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Opinion statement 

Environmental contamination is being increasingly recognized as a significant source of 

healthcare-associated infection (HAI).  Cross-contamination of the patient from the 

environment can result from the direct transfer of organisms from the air and surfaces, 

or indirectly from the hospital environment via contact with healthcare workers or 

equipment.  Traditional methods of environmental decontamination, including cleaning 

with disinfectants, and the standard infection control procedures implemented by 

modern Health Services, are critical to controlling the spread of potentially pathogenic 

microbial contaminants from environmental sources to the patient; however there is 

constant pressure to maintain, and indeed, improve on the standards that are in place to 

ensure optimal patient care.  To address this issue, much research has been directed 

towards the development and testing of novel ěwhole-roomĜ environmental 

decontamination methods which could be used to enhance hospital hygiene, and 

consequently reduce the risk of HAI-acquisition from environmental sources.  Gaseous 

methods such as the use of hydrogen peroxide, chlorine dioxide, ozone and steam, as 

well as ultraviolet and violet-blue visible light methods have all been laboratory tested, 

and to varying extents, clinically evaluated to assess their efficacy for environmental 

decontamination.  This review article considers these different decontamination 

technologies, discussing their mechanism of action, antimicrobial efficacy, and 

advantages and limitations, with a view to providing the reader with a comprehensive 

overview of the technological advances being developed to reduce the levels of 
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environmental contamination around patient areas, thus aiding in the fight against 

healthcare-associated infection. 

 

1. The Importance of Environmental Decontamination 

Microbiological contamination of the clinical environment is increasingly being highlighted as a source of infection, with direct 

contact with contaminated surfaces, indirect contact with contaminated surfaces via the hands of medical staff or equipment, and 

the air, all being recognised as potential sources of cross-infection [1-3]. High standards of cleaning and disinfection will 

contribute to minimising the risk of infection, and have been shown to play an important role in controlling outbreaks of infection 

[4,5].  

The hospital environment can quickly become contaminated and act as a reservoir for infection, and evidence shows that 

significant contamination of nurse‟s hands can occur from contact with environmental surfaces in the patient‟s environment [2, 6-

8].  Frequently-touched sites, such as door handles, light switches, bed tables and bed rails, are thought to provide the greatest 

potential risk for cross-infection [9].  Previous studies have demonstrated that healthcare workers hands can become contaminated 

through contact with inanimate objects or intact patient skin surfaces, and they can subsequently transfer organisms to other 

surfaces within the room, and potentially to other patients [7].  Indeed, healthcare workers are almost as likely to contaminate 

their hands after only touching environmental surfaces in the room as they are when they touch both the patient and 

environmental surfaces [8]. 

Environmental cleaning using disinfectants is essential for reducing contamination, however ensuring that the level of cleaning 

which occurs is adequate can be an issue.  Studies have shown that flat surfaces such as bedside tables and locker tops, are 

cleaned more often than small vertical surfaces such as door handles and light switches [10,11], but also, there are surfaces within 

the room, such as walls and electronic equipment, which are not routinely cleaned but can still harbour potential pathogens.  

Another issue is that there can be uncertainty amongst staff about who has responsibility for cleaning patient-related surfaces and 

medical equipment [9,10].  In addition to these difficulties, organisms such as MRSA, C. difficile, Acinetobacter and 

vancomycon-resistant enterococci (VRE) can persist on surfaces in the hospital environment – even after discharge cleaning – for 

significant periods of time, facilitating their transmission between patients, staff and the environment [9,12]. 

As a consequence of these issues, there has been an upsurge of interest in the development of new „whole-room‟ environmental 

decontamination technologies [12,13,14] which can supplement the standard cleaning and infection control procedures currently 

in place, with the aim of providing enhanced hygiene and a safer patient environment.  This review provides a discussion of a 

number of the key technologies currently under development for this purpose. 

2.  Gaseous Decontamination Methods 
 

The use of gaseous decontamination, also known as „chemical-fogging‟, within clinical settings has emerged as an adjunct measure for 

inactivation of microorganisms. Gaseous decontamination is a method where either a mist or vapour form of a chemical disinfectant is 

applied to promote whole room decontamination. Most typically the use of hydrogen peroxide, chlorine dioxide, and ozone have been 

investigated due to their broad antimicrobial spectra. 

 

Gaseous decontamination presents advantages including the dissipation of gaseous disinfectants allowing decontamination of large, 

difficult to reach areas, which may be missed or neglected by manual cleaning [12]. However despite this, several limitations are 

associated with this method of decontamination, particularly the rapid recontamination of rooms within days of re-occupancy, 

therefore making them more suited to terminal cleaning procedures to provide a deep-clean of the room before the next patient is 

admitted.  A range of gaseous technologies will be discussed in the following sections, and Table 1 provides a summary of the 

advantages and considerations of the use of gaseous technologies, and the other technologies discussed later in this review. 

2.1 Hydrogen Peroxide 

Hydrogen peroxide (H2O2) is an oxidizing agent used to decontaminate surfaces and objects within hospital rooms and 

wards. H2O2 has a broad spectrum of activity against clinically-relevant bacteria, bacterial endospores and viruses [15-

19], and once decomposed, does not pose any toxic threat to the environment by forming non-toxic by-products of water 

and oxygen [20].
 
The mechanism of antimicrobial activity is thought to involve oxidative damage to DNA, proteins and 

membrane lipids by free hydroxyl and ferryl radicals [15,20].  There are two distinct types of H2O2 delivery system: 

aerosolized systems make use of dry mist hydrogen peroxide and are known as aerosolized hydrogen peroxide (aHP) or 

dry mist hydrogen peroxide (DMHP), and, those which produce H2O2 vapour are usually referred to as vaporised 

hydrogen peroxide (VHP) or hydrogen peroxide vapour (HPV) [21].
 



Aerosolized systems include the commercially-available ASP Glosair (formally known as Sterinis) and Oxypharm 

Nocospray.  These systems deliver a pressure-generated fine mist aerosol of H2O2, and the recommended dose for 

hospitals is 6 ml/m
3 

per cycle, during which electrically charged particles circulate in the air, adhere to microbes in the 

air and on surfaces, inactivating them [15,16].  Following the decontamination cycle, no aeration systems are required to 

remove the H2O2 as it naturally decomposes (unlike H2O2 vapour systems) [21].
 

Clinical testing has proved successful, with a study by Barbut et al. [15] demonstrating the ability of aHP to 

decontaminate surfaces in hospitals.
 
 There was a 91% decrease in contamination of various surfaces within hospital 

rooms previously occupied by a C. difficile infected patient, compared to a 50% decrease using conventional cleaning 

with 0.5% sodium hypochlorite [15].
  

More
 
recently the efficacy of an aHP system was tested against clinical isolates 

from American hospital patients, and >3-log10 reductions of the microorganisms were achieved [22]. The authors 

concluded that these results indicate that aHP could be beneficial in the clinical setting and, due to its ease of use, its low 

cost, and the fact that the aerosol decomposes naturally, may make it easier to use than HPV [15,22]
 

Despite some beneficial features of aHP, HPV has generally been found to have greater efficacy against a range of 

nosocomial pathogens.  Fu et al. [23] demonstrated that HPV had greater efficacy and diffusion than aHP and achieved at 

least 2-log10 greater inactivation of C. difficile, MRSA and A. baumannii over and above the level of inactivation 

achieved using aHP.  The vapour systems generate a 30-35% w/w vapour of hydrogen peroxide through a high-velocity 

air stream, with a dose of 10 g/m
3
 recommended per cycle [16,23]. 

 
Well-documented vapour systems include Steris 

VHP and Bioquell HPV, with other systems including PEA Hydrogen Peroxide Gas Generator and Hygiene Solutions 

IC4 system. The Steris VHP system produces non-condensing vaporized hydrogen peroxide, at a constant concentration, 

which does not condense onto surfaces as the air is continually dried [16,24]. In contrast, the Bioquell system fills the air 

with hydrogen peroxide vapour, and the vapour subsequently condenses onto surfaces [16].
  
Both systems are controlled 

remotely from outside the room and unlike aHP, HPV systems have an aeration unit, as active catalytic conversion is 

required to aid decomposition of the hydrogen peroxide into non-toxic by-products [18].
 

Boyce et al. [25] documented the significant reduction in incidence of C. difficile associated disease (CDAD) due to HPV 

terminal cleaning. Comparing the acquisition of CDAD when the epidemic strain NAP1 was present, the study 

demonstrated a 53% decrease in cases after implementation of this technology for terminal cleaning [25]. More recently 

it has been shown that the use of HPV for decontamination of rooms previously occupied by a patient infected with, or 

carrying, a multidrug-resistant organism (MDRO), reduced the risk of the next occupant acquiring a MDRO by 64% 

[26]. Furthermore Chmielarczyk et al. [27] found the use of HPV could control an outbreak of A. baumannii in 

conjunction with good infection control practice, demonstrating the benefit of hydrogen peroxide vapour used during 

outbreaks.
 

Several other considerations should be taken into account before the implementation of H2O2 technologies for terminal 

room decontamination. H2O2 has wide antimicrobial efficacy, however recent data suggests that Geobacillus 

stearothermophilus spores, which are used as a biological indicator of system efficacy, proved easier to inactivate than 

MRSA, therefore possibly indicating that the assumed microbial efficacy of H2O2, due to inactivation of a biological 

indicator, may not be automatically transferred to other organisms, and further testing may be required to establish the 

efficacy of H2O2 against clinical samples [28].  In terms of practical application, H2O2 is toxic to patients and staff, so 

rooms need to vacated, which can be impractical when wards have high bed occupancy rates, and treatment takes far 

longer than standard cleaning [21,29]. 
 
H2O2 toxicity also means that rooms must be sealed during use to prevent leakage 

of chemicals into the occupied environment [23].  Staff training is important to ensure correct use of the systems, as the 

equipment has to be carefully placed, especially in the case of aHP, to ensure optimal surface contact [12,21], and hand-

held monitors are also required to ensure no H2O2 leakage out of the room during decontamination, and that, within 

rooms, post-treatment levels of H2O2 are below health and safety limits [12,21].  Alongside this, it is important to note 

that Hardy et al. [30] found that after H2O2 vapour decontamination hospital rooms can become quickly re-contaminated 

with MRSA, therefore although beneficial as a terminal clean, post-use, rooms once again become contaminated and 

pose a risk to patients. 
 

2.2 Chlorine Dioxide 

Chlorine dioxide is an Environmental Protection Agency (EPA) registered sterilizer, which is being increasingly 

investigated as a method of clinical decontamination. Previous research has demonstrated the use of ClO2 for whole 

facility decontamination, with gaseous ClO2 utilised for decontamination in the wake of a Bacillus anthracis attack on a 

federal building in 2001 [31]. Much in vitro work has demonstrated extensive antimicrobial properties, with laboratory 

studies highlighting bactericidal and fungicidal properties [32]. A study by Wilson et al. [33] demonstrated complete 

inactivation of Stachybotrys chartarum, Penicillium chrysogenum, and Cladosporium cladosporioides fungal spores (6 

log10 population) following 24 hours treatment, demonstrating 100% treatment efficacy at both 500ppm and 1000ppm. 

Similarly another study highlighted significant reductions of Bacillus spores, with between 2.7 and 5.9 log10 reductions 

recorded depending on the exposed surface material [34]. 



Currently there are limited studies investigating the use of ClO2 for whole room decontamination. A recent study by 

Lowe et al [35] investigated decontamination of a hospital room. A selection of common nosocomial bacterial species 

were transferred onto 10 sites throughout the hospital room and the room was sealed to prevent gas leakage. Following 

six cycles of ClO2, results demonstrated between 7-10-log10 reductions of all bacteria tested.  

Despite extensive antimicrobial properties, a number of significant limitations have been associated with ClO2 gas 

including explosive properties, thus limiting commercial storage. Furthermore the ability to degrade and discolour certain 

materials limits whole room applications. Also logistic problems are also a major concern, since rooms need to be 

vacated and securely sealed to ensure no patient or staff exposure, due to the potential for ClO2 to cause respiratory 

irritations. 

2.3 Ozone 

Ozone is a strong oxidizing agent used for inactivation of vegetative bacterial cells, however it has shown less efficacy 

against resilient bacterial spores and fungi [12,36,37]. Despite extensive in vitro research, there are only a limited 

number of studies investigating ozone within clinical environments. 

A study by Doan et al. [38] compared the efficacy of 8 disinfection technologies, including ozone, for decontamination 

of hospital isolation rooms contaminated with C. difficile. Empty isolation rooms were manually cleaned and artificially 

contaminated with C. difficile spores, however results demonstrated only a 1.3-log10 reduction following treatment with 

25ppm ozone for 142 minutes.  

In order to enhance the antimicrobial efficacy of ozone, increased concentrations are required. However this poses a 

significant toxicity hazards and potential risk of respiratory irritation. Whilst the use of ozone has been described as a 

relatively cheap method of decontamination, Doan et al [38] evaluated the cost of multiple decontamination methods, 

highlighting ozone as the most expensive, at £116 per use, therefore ozone generation would need to be made more cost-

effective before it can be utilised widely throughout clinical environments.  

2.4 Steam Cleaning 

The use of steam cleaning within hospital settings has generated much interest over recent years, with efficacy 

demonstrated against a wide spectrum of nosocomial pathogens [12,39,40]. Steam can be used as an alternative to 

chemical disinfection where disadvantages include human hazard, microbial resistance and extensive treatment times. 

Steam cleaning, as with most other decontamination technologies presents limitations, such as steam dissipating into 

water presenting problems with electrical machinery and slip hazards [12,39]. However a recent study by Tanner et al 

[39] demonstrated the use of saturated steam cleaning. This method provides hotter but drier steam meaning it does not 

pose issues with decontamination of electronic based equipment. However increased temperature does introduce 

potential scalding hazards, consequently, increased precaution should be exercised. 

Following artificial inoculation onto sample surfaces, results demonstrated complete inactivation of a range of bacteria, 

fungi and viruses following only 5 seconds treatment [39]. A later study by Sexton et al [40] investigated the reduction of 

microbial load in 4 separate hospital rooms following treatment with a portable saturated steam vapour system, with 

results demonstrating up to 2-log10 reduction following only 10-20 seconds treatment. Although extensively employed 

within clinical settings further in situ studies are required to evaluate the efficacy of this system for viral and fungal 

decontamination. 

3. Light-based Decontamination Methods 

The widespread germicidal properties of light, specifically ultraviolet (UV) light, have long been known, and UV germicidal 

irradiation (UVGI) has been successfully utilised for various clinical antimicrobial applications.  The most germicidal 

wavelengths of light fall within the UVC region (240-260 nm), and UVC has traditionally been used for disinfection, particularly 

for air and medical device decontamination applications [41-42].  UVC light has extremely broad antimicrobial activity, 

inactivating bacteria, endospores, fungi and viruses, with its action due to the absorption of UV-C photons by DNA and RNA 

base pairs, which subsequently causes the formation of thymine dimers and other mutations, halting microbial replication [43-45]. 

More recent advancements in light technologies for infection control have involved the clinical application of continuous and 

pulsed UV light for „whole room‟ decontamination, and also the increasing knowledge and application of the antimicrobial 

properties of violet-blue visible light.  Details of these technologies are provided below. 

3.1 Continuous UV-Light for Whole-Room Decontamination 

Decontamination using continuous UVC-light typically uses systems which employ either a monochromatic low-

pressure mercury lamp at 254 nm or a polychromatic medium-pressure mercury lamp.  UVC-light has extensive 



antimicrobial properties, with bacteria, fungi, viruses and protozoan organisms all demonstrating susceptibility, and this 

broad, efficient action has led to the selection of UV-C for use in many decontamination systems [41,42,46,47]. There 

are currently several commercially available continuous UV-C devices undergoing clinical trials for hospital 

decontamination, many of which are automatic non-touch disinfection systems, ensuring operator safety.  

One such system is the Tru-D SmartUVC Room Decontamination device which utilises continuous-wave UV-light (CW-

UV) (254nm range) to eradicate pathogens. This device is activated by a wireless remote control with motion sensing 

technology and delivers a dose between 12,000 µWs/cm
2
 and 36,000 µWs/cm

2
 for destruction of vegetative and bacterial 

spores, respectively [21,46]. The device is placed in the centre of the room and operators control the technology 

wirelessly from an external location. Several studies have investigated the efficacy of Tru-D UV-C for disinfection of 

various nosocomial pathogens within the laboratory and clinical environment. Boyce et al. [47] reported a 1.7-2.9 log10 

reduction in C. difficile spores following inoculation onto stainless steel carrier disks. A further study demonstrated a 

dose-dependent 2-4 log10 reduction of MRSA, C. difficile and VRE using the same system [46].  Towards application for 

terminal cleaning, it was reported that following traditional terminal cleaning of a room after discharge of MRSA 

positive patients, 18% of site tested positive for MRSA; however, following Tru-D disinfection, this was reduced to 0% 

[46]. 

3.2 Pulsed UV-Light for Whole-Room Decontamination 

Recent work has focused on the use of pulsed, polychromatic xenon flashlamps for microbial inactivation, as this 

technology enables rapid energy delivery and wide antimicrobial activity, whilst being more environmentally friendly 

than CW-UV lamps as they do not contain mercury [48-50].  Using this technology, Xenex has developed fully-

automated robotic decontamination systems for clinical room decontamination applications, and have been marketed as 

„Germ Zapping Robots‟™. Pulsed xenon UV (PX-UV) emits intense broad spectrum light, rich in UV-C wavelengths in 

short, high energy pulses, providing rapid decontamination, much faster than that achieved with continuous UV-light. 

This device has a sporicidal setting of 5 minutes in each position, with a typical patient room taking 3 positions. The PX-

UV system produces a pulsed flash at a frequency of 1.5 Hz with an approximate output of 505 J per pulse and a pulse 

duration of less than 360µs [51]. Clinical testing has demonstrated that, when combined with terminal cleaning, the PX-

UV disinfection system had the ability to achieve a 100% reduction in positive cultures of VRE [52]. Furthermore, a 

recent study by Levin and colleagues reported that three 7-minute exposures of PX-UV following terminal cleaning 

contributed to a 53% reduction in the hospital acquired C. difficile infections [51]. 

Overall, when looking at both pulsed and continuous UVC decontamination technologies, it can be seen that they offer a 

number of potential advantages, including their reliability and ease of usability, and importantly, the rapid biocidal 

activity of UVC against a wide range of healthcare-associated pathogens.  However, as is the case with the chemical-

based technologies, UVC technologies are also restricted for use for terminal cleaning of vacated rooms due, in this case, 

to the carcinogenic and mutagenic nature of UVC-light [53].  Additionally, with UV-technologies, there is a limited 

capacity to decontaminate larger rooms due to light dissipation; similarly as many objects may be out-with the direct line 

of site, reduced inactivation on indirectly exposed sites may be experienced [54], therefore multiple cycles must be 

conducted, leaving system operation open to potential human error, as operators must choose appropriate locations 

thereby requiring more operator time. An issue for future consideration is the degradative effects of long-term UVC-

exposure on hospital materials and equipment.  This is largely unknown and has not yet been evaluated, however the 

degradative properties of UV-light on plastics and other materials is widely recognised [55].  

3.3 405nm Violet-Blue Light 

More recently, the germicidal properties of violet-blue visible light wavelengths have been demonstrated, and the 

enhanced safety of these wavelengths compared to UV-light, are paving the way for its exploitation as an alternative 

light-based environmental decontamination technology. 

The high-intensity narrow-spectrum (HINS) light environmental decontamination system (EDS) is a visible light based 

system which uses low-irradiance violet-blue light, focused on 405nm, to provide continuous environmental 

decontamination, a technology that was recently reviewed [56].  Unlike, UVC and chemical-based systems, the EDS is 

designed for use in occupied environments, providing continuous decontamination of the air and all exposed surfaces in 

occupied environments.  Although not yet commercially available, this user-friendly, ceiling-mounted light source has 

been evaluated within clinical environments with successful results [57-59].   

Studies have investigated use of the system within occupied isolation rooms, and results, generated from the collection of 

environmental samples before, during and after use of this technology, have provided significant evidence of the efficacy 

of this system for reducing environmental bioburden around isolation rooms.  Studies carried out in an occupied ICU 

isolation room, demonstrated evidence of the efficacy of the EDS, with a significant 60 to 70% reductions in both the 

total viable bacterial counts (TVC) and the staphylococcal bioburden around the environment, over and above the 

reductions achieved by cleaning alone, with the EDS achieving an almost uniform reduction in bioburden across the 



room surfaces [59].  Studies conducted in Burns Unit isolation rooms also demonstrated the efficacy of the system, with 

56–86% reductions in staphylococcal contamination on surfaces around isolation rooms occupied by MRSA positive 

patients, and up to 90% reduction of contamination after 24h use in an unoccupied room [57].  Further confirmation of 

the effectiveness of the system was obtained by switching off the EDS and observing that bacterial contamination levels 

increased and returned to around pre-treatment levels when operation of the system ceased.  In addition to its use for 

disinfection of occupied isolation rooms, a study by Bache et al [58] demonstrated the efficacy of the system for 

decontamination of a Burns outpatient clinic, with a 61% efficacy achieved.  Results have also demonstrated its efficacy 

for significantly reducing the environmental microbial contamination of non-patient environments including a nurses 

changing area [60]. 

The antimicrobial action of 405nm violet-blue light is caused by oxidative damage resulting from the photo-excitation of 

porphyrin molecules within exposed microorganisms, and antimicrobial activity is broad, affecting a wide range of 

clinically-relevant organisms, including MRSA, C. difficile, and A. baumannii [61].  Bacteria, bacterial biofilms, fungi, 

yeast and bacterial endospores are all susceptible to inactivation, however, as expected, bacterial spores display resilience 

and require significant doses of light to initiate inactivation [62-64].  The virucidal effects of this technology are also not 

fully determined, however initial studies using bacteriophage highlight that inactivation is possible, however, as with the 

spores, higher light doses are required [65]. 

As mentioned, a major benefit of this technology is that it can be used safely within occupied environments, and this is 

due to the use of visible light wavelengths, with a lower photon energy than that of UVC-light.  However, with this 

benefit, comes the inherent limitation that inactivation using this low irradiance light is much slower than that of UVC-

light, requiring exposure times in the order of hours [66] rather than minutes, as is the case with most of the UV and 

chemical-based systems.  This however, means that the system is optimally deployed for continuous decontamination 

where it can continuously impact on the release of microbial pathogens associated with major bioburden dispersal 

activities such as bandage changing and bed-making [67], rather than for intense, short-time terminal cleaning.  An 

additional benefit resulting from the use of these longer, lower energy photons, is that there will be significantly less 

material degradation compared to the UV and chemical-based systems [55].  

 

4. Conclusions 

HAI resulting from cross-transmission of infectious organisms from the environment is an area gaining increased recognition, and 

with the appropriate level of patient care, and enhanced environmental cleaning, rates of these infections from environmental 

sources have the potential to be minimised.  For various reasons, ranging from staff time constraints to the fact that not all 

surfaces around the patient environment are regularly cleaned, a new range of technologies are emerging which focus on 

providing decontamination of the „whole-room‟ environment.  This review has described a range of both chemical-based and 

light-based „whole-room‟ decontamination technologies, including hydrogen peroxide, chlorine dioxide, ozone, steam, UV-light 

and violet-blue light.  These technologies each present benefits, ranging from rapid action to the safe decontamination of occupied 

patient areas, however each technology also has limitations which need to be taken into consideration before implementation. 

Although these technologies are being developed for providing enhanced environmental hygiene, they are not a replacement for 

traditional disinfectant-based cleaning, and it is extremely important that cleaning and infection control procedures are still 

maintained to the highest standard.  For a number of these technologies, efficacy is significantly reduced if there is biological 

soiling or debris present on surfaces [68,69], therefore reinforcing the strict requirement for traditional cleaning, even when used 

in combination with new technologies, and these considerations will be very important during the uptake of these technologies.  

Overall, there is unlikely to be a single solution to ensuring the cleanest possible patient environment, but the best method is 

likely to involve complementary use of a number of strategies.  For example, the use of routine disinfectant cleaning could be 

supplemented by use of violet-blue light for continuous room decontamination, and chemical or UV-light based terminal cleans, 

thus providing effective decontamination before, during and after the patient stay.  This type of multi-faceted decontamination 

strategy, coupled with optimal hand hygiene compliance, is currently likely to be the best way forward for improved 

environmental decontamination and reducing the risk of patients contracting an HAI from environmental sources. 
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Table 1.  A summary of the advantage and considerations of a range of environmental decontamination technologies.  Manual disinfectant cleaning has been included for 

comparision. 

 

 

Disinfection Technology Operational Advantages Operational Considerations 
 

Traditional manual cleaning 

and disinfection 

 

 Required as integral part of hospital hygiene strategy for the 

removal of soil and for clean appearance of surfaces. 

 Wide antimicrobial efficacy 

 Ease of use 

 Standard accepted method of cleaning 

 

 Labour intensive with compliance issues.  

 Application is intermittent with variable frequency.  

 Only suitable and accessible surfaces are treated. 

 Air not treated; Fabrics and electronic equipment often not treated 

 Detergents can have limited antimicrobial effectiveness. 

 Disinfectants may be toxic and require special safety precautions. 
 

 

Gaseous disinfection /  

chemical fogging 

Includes: 

Chlorine dioxide (ClO2) 

Hydrogen peroxide (H2O2) 

Ozone (O3) 

 

 Wide antimicrobial efficacy 

 Rapid decontamination effect 

 The whole room (surfaces and air) is treated 

 Good for terminal/deep cleaning 

 

 

 Safety considerations require experienced operator supervision and training. 

 Involves use of toxic chemicals. 

 Patients and staff cannot be exposed. 

 Rooms require sealing and are out of commission during treatment. 

 Short term effect as high contamination levels return after several days. 

 Some materials can be damaged 
 

 

Steam cleaning 

 

 

 Wide antimicrobial efficacy 

 Rapid decontamination effect 

 Good for terminal/deep cleaning 

 Because the steam cleaning machines incorporate vacuum 

extraction, dirt, water and contaminants are removed from the 

area being cleaned. 

 

 Safety considerations require experienced operator supervision. 

 Not usable in presence of patients.  

 Disruptive to normal hospital routine. 

 Short term effect as high contamination levels return after several days. 

 Only suitable and accessible surfaces are treated. 

 Air is not treated and fabrics are not effectively treated. 

 Not compatible with sensitive electronic equipment. 

 
 

UV-light technology 
 

 Wide antimicrobial efficacy 

 Rapid decontamination effect 

 The whole room (surfaces and air) can be treated 

 Good for terminal/deep cleaning 

 

 

 Uses dangerous radiation and patients/staff cannot be exposed. 

 Room is out of commission during UV treatment. 

 Some materials can be damaged by photosensitive degradation. 

 If used intermittently, the decontamination effective is short term. 

 Microbial resistance to UV can develop. 
 

 

405nm HINS-light EDS 

 

 

 Safe for use in presence of patients and staff, and non-disruptive 

 Wide antimicrobial efficacy  

 Provides continuous disinfection of the environment (air, 

exposed surfaces, fabrics, electronic equipment.) 

 Continuous use provides decontamination during periods of 

heavy microbial dispersal (e.g. bed-making, bandage changing) 

 Automated system with no compliance/training problems.  

 Environmentally and material friendly / no chemicals involved. 

 Uses energy efficient LED technology with low maintenance 

requirements 
 

 

 Decontamination effect is slower than with chemical/UV-based systems 

 Spores require high doses for inactivations 

 Full virucidal efficacy has not yet been established 

 Most effectively used for continuous disinfection rather than for rapid 

terminal/deep cleaning applications 
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