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Abstract—Boxcar (rectangular) window functions are 

commonly used for measurements of electrical energy for 

revenue purposes, or for power quality assessment. This is 

because they can be repeated using Bartlett’s method so that the 

time-domain sampled data is used with a uniform aggregated 

weighting. However, such simple window functions are not 

suitable for real-time protection and control measurements due 

to their poor frequency-domain performance. Raised-cosine or 

Tukey windows offer a compromise using Welch’s method, but 
real-time implementation of these functions, using windows 

adaptive to varying system frequency, can be difficult due to 

computational load. Alternatively, this paper shows that fast-to-

execute cascaded boxcar filters can be used to achieve the 

desirable property of uniform aggregated weighting, as well as 

their previously-demonstrated frequency-domain capabilities. 

This means that measurements based on cascaded boxcar filters 

could be used for formal revenue metering and power-quality 

assessment, at the same time as for real-time control, phasor 

measurement, and protection. 

Keywords— Power system measurements, Fourier transforms, 

Frequency measurement, Phase estimation, Power system 

harmonics, Power system interharmonics, Power conversion 

harmonics, Industrial power system harmonics, Power system 

stability, Power system state estimation, Power system parameter 

estimation. 

I.  INTRODUCTION 

When assessing total energy flow or revenue metering 
across a boundary, one of the major requirements is that the 
measurement must weight all measured sample values equally. 
The measurement should not be biased towards certain 
snapshots in time. If the measurement was biased, then 
transient or aperiodic events might be over or under-
represented in the final indicated values. The over or under-
representation could be random, depending on the time-
alignment (or not) of the events with the higher-weighted or 
lower-weighted samples. As an example, aperiodic (e.g. inter-
harmonic) effects need to be considered carefully at the AC 
and DC terminals of HVDC links which connect AC networks 
at different AC frequencies. Harmonics and mixing products of 
both system AC frequencies may be present on both AC 
systems, and the DC link. Accurate energy measurement is 

important, since an error of just 0.1% on an aggregate 1GW 
HVDC link over 1 year, at an energy cost of €50/MWh, 
represents almost €0.5 million. 

A. Windows allowing Uniform Aggregated Weighting (UAW) 

To create an unbiased measurement, a requirement is that 
repeated measurements using a window function can be 
aggregated together, in such a way that the aggregated 
weighting of the input samples is constant (uniform) and 
unbiased. In this paper, this is referred to as the property of 
Uniform Aggregated Weighting (UAW). To achieve UAW, 
there are four possibilities. 

The first possibility is to use a boxcar (rectangular) window 
function, which can be repeated at intervals equal to the boxcar 
length, revealing UAW across all input samples. This is 
referred to in literature as Bartlett’s method. 

The second possibility is that the time-domain window 
function can “tessellate” exactly with itself and the 
measurement repetition interval carefully coordinated with the 
window shape and “tessellation” properties so that the 
aggregation of the repeated windows leads to UAW. The most 
obvious examples of this are triangular or raised-cosine (e.g. 
Hanning or Hamming) windows with length T seconds, 
repeated at an interval of Tr=T/2 seconds. These examples are 
demonstrated in Fig. 1 and Fig. 2. Another option would be the 
Tukey window, which consists of a flat central section with 
raised-cosine ends. The use of repetition intervals less than the 
window filter length in this way is known as Welch’s method. 

 
Fig. 1. Triangular window length T=1s, repeated with Tr=0.5s 
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Fig. 2. Hanning window with length T=1s, repeated with Tr=0.5s 

 
The third option is that the window function may not 

exactly tessellate with itself, but has “other special properties” 
such that multiple overlaid windows with carefully chosen 
repetition intervals lead to the property of UAW using Welch’s 
method. Only certain window functions will have these 
properties with useful measurement repetition intervals. One of 
these is the raised-cosine window with length T seconds, which 
can be repeated using Welch’s method every T/M seconds, 
where ȃM  and M≥2 to achieve UAW, as will be shown 

later. 

The fourth option is that any window function displays the 
UAW property, even asymmetric IIR (infinite impulse 
response) windows, if the repetition interval is reduced towards 
zero (for continuous functions) or is reduced to 1 sample within 
discrete digital implementations. 

If a window which satisfies options 1-3 is used to provide 
the UAW property, an additional consideration is the available 
repetition rates which lead to UAW for that window, and 
whether these available rates are convenient and useful for the 
application. For example, within PMU, and emerging 
“Harmonic PMU” applications, repetition rates at 20ms (for 
50Hz systems) and 16.666ࡆms (for 60Hz systems) are among 
the desirable rates. Slower rates might be useful for 
synchronised power quality assessment. 

If the fourth option is used, this may require significant 
computational power to calculate the windowed transforms at 
the full sample rate, unless a ”Recursive DFT” approach is 
used, such as in [1]. A problem with relying on this fourth 
option is that the results must also be communicated to the end-
user at the full sample rate, which may exceed communication 
bandwidth availability. Down-sampled or decimated results 
will only retain the UAW property if they are 
integrated/averaged at the full sample rate before being 
decimated. Note this this is equivalent to adding a single extra 
cascaded boxcar filter with a time length equal to the 
downsampled period, and more of this later in section VII! 

B. Desirable windows for real-time control and protection 

The frequency-domain performance of a window function 
also needs to be carefully considered when making 
measurements within power systems for real-time control and 
protection purposes. For some functions, such as phasor 
measurements, the frequency-domain performance 
requirements are very strict, and this can lead to complex time-
domain weighting functions [2] [3]. Such complex windows 
are highly desirable to produce measurements of voltage, 

current and power-flow which contain low noise and ripple in 
the presence of imperfect power quality. If ripple and noise are 
not filtered out, use of such measurements as inputs to control 
systems can lead to injection of active or reactive power from 
primary hardware at the frequencies of the measurement ripple. 
To reject harmonics, inter-harmonics, flicker and noise requires 
filters with high broadband rejection outside the passband, and 
low spectral leakage between harmonics. Filter zeros are often 
deliberately placed at specific frequencies to reject unwanted 
signals, leading to specific window functions. However, the 
passband is required to be relatively flat to provide the greatest 
calibration accuracy. 

Simple uniform-weighting (rectangular) windows are not 
generally suitable for such measurements, due to their 
relatively poor characteristics in the frequency domain. So, 
more complex windows are used. There are many windows to 
choose from, including: Raised-Cosine (Hanning, Hamming), 
Tukey, Gaussian, Kaiser, Blackman, Nuttall, Blackman-
Nuttall, Blackman-Harris, Flat-top, Truncated-sinc (“Brick 
wall”), Triangular or Parzen. Other windows, and combinations 
of windows, lead to a myriad of possible window functions [4]. 
Often, the property of UAW is not considered a priority when 
choosing a window for a control or protection device. 

C. Conflict between frequency-domain filtering and UAW 

Comparing the requirements for energy metering and real-
time control can therefore lead to a conflict in choice of 
measurement window, between one offering UAW (good for 
unbiased metering) vs. one offering good real-time frequency-
domain filtering. However, if a window function can be shown 
to possess both sets of properties, it would allow both types of 
measurement to be made on a single instrumentation platform 
with a minimisation of computational hardware. For example 
revenue metering, phasor measurement, power flow, and power 
quality parameters could all be assessed accurately by a single 
device with excellent time synchronisation.  

One example of such a device which attempts to make this 
crossover is the Arbiter 1133A device. In this device, a fixed 
Hanning window with T=100ms is used since this offers 
reasonable performance in the frequency domain, and also the 
UAW property if repeated using Welch’s method as described 
above, with the repetition interval Tr=T/2=50ms (or any 
Tr=T/M, where ȃM  and M≥2), synchronised accurately to 

the UTC second rollovers. This time synchronisation of results 
is a major requirement for a “Harmonic PMU”, and allows 
synchronised power quality assessment and metering with 
other devices across a network [5]. However, it is a deviation 
from the power-quality measurement guide IEC 61000-4-30 
[6] which recommends a 10-cycle (for 50Hz) or 12-cycle (for 
60Hz) boxcar window of adaptive length 10/f or 12/f (normally 
~200ms) to suit the actual real-time system frequency f. IEC 
61000-4-7 [7] allows a Hanning window to be used if the 
length is not synchronised to the real-time system frequency, 
but suggests this is mainly a fall-back option. The adaptive 
filtering specified in [6] & [7] is useful to minimise spectral 
leakage within the harmonics. However, using the prescribed 
rectangular window does not allow UAW to be achieved when 
frequency is off-nominal, if reports are desired at fixed 
intervals synchronised to UTC second rollovers (unless results 
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are re-calculated every sample by option four above). The 
simple rectangular window also has very poor frequency-
domain properties. Arbiter use a frequency-domain technique 
to deal with leakage from their fixed-filter Hanning window 
[5], which works for frequencies close to nominal, making the 
argument that time-synchronised results possessing the UAW 
property (and better stop-band rejection) are important enough 
to justify deviation from [6] & [7]. 

Alternatively, the point of this paper is to show that 
cascading boxcar filters together with themselves, or with other 
window functions, can be used as a tool to create windows 
which have the UAW property at user-specified, useful, 
convenient repetition rates. By understanding the rules of the 
effects of the boxcar filters on filtering and UAW, FIR filters 
can be created which both have controllable zero positions for 
off-nominal frequency operation and minimal spectral leakage, 
combined with the UAW property at fixed repetition rates 
synchronised to UTC second rollovers. 

II. THE USE OF CASCADED BOXCAR FILTERS 

Previous work by the author has shown that cascaded 
boxcar windows can provide a versatile way of achieving good 
frequency-domain performance, adaptive to varying system 
frequency f, capable of delivering time-synchronised 
measurements for PMUs compliant with C37.118.1a [3], and 
with execution times that allow the algorithms to be executed 
every computational frame at sample rates exceeding 10kHz 
[1] [8] [9]. So, while such windows clearly have merit, can 
they also, in general, be used to achieve the UAW property, to 
enable them to be used for accurate revenue metering or for 
formal power quality applications? 

A single boxcar window can clearly be used to achieve 
UAW as previously described. In addition, a triangular window 
can be considered as the “B-spline” 2-fold convolution of a 
boxcar window with itself. The symmetry of this window 
shows that this window also can be used to achieve the UAW 
property. But what about more complex cascades of multiple 
boxcar filters with unequal lengths? Does the UAW property 
break down or does it hold? A theorem is presented here that 
states: 

“For any FIR (Finite Impulse Response) filter which 
is created by cascading N component boxcar filters 

in real time, each with time lengths Ti (i=1..N), the 

aggregation of successive repetitive measurements 

using the overlaid filters at regular time intervals of 

any Tr = Ti / M results in a uniform aggregated 

weighting value for all input samples, for any i=1..N 

and any positive integer M.” 

(1) 

 

 

III. PROOF 

Proof of the theorem (1) can be demonstrated by taking the 
Fourier transform of the component boxcar sections, and then 
multiplying their responses in the frequency domain, which is 
equivalent to convolution in the time domain. Then, the time-
shift translation theorem can be applied, to calculate a 
summation, in the frequency domain, of the total frequency 

response of the overall filter, when repeated measurements are 
made at regular repetition intervals Tr. 

First, for each boxcar component, the well-known Fourier 
transformation relationship for a boxcar (rectangular) function 
is used. 
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Using (2), the Fourier transform of the cascaded boxcar 
sections can be written in the frequency domain as the product 
of the response of each boxcar component. 
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Because the Fourier transformation satisfies the linearity 
theorem, a summation of terms using the time-shift translation 
theorem can be applied, which will reveal the frequency-
domain response Fag of an infinite series of aggregated 
measurements made at repeating time intervals given by Tr. 
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To prove the theorem, we set Tr= T1/M where  ȃM . Note 

that Tr could be set to any Ti with the same general result in the 
following steps. Here it simply makes notation easier if T1 is 
chosen. 
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Now the expression can be rearranged slightly, since the right-
hand terms are independent of k. 
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It can be observed that (6) has the form: 

       fCfBfAfFag   (7) 

 
The proof depends on the shape and features of B(f) (the 

boxcar filter response of interest) and C(f) (the expression 
describing the infinite sum of repeated measurements). 

It can be seen that: 
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Therefore B(f) has a finite value of A1T1 at f = 0, and values of 
zero at every f = 1/T1. This is the familiar sinc function 
transformation of a boxcar filter: 

 
Fig. 3. Response of an example boxcar filter with A=1 and T=1s 

 

On the other hand: 
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C(f), will become infinite for any f = ±M/T1  ȃM , or if 

f = 0. But, it will add to zero for any other value of f, as the 
infinite sum of a unity-magnitude rotating phasor. This shows 
that C(f) can be represented by a regular sequence of delta 
functions, placed at every value of f = mT1, where m is any 

integer  ǽm . 
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Comparing the features of B(f) and C(f), it can be seen that B(f) 
contains zeros which exactly coincide with every delta-
function in C(f), except the delta-function which occurs at f = 0. 
This simply reveals the combination of B(f) times C(f) to be: 
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This result can be substituted back into (7) and (6) to give: 
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Finally, inverse Fourier-transforming (14) using the standard 
relationship for a delta-function, reveals that in the time 
domain, the aggregate weightings of the overlaid repeated 
measurements can be described by a constant value, i.e. a 
uniformly weighted sample set. 
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Often the amplitude of each boxcar filter weighting will be 

set to Ai=1/Ti, so that each boxcar filter (and the cascaded 
combination) provides an averaged value. In this case: 

rT
tf

1
)(   

(independent of t, so constant and uniform for all t) 

(16) 

 

IV. GENERAL RULES FOR ALL WINDOW TYPES 

In general, by the same argument given by (7) et. seq., to 
achieve the property of UAW, the frequency-domain 
performance of any window must contain zeros at every 
integer multiple N of the repetition frequency 1/Tr at which the 
results are aggregated. 

 

“To achieve uniform aggregated weighting with a 

window function at a repetition interval Tr, its 

frequency-domain transform must have zeros placed 

at every frequency N/Tr  ȃN ” 

(17) 

 

 

V. IMPLICATIONS FOR NON-BOXCAR WINDOW TYPES 

Using this knowledge, it is easy to now confirm that, for 
example, the Hanning window of length T can be repeated at 
any interval T/M seconds, where ȃM  and M≥2, because it 

has zeros at every NM/T Hz where ȃN  (Fig. 4). 

A carefully-designed Flat-top window can also achieve the 
UAW property if repeated at any interval Tr = T/M where 

ȃM  and M≥5. This is not intuitive whatsoever from its 
time-domain shape (Fig. 5) which even includes negative 
weights, but can be easily understood by reference to its 
frequency response which has regular zeros at NM/T Hz where 
M≥5 (Fig. 6). 

 
Fig. 4. Hanning window (length T=1s) response: zeros at every multiple of 

M/T Hz where ȃM   and M≥2. 
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Fig. 5. Flat-top window (length T=1s) 

 

 
Fig. 6. Flat-top (T=1s) response: zeros at every M/T Hz where M≥5 

  

For other window functions, care is required and each 
window must be carefully examined and assessed. For 
example, a Gaussian window with ı=0.25 has a response as 
shown in Fig. 7. It appears to have regular zeros but they are 
placed at non-intuitive locations and may not be exactly 
equally spaced. Setting Tr = 1/6.1676 for T=1s, by zooming in 
on Fig. 7 to locate the zero as accurately as possible, results in 
close-to UAW, but not exactly. This repetition rate is not 
particularly convenient. A full analysis of all window types is 
beyond the scope of this paper. 

 
Fig. 7. Gaussian window (length T=1s) response: zeros inconveniently 

placed. 

VI. EXAMPLES OF CASCADED BOXCARS SHOWING UAW 

By the theorem (1) it has been shown that any overall filter 
made up of cascaded boxcar sections can be used to obtain the 
UAW property, and with a range of useful repetition rates to 
choose from. The available rates can be modified by the user as 
required, by adjustment of the boxcar sections. In particular the 
longest available repetition time (lowest rate) is governed 
directly by the length of the longest boxcar section by (1). 

To show simple examples of this, first the Parzen window 
is presented. The Parzen window is a 4-fold convolution of a 
boxcar filter and so in Fig. 8 a total of 4 boxcar sections, each 
with length 0.25s, are cascaded together to form a single filter 

of length 1s. By (1) this should exhibit UAW with a 
measurement repetition interval of Tr=0.25s, and Fig. 8 shows 
this to be the case. Zooming in on Fig. 8 shows the Aggregated 
weights to be exactly unity. 

 
Fig. 8. Parzen window with length T=1s, repeated with Tr=0.25s 

 

The final example is a more complex filter of total length 
T=1s, consisting of three unequal-length boxcar sections: 
T1=0.5s, T2=0.3s, and T3=0.2s. The desired property of UAW 
can be achieved by selecting any of the potentially-convenient 
rates of: 

 Tr= T1=0.5s (Fig. 9) 

 Tr= T2=0.3s (Fig. 10) 

 or Tr= T3=0.2s (Fig. 11) 

 or any of the available integer “sub-multiples” of 
the above by (1). 

 

 
Fig. 9. Cascaded boxcars with lengths 0.5s, 0.3s, 0.2s (total length T=1s), 
repeated with Tr=0.5s 

 

 
Fig. 10. Cascaded boxcars with lengths 0.5s, 0.3s, 0.2s (total length T=1s), 

repeated with Tr=0.3s 
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Fig. 11. Cascaded boxcars with lengths 0.5s, 0.3s, 0.2s (total length T=1s), 

repeated with Tr=0.2s 

VII. CASCADING A SINGLE FIXED-LENGTH BOXCAR TO ANY 

OTHER WINDOW 

A final observation and third useful rule can also be 
deduced and stated. By the theorem/rule (17), and by 
observation of the properties of a single boxcar filter (e.g. Fig. 
3), it can be seen that cascading (convoluting in the time 
domain) a single fixed-length boxcar filter of length Tr with 
any other pre-existing FIR filter window function will add the 
required zeros in the frequency domain  to give the UAW 
property at a repetition interval Tr, since the resulting frequency 
domain performance will be the product of the pre-existing 
filter response and the boxcar response. 

 

“Cascading (convoluting) a single boxcar filter of 

length NTr  ȃN  with any fixed pre-existing FIR 

filter window will guarantee the uniform aggregated 

weighting property with a repetition interval Tr” 

(18) 

 

 

This is extremely powerful. It means that, for example, a 
Gaussian window could be given the UAW property at a more 
convenient repetition rate by cascading it with a boxcar filter of 
length 20ms (for a 50Hz system). Also, it offers the possibility 
of creating long adaptive filters based on Hanning or boxcar 
filters with lengths that are multiples of the actual off-nominal 
system frequency f, but then cascading a single extra boxcar 
filter at a fixed (non-adaptive) length to suit the desired 
repetition (reporting) rate. This would achieve all three 
desirable properties: 

1. Uniform Aggregated Weighting (UAW). 

2. At a convenient and controllable repetition 

(reporting) rate that can be synchronized with 

UTC second rollovers. 

3. Minimization of spectral leakage through 

adaptive filters. 

 
The only caveat is the word “fixed” in (18). If the “pre-

existing” filter is changing in real-time, for instance in response 
to constantly changing system frequency f, then (18) is 
theoretically violated. An interesting future piece of work is to 
examine the magnitude of the excursions from UAW due to 
gradually changing f which cause small step-wise changes in 
adaptive filter design from window to window. If the 
magnitude of the UAW excursions can be quantified and 
guaranteed to be below various thresholds, this might allow 

fully-adaptive algorithms to operate and satisfy all three 
conditions above with high and quantifiable accuracy. 

VIII. CONCLUSIONS 

To achieve Uniform Aggregated Weighting with a window 
function at a repetition interval Tr, its frequency-domain 
transform must have zeros placed at every frequency N/Tr. 
Window functions can be made to provide the property of 
Uniform Aggregated Weighting at a chosen repetition rate 
using Welch’s method by the cascading of just a single simple 
boxcar filter with the main filter, which may be a complex 
adaptive device. If the entire filter is built from cascaded 
boxcar sections, then Uniform Aggregated Weighting is 
available at many repetition rates which are easily predictable 
from the boxcar filter lengths. 

Knowledge and use of these rules allows window functions 
to be created which produce unbiased measurements at useful 
repetition (reporting) rates that can be synchronized with UTC 
second rollovers, and that minimize spectral leakage. This 
allows the same measurement device with the same 
measurement window and computations, to produce results 
which are suitable for time-synchronised revenue metering and 
power-quality functions, and also for real-time control and 
protection functions. This offers the potential to reduce the cost 
of instrumentation, by fulfilling multiple functions within a 
single measurement device, on a single processor unit. Further 
work is required to fully quantify the effect of dynamically-
changing filter windows on the uniformity of the aggregated 
weightings during rate-of-change-of-frequency (ROCOF) 
events. 
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