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LIST OF FIGURE CAPTIONS

Figure 1 The vapor-liquid coexistence curve (a) and the vapor pressure (b) as determined by the Soave-

Redlich-Kwong (SRK) equation of state and the renormalization group with B̄ = 1 and (i)

Λb1/3 = 0.5 (solid line, filled circle), (ii) Λb1/3 = 1 (dashed line, filled triangle up), (iii)

Λb1/3 = 1.5 (dotted line, filled square), and (iv) Λb1/3 = 2 (dashed-dotted line, filled triangle

down). The thin solid line is for the SRK equation of state. The symbols denote the critical

point. The open circle denotes the critical point of the SRK equation of state.

Figure 2 The vapor-liquid coexistence curve (a) and the vapor pressure (b) as determined by the Soave-

Redlich-Kwong (SRK) equation of state and the renormalization group with Λb1/3 = 1 and (i)

B̄ = 0.5 (solid line, filled circle), (ii) B̄ = 1 (dashed line, filled triangle up), (iii) B̄ = 1.5

(dotted line, filled square), and (iv) B̄ = 2 (dashed-dotted line, filled triangle down). The thin

solid line is for the SRK equation of state. The symbols denote the critical point. The open

circle denotes the critical point of the SRK equation of state.

Figure 3 Vapor-liquid coexistence curve for linear chains composed of (i) N = 4 (circles), (ii) N =

8 (triangles up), (iii) N = 16 (squares), (iv) N = 32 (triangles down), and (v) N = 100

(diamonds), Lennard-Jones atoms. The symbols are Monte Carlo simulation data from Refs. 39

and 40, the dashed lines are the predictions of the TPT, and the solid and dotted lines are from

the TPT with the RG corrections (see text).
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LIST OF TABLES

TABLE I. Estimates of the critical exponents from the phase-space cell (PSC) approximation and the functional

renormalization group (FRG) method.

exponent exact32 classical PSC8 FRG27

α 0.110 0.000 0.17 0.050

β 0.327 0.500 0.34 0.330

γ 1.237 1.000 1.22 1.300

δ 4.789 3.000 4.80 5.000

η 0.036 0.000 0.00 0.000
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