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Abstract 

Cholinergic neurons within the pedunculopontine tegmental nucleus have been implicated in a range of 

functions, including behavioral state control, attention, and modulation of midbrain and basal ganglia 

systems. Previous experiments with excitotoxic lesions have found persistent learning impairment and 

altered response to nicotine following lesion of the posterior component of the PPTg (pPPTg). These 

effects have been attributed to disrupted input to midbrain dopamine systems, particularly the ventral 

tegmental area. The pPPTg contains a dense collection of cholinergic neurons, but also large numbers of 

glutamatergic and GABAergic neurons. Because these interdigitated populations of neurons are all 

susceptible to excitotoxins, the effects of such lesions cannot be attributed to one neuronal population. 

We wished to assess whether the learning impairments and altered responses to nicotine in excitotoxic 

PPTg lesioned rats were due to loss of cholinergic neurons within pPPTg. Selective depletion of cholinergic 

pPPTg neurons is achievable with the fusion toxin Dtx-UII, which targets UII receptors expressed only by 

cholinergic neurons in this region. Rats bearing bilateral lesions of cholinergic pPPTg neurons (>90% ChAT+ 

neuronal loss) displayed no deficits in the learning or performance of fixed and variable ratio schedules of 

reinforcement for pellet reward. Separate rats with the same lesions had normal a locomotor response 

to nicotine and furthermore sensitized to repeated administration of nicotine at the same rate as sham 

controls. Previously seen changes in these behaviors following excitotoxic pPPTg lesion cannot be to be 

attributable solely to loss of cholinergic neurons. These findings indicate that non-cholinergic and not 

cholinergic neurons within the pPPTg are responsible for the learning deficits and altered responses to 

nicotine seen after excitotoxic lesions. The functions of cholinergic neurons may be related to behavioral 

state control and attention rather than learning.  
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Introduction 

Lesions of the pedunculopontine tegmental nucleus of the upper brainstem disrupt instrumental learning 

(Alderson et al., 2004) and alter the behavioral responses to several drugs of abuse including nicotine 

(Alderson et al., 2006; 2008), morphine (Miller et al., 2002) and amphetamine (Inglis et al., 1994). 

Excitotoxic lesions restricted of the posterior PPTg (pPPTg) impair the ability to learn food rewarded 

instrumental tasks (Wilson et al., 2009). Such lesions also alter the locomotor response to repeated 

systemic nicotine ʹ reducing the initial hypolocomotion and increasing subsequent hyperlocomotion 

(Alderson et al., 2008). Both of these behaviors are dependent on the functional integrity of midbrain 

dopamine (DA) systems, particularly those of the ventral tegmental area (VTA) and subsequent 

projections to the nucleus accumbens (NAcc) (Louis & Clarke, 1998; Tsai et al., 2009; Zellner & Ranaldi, 

2010). The pPPTg contains a dense population of cholinergic neurons (from which it is often referred to 

as PPTg pars compacta (Manaye et al., 1999)) and the effects of excitotoxic lesion of PPTg on learning and 

nicotine might plausibly be explained by loss of cholinergic innervation of dopaminergic systems. Midbrain 

DA neurons require acetylcholine (ACh) for the switch from tonic to phasic firing, which is essential for 

normal instrumental learning (Maskos et al., 2005; Maskos, 2008; Zweifel et al., 2009). The PPTg and 

neighboring LDTg are the sole source of ACh arriving at midbrain DA systems and send innervation in a 

well-defined topographical manner: the anterior PPTg (aPPTg) principally targets the substantia nigra (SN), 

the pPPTg the SN and VTA and the LDTg largely innervates the VTA (Oakman et al., 1995; Maskos, 2008). 

A topographically arraigned cholinergic projection to the striatum and nucleus accumbens has also been 

identified, with aPPTg preferentially innervating the dorsolateral striatum, pPPTg the medial striatum and 

NAcc and LDTg the NAcc core and areas of the most medial striatum (Dautan et al., 2014). Up-regulation 

of nicotinic acetylcholine receptors (nAChRs) within VTA following loss of pPPTg innervation can be 

presented as an explanation for the enhanced response to systemic nicotine in excitotoxic PPTg lesioned 

rats (Alderson et al., 2008). However, in addition to containing a dense population of cholinergic neurons, 
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the pPPTg also contains large numbers of glutamatergic and GABAergic neurons (Wang & Morales, 2009). 

These neuronal types are topographically arranged within PPTg: cholinergic neurons are densely packed 

in the posterior portion and sparse in anterior region, the opposite pattern is seen in GABAergic neurons 

while glutamatergic neurons are relatively equally distributed along the anterior-posterior axis. Studies 

assessing PPTg function typically create lesions of the region with excitotoxic agents, or temporary 

inactivation through GABAergic or lidocaine based mechanisms. While valuable, these techniques offer 

no selectivity for the neuronal sub-population targeted within PPTg, which limits the interpretation of 

observed effects. Cholinergic neurons within the PPTg selectively express the receptor for the peptide 

urotensin II (Clark et al., 2001). The genetic fusion of urotensin II (UII) and the ribosome inactivating 

protein diphtheria toxin (Dtx) creates a recumbent protein toxin (Dtx-UII) which, when directly infused 

into the PPTg, selectively destroys cholinergic neurons (Clark et al., 2007). Using this toxin, it has recently 

been found that the deficits in PPI following excitotoxic damage to the PPTg are not present after selective 

depletion of the cholinergic neuronal sub-population (MacLaren et al., 2014a). Here, we used this toxin 

to assess specifically the contributions of cholinergic neurons within pPPTg to instrumental learning and 

the locomotor response to systemic nicotine. In experiment 1, rats were tested in an exact replication of 

the instrumental learning protocol in which we demonstrated a persistent learning impairment in after 

excitotoxic lesion of pPPTg (Wilson et al. 2009). In experiment 2, the rate and extent of locomotor 

sensitization to repeated systemic nicotine was assessed in a replication of the protocol Alderson et al. 

(2007) which found altered sensitization in excitotoxic pPPTg lesioned rats.   

 

Experiment 1: Instrumental learning after selective depletion of cholinergic pPPTg neurons 

Methods 

Subjects 
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Twenty four adult male Lister-Hooded rats (Harlan Olac Ltd, Bicester, UK) were used in these experiments, 

with a mean weight of 326g at the start of the experiments. Rats were pair housed in temperature and 

humidity controlled environment and kept on a 12hr light/dark cycle (lights on 7AM, testing carried out 

in the light phase). Water was always freely available in the homecage. Three days prior to behavioral 

testing food was restricted to 17-19g/rat/day standard lab chow; rats' body weights were monitored to 

ensure they did not fall to below 85% free food weight at any point in the experiment. Compliance with 

the Animals (Scientific Procedures) Act 1986 and European Communities Council Directive of 24/11/86 

(86/609/EEC) was maintained throughout these experiments. 

Surgery 

Rats were anaesthetized with isoflurane (IsoFlo, Abbot Laboratories Ltd, Maidenhead, UK) in an induction 

box (0% stepped up to 5% isoflurane, 4l/m O2) before being transferred to a David Kopf stereotaxic frame 

where anesthesia was maintained through a facemask (2-3% isoflurane, 1.2-1.4l/m O2). The non-steroidal 

anti-inflammatory analgesic carprofen (0.05 ml/rat; 5% w/v; Rimadyl Pfizer Ltd, Kent, UK) waƐ 

ĂĚŵŝŶŝƐƚĞƌĞĚ ƐƵďĐƵƚĂŶĞŽƵƐůǇ ďĞĨŽƌĞ ƚŚĞ ƐĐĂůƉ ǁĂƐ ƐŚĂǀĞĚ ĂŶĚ Ă ŵŝĚůŝŶĞ ŝŶĐŝƐŝŽŶ ŵĂĚĞ͘ TŚĞ ŝŶĐŝƐŽƌ ďĂƌ ŽĨ 

ƚŚĞ ƐƚĞƌĞŽƚĂǆŝĐ ĨƌĂŵĞ ǁĂƐ ĂĚũƵƐƚĞĚ ƐƵĐŚ ƚŚĂƚ ƚŚĞ ĂŶŐůĞ ďĞƚǁĞĞŶ ƚŚĞ ŝŶĐŝƐŽƌ ďĂƌ ĂŶĚ ƚŚĞ ŝŶƚĞƌĂƵƌĂů ůŝŶĞ 

ǁĂƐ ϴΣϮϵȁ͕ ĂĐŚŝĞǀĞĚ ďǇ ŵƵůƚŝƉůǇŝŶŐ ƚŚĞ ĚŝƐƚĂŶĐĞ ďĞƚǁĞĞŶ ƚŚĞ IAL ĂŶĚ ƚŚĞ ďĂĐŬ ŽĨ ƚŚĞ ŝŶĐŝƐŽƌƐ ďǇ ƚŚĞ ƐŝŶĞ 

ŽĨ ϴΣϮϵȁ , as described by (Whishaw et al., 1977). Two craniotomies were made to allow infusion into the 

pPPTg at the co-ordinate: -0.8mm from IAL; ±1.9mm from midline; -6.5mm from dura. Dura was cut with 

the bent tip of a 30 ga needle. In the lesion group rats (n=16) received 300nl of 3% Dtx-UII (toxin kindly 

gifted from SD Clark, SUNY University at Buffalo, Buffalo, NY, USA). In the sham group (n=8) rats received 

the vehicle solution (sterile PB). Infusion was made from a hand drawn glass pipette (tip 40-50µ) 

connected by polythene tubing (containing air) to a 10ml syringe where pressure was applied by hand. 

The pipette was left in situ for 5 min after infusion to allow for diffusion from the tip. Both hemispheres 
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were infused in the same surgical procedure, with the order of first infusion side counterbalanced (unlike 

ibotenic acid bilateral lesions of the pPPTg which are normally performed in two separate procedures to 

reduce post-surgery mortality rate; in our experience recovery complications are not a concern with Dtx-

UII infusions). The wound was closed with Michel clips and, once removed from the frame, rats were 

ƚƌĞĂƚĞĚ ǁŝƚŚ ϭŵL HĂƌƚŵĂŶŶ͛Ɛ ƐŽůƵƚŝŽŶ ;BĂǆƚĞƌ HĞĂůƚŚĐĂƌĞ LƚĚ͕ NŽƌĨŽůŬ͕ UKͿ ƚŽ Ăid recovery. Once fully 

recovered rats were returned to their homecages. Previous studies have shown that the Dtx-UII lesion is 

not fully complete until 21 days post-surgery (Clark et al., 2007). During this period no behavioral testing 

was conducted and rats were monitored daily for signs of ill health and bodyweight change. 

Behavioural testing 

The behavioral testing protocol was an exact replication of our previous study with ibotenic acid (Wilson 

et al., 2009). Testing was conducted in operant chambers individually housed in sound attenuating boxes 

(Med-Associates, St Albans, Vermont, USA), monitored and controlled by a computer running Med-PC 

software (Med-Associates, St Albans, Vermont, USA). Each operant chamber had 2 retractable levers 

either side of a pellet dispenser. One of the levers had a light above it and there was a houselight on the 

opposing wall. Three days prior to operant testing rats were food restricted to 17-19g lab chow per day. 

To allow familiarization with the reward pellet and testing environment, rats were given a single session 

where 40 pellets (Test Diet purified rodent tablet 5TUL, Sandown Scientific, Middlesex, UK) were freely 

available in the operant box pellet dispenser. In an attempt to reduce possible latent inhibition, the levers 

were not extended, the sound attenuating doors were left open and rats were removed once they had 

consumed all pellets (approx. 20 minutes). 

Rats were then tested daily in 40 min testing sessions where pressing one lever the correct number of 

times led to a pellet being delivered; pressing the other lever had no programmed consequence. At the 

start of the testing session both levers were extended and the houselight illuminated. Initially rats were 
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trained on fixed ratio 1 (FR1) where one press on the correct lever (side counterbalanced across rats) 

triggered pellet delivery and simultaneous illumination of the lever-light. This light remained illuminated 

for 10 sec and during this time (defined as the inter-trial-interval: ITI) pressing on the correct lever had no 

consequence. After the 10 sec ITI the lever-light was extinguished and the next trial began. Pressing on 

the incorrect lever was also monitored. Rats were advanced through a variety of FR and variable ratio (VR) 

testing schedules (see Table 1) depending on their individual performance. A trial in each session followed 

the same format, except that correct presses up to the final press in the schedule had no consequence. In 

the extinction schedules the trials were programed in the format of VR30 but no pellets were delivered.  

Throughout all sessions all lever presses and approaches to the food hopper were recorded, allowing the 

following behavioural measurements to be calculated: pressing ʹ the total number of presses on the 

correct lever during a schedule (not including ITI presses); incorrect pressing ratio (the ratio of incorrect : 

correct presses); late pressing ratio (the ratio of [presses on the correct lever between reward delivery 

and approach to the food hopper] : pressing); reward collection latency (latency to collect the pellet after 

delivery); early pressing ratio (the ratio of [correct lever presses between reward collection and the start 

of the next trial] : pressing); post-reinforcement pause (latency from the start of the trial to first lever 

press).  

Histology 

Rats were administered an intraperitoneal injection of Dolethal (0.6 ml per rat; 200 mg/ml; sodium 

pentobarbitone; Univet Ltd, Oxford, UK) and once deeply anaesthetized, transcardially perfused with 

phosphate buffered saline followed by at least 300ml fixative (4% paraformaldehyde in 0.1M phosphate 

buffer). Brains were removed and stored in 20% w/v sucrose solution in 0.1M PB and once sunk were cut 

on a freezing microtome. Coronal 30µm sections were taken from the anterior facial nerve through to 

substantia nigra. A 1:4 series of parallel sections were immunohistochemically processed free floating for 
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either: (i) neuron specific nuclear protein (NeuN), using mouse derived anti-neuronal nuclear protein 

monoclonal antibody (Chemicon International Inc, Temecula, CA, USA), a Vector Labs Elite ABC kit (Vector 

Labs, Peterborough, UK) and Sigma Fast DAB peroxide for final substrate before being mounted onto 

slides and cresyl violet counterstained; or (ii) choline acetyltransferase (ChAT) using goat derived anti-

ChAT polyclonal antibody (Chemicon International Inc, Temecula, CA, USA), Vector Labs Elite ABC kit and 

DAB peroxide final stain. 

Lesion analysis 

Sections were viewed under a light microscope (Leica DM LB2) with a high resolution camera (Leica 

DFC320) connected to a computer for image capture. The pPPTg was defined as the region of PPTg 

comprised of densely packed ChAT+ neurons posterior to the decussation of the superior cerebellar 

peduncle, corresponding to the region covering IAL 0.12 mm through to IAL +1.08 mm on the atlas of 

Paxinos and Watson (2005). The aPPTg was defined as all ChAT+ PPTg neurons anterior to this division. 

This is the same delineation as used in previous studies (Alderson et al., 2006; 2008; Wilson et al., 2009; 

Maclaren et al., 2013) and broadly corresponds to the alternative nomenclature  PPTg pars compacta 

(posterior) and PPTg pars dissipata (anterior) (Manaye et al., 1999). On the NeuN/cresyl slides lesion 

extent was judged by lack of cell bodies and reactive gliosis. On the NeuN/cresyl sections a lesion was 

judged to be non-selective if there was evidence of areas with no cell bodies. The PPTg is a heterogeneous 

collection of intermingled glutamatergic, cholinergic and GABAergic neurons (Wang & Morales, 2009) 

with no region having solely cholinergic neurons. Therefore, even a total loss of cholinergic neurons will 

leave other populations intact which should be visible throughout all regions of the PPTg on the NeuN 

stain. The cholinergic lesion was quantified by counting ChAT+ cells within the PPTg. Each section through 

the anterior-posterior plane was photographed and subsequently loaded into the ImageJ program 

(ImageJ; US National Institutes of Health, Bethesda, Maryland, USA). Individual ChAT positive cells were 
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manually tagged using the cell counter plugin. The number of ChAT+ pPPTg neurons in each lesioned rat 

was then calculated as a percentage of the sham mean. A lesion was considered acceptable if <~80% of 

ChAT+ pPPTg neurons were destroyed and there was no damage evident on the NeuN/cresyl sections. 

Behavioral data analysis 

Data were statistically analyzed using SPSS 18 for Windows (SPSS UK, Woking, Surrey, UK). For operant 

data repeated measures ANOVAs were performed on each behavioral measure across Day (schedule day; 

within subjects factor) and between Group (lesion, sham; between groups factor). Latency data were 

SQRT transformed to correct for positive skew. Significant main effects and interactions were investigated 

with pairwise comparisons and univariate ANOVAs. Results were considered statistically significant when 

pч0.05. 

 

Results ʹ Experiment 1: instrumental learning and performance  

Lesions 

All rats recovered well from the surgical procedure. Eight rats which received Dtx-UII had selective 

bilateral lesions of pPPTg with no indication of non-selective damage on the NeuN sections (Figures 1 and 

2). Examination of the NeuN staining at the site of toxin infusion and throughout the posterior-anterior 

plane of the PPTg showed extensive NeuN+ staining throughout the region with no areas of visibly 

depleted neurons. Combined with the extensive ChAT+ cell loss and in line with previous studies (Clark et 

al., 2007; MacLaren et al., 2014b) this indicates that the toxin maintained high selectivity for the UII-R 

expressing cholinergic PPTg neurons. These lesions destroyed a mean of 93% of ChAT+ pPPTg neurons 

(range 87.8% to 98.2%). The remaining rats in the lesion group were excluded from all analysis due to 

having no clear sign of lesion (n = 2); unilateral or partially unilateral lesions (n = 4) or because of ŶŽŶͲ

selective damage (n = 4). There was no indication of lesion in any sham treated rat. 
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During the 21 day lesion formation period there were no indications of ill health in the lesion group, 

although lesioned rats did have a transient decrease in bodyweight (Figure 3). A repeated measures 

ANOVA found a significant effect of dĂǇ ƉŽƐƚͲƐƵƌŐĞƌǇ ;Fϭϵ͕Ϯϰϳ с ϯϱ͘ϳϮ Ɖ ф Ϭ͘ϬϬϭͿ͕ Ă ƐŝŐŶŝĨŝĐĂŶƚ ĞĨĨĞĐƚ ŽĨ 

ůĞƐŝŽŶ ŐƌŽƵƉ ;Fϭ͕ϭϯ с ϴ͘ϭϳ Ɖ с Ϭ͘ϬϭϯͿ ĂŶĚ Ă ƐŝŐŶŝĨŝĐĂŶƚ ůĞƐŝŽŶ ŐƌŽƵƉ ǆ ĚĂǇ ƉŽƐƚͲƐƵƌŐĞƌǇ ŝŶƚĞƌĂĐƚŝŽŶ ;Fϭϵ͕Ϯϰϳ 

= 12.41 p < 0.001). Univariate ANOVAs investigating the interaction found lesioned rats had significantly 

reduced bodyweight (compared to shams) on days 6 ʹ 15 (p<0.05 in all cases). 

 

 

Behavioral analysis 

The primary question addressed was whether selective lesions of cholinergic pPPTg neurons caused 

impairment in operant learning. This was evaluated in two ways: first by performing an analysis of 

behavioral measures during initial operant learning of the FR1 schedule (Figure 4) and then by analyzing 

behavioral changes in response to systematic increase in reinforcement schedules and during extinction 

(Figure 5, 6, and 7).  

Learning on FR1 

The number of correct lever presses, reward collection latency and the post reinforcement pause of sham 

and Dtx-UII lesioned rats are shown in Figure 4. Selective lesions of cholinergic pPPTg neurons had no 

significant effect on the acquisition of FR1. For correct presses (Figure 4A), repeated measures ANOVA 

showed a significant effect of session (F2,26 = 100.38 p < 0.001) no significant effect of lesion group (F1,13 

= 1.94 p = 0.187) and no significant lesion group x session interaction (F2,26 = 0.45 p = 0.643). Planned 

pairwise comparisons found that the overall rate of correct pressing in session 2 was higher than session 

1 (p < 0.001) and higher in session 3 than session 2 (p = 0.001). Reward collection latency was unaffected 
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by lesion: repeated measures ANOVA found a significant effect of session (F2,26 = 181.00 p < 0.001) no 

significant effect of lesion group (F1,13 = 0.163 p = 0.693) and no significant lesion group x session 

interaction (F2,26 = 0.088 p = 0.916). Planned pairwise comparisons found that the overall reward 

collection latency in session 2 was lower than session 1 (p < 0.01) and lower in session 3 than session 2 (p 

< 0.001. Post-reinforcement pause was also unaffected by Dtx-UII pPPTg lesion: repeated measures 

ANOVA found a significant effect of session (F2,26 = 118.04 p < 0.001), no significant effect of lesion group 

(F1,13 = 1.58 p = 0.231) and no significant lesion group x session interaction (F2,26 = 0.437 p = 0.651). 

Planned pairwise comparisons found that the overall post reinforcement pause in session 2 was lower 

than session 1 (p < 0.001) and lower in session 3 than session 2 (p = 0.003). Taken together, these results 

show that rats learned to lever press on an FR1 schedule of reinforcement: with no significant main effect 

of lesion group, or interactions involving group, it can be concluded that lesions of cholinergic pPPTg 

neurons had no effect on learning using this simple schedule.  

Learning of new fixed and variable schedules of reinforcement 

Once rats had learned FR1, we advanced them through various fixed and variable ratio schedules of 

reinforcement (see Table 1). For clarity, data are presented showing performance of sham and lesioned 

rats on the first and last day of each schedule. Figure 5 shows the number of correct lever presses on the 

first and last day of each schedule; Figure 6 the reward collection latency; and Figure 7 the post 

reinforcement pause. No significant effects involving lesion were found. For correct presses (Figure 5), 

repeated measures ANOVA found a significant effect of schedule (F6.9,90.4 = 96.92 p < 0.001), no 

significant effect of lesion group (F1,13 = 0.01 p = 0.924) and no significant lesion group x schedule 

interaction (F6.9,90.4 = 0.96 p = 0.468). Planned pairwise comparisons investigating the effect of schedule 

found the number of correct presses increased during FR5, VR5, the switch to VR10 (p<0.05 in all cases) 

and then stayed the same until extinction. Lesions of cholinergic pPPTg neurons had no effect on the 
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number of correct lever presses across these schedule changes. For reward collection latency (Figure 5), 

repeated measures ANOVA found a significant effect of schedule (F1.2,15.0 = 10.66 p = 0.004) no 

significant effect of lesion group (F1,13 = 0.113 p = 0.743) and no significant lesion group x schedule 

interaction (F1.6,15.0 = 0.17 p = 0.725). Planned pairwise comparisons investigating the effect of schedule, 

found the reward collection latency changed significantly during extinction, but not during any other point 

prior to this. For post reinforcement pause, repeated measures ANOVA found a significant effect of 

schedule (F4.2,54.3 = 7.70 p <0.001) no significant effect of lesion group (F1,13 = 0.159 p = 0.697) and no 

significant lesion group x schedule interaction (F4.2,54.3 = 1.44 p = 0.232). Planned pairwise comparisons 

investigating the effect of schedule found the post reinforcement pause decreased during FR5 and 

increased during the VR schedules (p < 0.05 in all cases). Separate analysis performed on all data (rather 

than first and last day) produced the same main significant effects as the analysis reported here and no 

significant effects or interactions involving lesion group (data not shown). Combined, these results show 

that selective lesions of cholinergic PPTg neurons had no effect on the acquisition or performance of  fixed 

and variable ratio schedules of reinforcement.  

 

 

Experiment 2: nicotine sensitization  

Methods  

Subjects 

TǁĞŶƚǇͲĨŽƵƌ ĂĚƵůƚ ŵĂůĞ LŝƐƚĞƌͲHŽŽĚĞĚ ƌĂƚƐ ;HĂƌůĂŶ OůĂĐ LƚĚ͕ BŝĐĞƐƚĞƌ͕ UKͿ ǁĞƌĞ ƵƐĞĚ͕ ǁŝƚŚ Ă ŵĞĂŶ ǁĞŝŐŚƚ 

of 355g (range 331 ʹ 389g) at time of surgery. Rats were pair housed in temperature and humidity 

controlled environment and kept on a 12hr light/dark cycle (lights on 7AM, testing carried out in the light 

phase). Food and water was always freely available in the homecage. Compliance with the Animals 
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(Scientific Procedures) Act 1986 and European Communities Council Directive of 24/11/86 (86/609/EEC) 

was maintained. 

Surgery 

Lesion surgery was performed as described in Experiment 1. Sixteen rats received bilateral Dtx-UII 

infusions into the pPPTg, 8 rats received sham (vehicle only) infusions into pPPTg.  

Behavioral testing 

Dtx-UII is a protein synthesis inhibitor based toxin which, after entry into the cell, takes up to 21 days for 

cell death to occur (Clark et al., 2007). To ensure the lesion was formed before testing began, behavioral 

testing began 2ϭͲϮϰ ĚĂǇƐ ƉŽƐƚ-surgery. The behavioral testing protocol is a replication of the protocol 

previously used to assess nicotine sensitization in excitotoxic pPPTg lesioned rats (Alderson et al., 2008). 

LŽĐŽŵŽƚŽƌ ƚĞƐƚŝŶŐ ǁĂƐ ĐŽŶĚƵĐƚĞĚ ŝŶ ϲ ƉĞƌƐƉĞǆ ĐĂŐĞƐ ;ϰϱ͘ϳ Đŵ ǆ Ϯϰ͘ϭ ĐŵͿ ƐŝƚƵĂƚĞĚ ŝŶƐŝĚĞ ͞“ŵĂƌƚFƌĂŵĞΡ 

CĂŐĞ RĂĐŬ “ƚĂƚŝŽŶƐ͟ ;LED ƌĞĂƌŝŶŐ ϳǆϭϱ HŝŐŚ DĞŶƐŝƚǇ͕ HĂŵŝůƚŽŶ KŝŶĚĞƌ LLC͕ PŽǁĂǇ CA͕ U“AͿ͘ TŚĞƐĞ 

ĐŽŶƚĂŝŶĞĚ Ă ϳ ǆ ϭϱ ŐƌŝĚ ŽĨ ŝŶĨƌĂͲƌĞĚ ďĞĂŵƐ Ăƚ ƚŚĞ ŚĞŝŐŚƚ ŽĨ the rats body. All stations were interfaced with 

Ă ĐŽŵƉƵƚĞƌ ƐǇƐƚĞŵ ƌƵŶŶŝŶŐ ͞MŽƚŽƌ MŽŶŝƚŽƌ͟ ƐŽĨƚǁĂƌĞ ;HĂŵŝůƚŽŶ KŝŶĚĞƌ LLC͕ PŽǁĂǇ CA͕ U“AͿ ǁŚŝĐŚ 

recorded all beam breaks made in the cages. Daily testing sessions were 60 min long, conducted in a dimly 

illuminated room; each session had a proportionally equal number of sham and lesioned rats. Rats were 

given 3 habituation sessions where they were placed in the locomotor cages without any injections. This 

was followed by 7 sessions where rats were injected with 0.9% w/v saline (s.c.; 1mL/kg) immediately prior 

to testing. After completing this habituation period nicotine testing began. Nicotine sensitization was 

ƉĞƌĨŽƌŵĞĚ ŝŶ Ă ĚĂǇͲŽŶ ĚĂǇͲŽĨĨ ƌŽƵƚŝŶĞ ǁŚĞƌĞďǇ ƌĂƚƐ ƌĞĐĞŝǀĞĚ ŶŝĐŽƚŝŶĞ ;Ɛ͘Đ͖͘ Ϭ͘ϰ ŵŐͬŬŐ ŝŶ Ϭ͘ϵй ƐĂůŝŶĞ͖ 

nicotine hydrogen tartrate, SigmaʹAldrich, UK; dose refers to salt) or saline (s.c.; 1mL/kg, 0.9% saline) on 

alternating days for 14 days. The order of testing was counterbalanced so that on any given day half the 

rats received nicotine and half saline. All injections were performed in a procedure room opposite the 
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locomotor testing room: each rat was individually taken to the procedure room, injected, then taken to 

and placed in the locomotor testing cage, which started recording beam breaks immediately.  

Behavioral data analysis 

Data were analyzed using SPSS 18 for Windows (SPSS UK, Woking, Surrey, UK). For locomotor data the 

number of beam breaks per session were SQRT transformed to correct for positive skew in the data 

;ŝĚĞŶƚŝĨŝĞĚ ďǇ ƚŚĞ “ŚĂƉŝƌŽͲWŝůŬ ƚĞƐt). Separate repeated measures ANOVA were performed across days 

for the habituation and nicotine testing components of the experiment. Details of particular factors 

analyzed are reported in the corresponding results section. In the case of significant interactions, these 

were investigated with planned pairwise comparisons and univariate ANOVAs, where appropriate. Results 

ǁĞƌĞ ĐŽŶƐŝĚĞƌĞĚ ƐŝŐŶŝĨŝĐĂŶƚ ǁŚĞŶ Ɖ ч Ϭ͘Ϭϱ͘ 

Lesion analysis 

Seven rats had selective bilateral lesions of the cholinergic pPPTg. These lesions destroyed a mean of 

89.5% of ChAT+ pPPTg neurons (range 78.8% to 94.8%; see Figure 8) with no ĞǀŝĚĞŶĐĞ ŽĨ ŶŽŶͲƐĞůĞĐƚŝǀĞ 

damage on the NeuN/Cresyl stain. Figure 9 shows photomicrographs from representative lesion and sham 

rats. The remaining rats in the lesion group were excluded from all analysis because of having unilateral 

lesions (n = 2); partial ChAT+ lesions (range ȂϯϰͲϳϬй ĐĞůů ůŽƐƐ͕ Ŷ с ϱͿ͕ ŚĂǀŝŶŐ ŶŽŶͲƐĞůĞĐƚŝǀĞ ĚĂŵĂŐĞ ;Ŷ с ϮͿ͘ 

Experiment 2: nicotine sensitization ʹ behavioral results 

Habituation sessions 

The rate of locomotion and rearing during the habituation sessions (where rats had 3 sessions of no 

injections followed by 7 sessions with saline injections) is shown in Figure 10. Selective lesions of 

cholinergic pPPTg neurons had no effect on baseline levels of spontaneous locomotion or habituation to 

the testing environment. For beam breaks during the daily habituation sessions a repeated measures 

ANOVA found a main effect of session (F6.41,83.40 = 6.46, p < 0.001) but not group (F1,13 = 0.63, p = 
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0.44) and no session x group interaction (F6.41,83.40 = 1.27, p = 0.28). Restricted planned pairwise 

comparisons found that sessions 1, 2 and 3 differed from some, but not all, later sessions (1 from 6 and 8; 

2 and 3 from 8) and that from session 4 onwards there were no differences between sessions.   

Nicotine sessions 

Nicotine testing sessions 

Figure 11 shows the mean number of beam breaks (basic movements) during the nicotine and saline 

testing sessions. Selective lesions of cholinergic pPPTg neurons had no effect on nicotine induced 

locomotor changes or the rate of nicotine sensitization. Repeated measures ANOVA found a significant 

effect of session (F6,78 = 27.39, p < 0.001), a significant effect of drug (F1,78 = 4.58, p = 0.05) and a drug 

x session interaction (F6,78 = 44.52, p < 0.001) and that all effects involving lesion group were non-

significant (group (F1,13 = 0.58, p = 0.46); drug x group (F1,78 = 2.76, p = 0.121); group x session (F6,78 = 

1.75, p = 0.122); drug x group x session (F6,78 = 0.76, p = 0.601)). Bonferroni corrected ƉĂŝƌĞĚ ƐĂŵƉůĞ ƚͲ

tests comparing the effect of nicotine and saline during each session found that during the first session 

both the lesion and sham groups displayed hypolocomotion (sham ƚϳ с Ͳϰ͘ϴϮ͕ Ɖ с Ϭ͘Ϭϭϰ͖ ůĞƐŝŽŶ ƚϲ с Ͳϴ͘ϱϲ͕ 

p < 0.01) which developed into hyperlocomotion during ƚŚĞ ůĂƚĞƌ ƚĞƐƚŝŶŐ ƐĞƐƐŝŽŶƐ ;ƐŚĂŵ ƐĞƐƐŝŽŶ ϱ͗ ƚϳ с Ͳ

ϲ͘ϯϯ͕ Ɖ ф Ϭ͘Ϭϭ͘ LĞƐŝŽŶ ƐĞƐƐŝŽŶ ϲ͗ ƚϲ с Ͳϲ͘ϭϬ͕ Ɖ с 0.007). These results show that both groups displayed a 

sensitized response to repeated systemic nicotine administration and that selective lesions of cholinergic 

pPPTg neurons had no effect on this. 
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Discussion 

Summary 

These experiments examined the effects of lesions of cholinergic neurons within the posterior 

pedunculopontine tegmental nucleus (pPPTg ʹ also described as PPTg pars compacta) on instrumental 

learning and nicotine sensitization. Selective depletion of cholinergic PPTg neurons was achieved using 

the fusion toxin Dtx-UII (Clark et al., 2007). Behavioral testing in the instrumental learning and 

performance experiments consisted of assessing the ability to learn under fixed and variable ratio 

schedules of reinforcement for food pellet reward. This experiment was a replication of our previous study 

which showed that rats bearing excitotoxic (ibotenic acid) lesions of pPPTg were persistently impaired in 

learning every schedule of reinforcement tested and, once having learned the schedules, displayed 

behavioral changes during performance of them (Wilson et al., 2009). In contrast to this, selective 

depletion of cholinergic pPPTg neurons caused no measurable effect on any aspect of learning or 

performance across all schedules tested. The second experiment examined (in separate rats) the rate of 

locomotor sensitization to repeated systemic nicotine following selective depletion of cholinergic pPPTg 

neurons. The experimental protocol was a replication of previous work in our laboratory showing 

enhanced sensitization to systemic nicotine following excitotoxic lesion of the pPPTg. Mirroring the 

excitotoxic lesion, Dtx-UII lesions had no effect on baseline levels of spontaneous locomotion. However, 

in contrast to the excitotoxic lesion, Dtx-UII lesions had no effect on the rate of sensitization to repeated 

systemic nicotine.  

Neuronal sub-types affected by lesion techniques 

The key difference between this study and the previous reports is that the previous reports used 

techniques which non-selectively target all neuronal types within PPTg, whereas in this current work Dtx-

UII caused selective and extensive depletion of the cholinergic neuronal sub-population. The PPTg is a 
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heterogeneous collection of interdigitated cholinergic, glutamatergic and GABAergic neurons (Wang & 

Morales, 2009). These neuronal types are not equally distributed: In the posterior PPTg, there are more 

glutamatergic than cholinergic neurons, with the GABAergic population being the smallest population. In 

the anterior PPTg, the GABAergic population is the largest, glutamatergic second largest and cholinergic 

population the smallest. Previously, experimental work in laboratory animals assessing PPTg function has 

typically used excitotoxic agents to create lesions, or GABA agonists such as muscimol to induce transient 

inactivation. Excitotoxic agents bind to NMDA channels and lock them open, causing unregulated calcium 

influx which rapidly becomes neurotoxic (Berdichevsky et al., 1983). While these agents are selective for 

neurons (unlike electrolytic lesions which also destroy fibers of passage) they are not selective for the 

type of neuron they target. The mechanism of action of muscimol (activation of inhibitory GABA 

receptors) also, in this region of brain, has no selectivity for the neuronal subtype targeted. In contrast to 

this, Dtx-UII targets cells which express the receptor for the peptide urotensin II, which, within the 

mesopontine tegmentum, is selectively expressed by cholinergic neurons (Clark et al., 2001). 

Furthermore, not only does Dtx-UII selectively target the cholinergic neuronal sub-population, but it 

results in more extensive cell loss within this population than generally experienced with the use of 

excitotoxic agents. For example in the instrumental learning experiment here, cholinergic cell loss was 

93% but in our previous study using the same paradigm with ibotenate lesions, cholinergic cell loss in the 

pPPTg was only 64% (Wilson et al., 2009).  

Relation to previous work ʹ instrumental learning and performance 

There is an extensive body of literature showing deficits in learning and performance of goal directed tasks 

following excitotoxic lesion of PPTg. Rats bearing bilateral lesions of the whole PPTg (anterior and 

posterior) are impaired at learning to navigate a maze for food reward (Dellu et al., 1991) and at the 

delayed spatial win shift radial maze task (Keating & Winn, 2002). Likewise, excitotoxic PPTg lesioned rats 

are impaired at acquiring lever pressing for intravenous self-administration of d-amphetamine (Alderson 
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et al., 2004) and heroin (Olmstead et al., 1998) and do not form conditioned place preference to morphine 

or amphetamine (Bechara & Vanderkooy, 1989; Olmstead & Franklin, 1994) (although, interestingly, the 

same lesions do not block cocaine place preference (Parker & van der Kooy, 1995)). These learning deficits 

are not the result of altered reward perception or reduced motivation ʹ performance of lesioned rats 

increases when reward value in increased (Taylor et al., 2004; Ainge et al., 2006) and if the task is learned 

prior to surgery, PPTg lesioned rats have identical levels of responding as sham controls (Alderson et al., 

2004). More recently, the learning impairment has been shown to be a result of loss of posterior but not 

anterior PPTg (Wilson et al., 2009) and furthermore to be specifically in the updating of goal directed 

action-outcome associations (Maclaren et al., 2013). These studies implicate disrupted input to midbrain 

DA systems as being the core reason for learning impairment after PPTg manipulation. Midbrain DA 

neurons switch from a tonic to a phasic firing pattern in response to unexpected reward, or stimuli that 

predict expected reward (Schultz, 1998; Schultz, 2010). This firing pattern (described as reward prediction 

error signal, or alternatively sensory prediction error signal) is crucial for normal instrumental learning 

(Redgrave et al., 2008; Zweifel et al., 2009). The switch in firing patterns is critically dependent on 

cholinergic input ʹ it does not happen in the absence of functioning cholinergic receptors (Maskos et al., 

2005; Maskos, 2007; Maskos, 2008; Steidl et al., 2011a). The PPTg sends extensive excitatory 

glutamatergic and cholinergic innervation to midbrain DA neurons (Mena-Segovia et al., 2008b) and is 

able to switch the firing pattern of these neurons from tonic to phasic (Lodge & Grace, 2006; Chen & 

Lodge, 2013). PPTg neurons are known to encode non-physical aspects of sensory stimuli such as salience 

and reward prediction and, crucially, to do this at a shorter latency than midbrain DA (Okada et al., 2009; 

Thompson & Felsen, 2013). This has led to the hypothesis that PPTg may provide crucial information 

required for generating the reward prediction error signal (Kobayashi & Okada, 2007; Okada & Kobayashi, 

2013). This interpretation is entirely consistent with the finding that in trained rats, inactivation of PPTg 

has no effect on baseline firing of midbrain DA neurons, but selectively silences the phasic firing in 
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response to reward predicting stimuli (Pan & Hyland, 2005). Previously it has been shown that selective 

loss of cholinergic PPTg neurons has no effect on the continued performance of a drug self-administration 

task learnt prior to lesion surgery (Steidl et al., 2011b). Our current results show that normal instrumental 

learning can occur in the absence of cholinergic input from pPPTg to midbrain DA neurons. Two 

interpretations emerge from this. The first is that a functioning cholinergic pPPTg has no role in normal 

instrumental learning and therefore absence of functioning cholinergic PPTg has no impact on this 

behavior. The second interpretation is that a functioning cholinergic pPPTg may contribute to 

instrumental learning, but in its absence, compensatory mechanisms allow this to continue despite a 

reduction in input. While cholinergic innervation of midbrain DA is essential for normal firing patterns, the 

loss of pPPTg will not lead to a total loss of cholinergic input to any midbrain sub region. In the case of the 

VTA (particularly involved in instrumental learning) the loss of pPPTg will reduce numbers of cholinergic 

neurons projecting to VTA by only around 26% (numbers used for calculation taken from: Wang and 

Morales, 2009). Whichever of these explanations is correct, the key finding is that instrumental learning 

can occur in the absence of a functioning cholinergic pPPTg, but cannot occur normally after lesioning or 

inactivation targeting all neuronal types within PPTg. The most parsimonious interpretation of this 

difference is that the non-cholinergic pPPTg is critically involved in normal instrumental learning ʹ without 

it, this process is severely disrupted.  

Relation to previous work ʹ nicotine sensitization  

Repeated systemic administration of nicotine causes reliable, dose dependent, locomotor sensitization. 

First administration induces locomotor depression which, over a period of re-administration (the speed 

of which depends on dose) develops into hyperlocomotion (Benwell & Balfour, 1992). This effect is 

believed in part to be mediated via activation and subsequent up-regulation of nAChRs on VTA DA neurons 

(Reavill & Stolerman, 1990; Vezina et al., 2007; Govind et al., 2009). However, nicotine also activates 

nAChRs on VTA glutamatergic (Grillner & Svensson, 2000) and GABAergic neurons (Mansvelder et al., 
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2002). It has been proposed that nicotine has a prolonged action on glutamatergic VTA which in turn 

increases glutamate driven VTA DA activation, while the action on GABAergic (inhibitory) VTA neurons has 

been shown to be short transient activation followed by prolonged desensitization leading to depression 

of inhibition (Mansvelder et al., 2002). Therefore, the action of nicotine in the VTA is more complex than 

simply acting directly upon DA neurons and driving DA output, but instead may involve several parallel 

events: immediate excitatory action on DA neurons, prolonged activation of DA neurons mediated by 

glutamatergic activity and additional persistent depression of inhibitory GABAergic input, with the net 

result being rapid and sustained increase in mesoaccumbens DA levels. Excitotoxic lesions of the pPPTg 

alter the locomotor response to nicotine (Alderson et al., 2008). The initial hypolocomotion seen in sham 

animals was absent and the rate of subsequent hyperlocomotion accelerated. One interpretation of this 

effect is that the pPPTg lesioned rats had an enhanced rate of sensitization, a consequence of up-

regulation of VTA nAChRs in response to the reduction in innervation arriving from the pPPTg, leading to 

a greater response when systemic nicotine acts on this system. A second interpretation is that nicotine 

has a direct action on the pPPTg, and loss of the pPPTg therefore changes the nicotinic response in a 

manner independent from direct alterations within VTA. There is some evidence to support the 

hypothesis that nicotine has an effect within PPTg. PPTg neurons expresses various nAChRs and systemic 

nicotine induces c-fos activation within the PPTg (Lanca et al., 2000). Interestingly, this activation appears 

to be almost exclusively within the non-cholinergic neuronal sub-populations. While there is less 

behavioral evidence to support the view that nicotine has a direct effect on PPTg neurons, one study 

reports that nicotine micro-infused directly into PPTg induces a significant conditioned place preference 

for nicotine rather than vehicle infusion (Iwamoto, 1990). The results from our current study are not 

compatible with the hypothesis that the altered sensitization to nicotine following excitotoxic pPPTg 

lesion are a direct consequence of up regulation of nAChRs within VTA. The cholinergic neuronal loss 

within PPTg in our study was higher than following excitotoxic lesion, yet there were no indications of 



21 

 

altered sensitization to nicotine. Our results are compatible with the view that nicotine may have a direct 

effect on non-cholinergic PPTg, or that the altered sensitization following excitotoxic lesion is a result of 

disrupted signaling within VTA following combined loss of cholinergic and non-cholinergic PPTg.  

Functionally dissecting the PPTg: cholinergic v non-cholinergic PPTg systems 

Previously, functionally dissecting the PPTg has focused on investigating the behavioral roles of the 

anterior and posterior PPTg components (Alderson et al., 2006; 2008; Wilson et al., 2009; Martinez-

Gonzalez et al., 2011). In these studies we have undertaken a different approach and attempted to 

examine the functions of one neuronal population within PPTg. While the cholinergic and non-cholinergic 

neurons appear to innervate very similar structures (Hallanger & Wainer, 1988; Semba & Fibiger, 1992; 

Mena-Segovia et al., 2008a; Kita & Kita, 2011) the profile of these projections appears very different. 

Single cholinergic PPTg neurons are known to send massively bifurcated projections, whereby one single 

neuron targets multiple efferent structures (Jourdain et al., 1989; Semba et al., 1990; Losier & Semba, 

1993; Dautan et al., 2014). In contrast  to this, the non-cholinergic projections, despite innervating the 

same regions, appear to form far simpler projections whereby one neuron targets only one or two efferent 

regions (Mena-Segovia et al., 2008a). Furthermore, while there are relatively few studies analyzing the 

relative densities of cholinergic versus non-cholinergic projections to target regions, where these have 

been studied (VTA and STN) it appears that in terms of number of projecting neurons, there are more 

non-cholinergic than cholinergic neurons innervating target regions (Wang et al., 2010; Kita & Kita, 2011). 

Given the apparent different projection patterns in the presence of similar projection regions, it is 

interesting to speculate what the different functions of the cholinergic and non-cholinergic projections 

may be. Cholinergic PPTg neurons have a long association with involvement in behavioral state control. 

While the PPTg is not essential for normal sleep (Deurveilher & Hennevin, 2001), cholinergic PPTg neurons 

do change their activity across sleep-wake transitions (Ros et al., 2010), are most active during wake and 

REM states, and are linked to changes in cortical EEG (Mena-Segovia & Bolam, 2011). The cholinergic PPTg 
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neurons, sending relatively sparse yet diverse innervation to numerous efferent regions, seem ideally 

suited to be coordinating synchrony across multiple brain regions and/or to be involved in integrating 

information across regions. In contrast, the non-cholinergic PPTg, particularly the glutamatergic 

component, is ideally suited to send rapid excitatory input to a subset of target regions. This interpretation 

is also consistent with the results from our current studies. The instrumental learning task we used is 

relatively straightforward: despite having high and variable schedules of reinforcement, it involves little 

complexity beyond association formation and adjusting levels of lever pressing. Learning of goal directed 

operant tasks is critically dependent on basal ganglia and midbrain DA systems, but can be acquired 

normally despite large lesions of, for example, hippocampal and entorhinal circuitry (Corbit & Balleine, 

2000; Reichelt et al., 2011). This supports the view that a disruption in integration of information across 

circuitry outside basal ganglia could have little impact on standard operant learning. Operant learning, 

however, is critically dependent on accurate rapid processing of sensory input and the ability to attribute 

non-physical properties (such as salience) to these stimuli. This process is dependent on a functioning 

non-cholinergic PPTg (Alderson et al., 2004; Wilson et al., 2009). It would be of interest to test this working 

hypothesis of the function of cholinergic PPTg by assessing the effects of loss of cholinergic PPTg neurons 

in behavioral tasks with a considerably stronger reliance on multi-modal integration of information ʹ for 

example context dependent instrumental learning (Corbit & Balleine, 2000; Reichelt et al., 2011), occasion 

setting (Reichelt et al., 2011) or cue driven behavioral changes, which are known to be highly susceptible 

to cholinergic manipulation (Palmatier et al., 2006; Farquhar et al., 2011). 

Conclusions 

We assessed the involvement of cholinergic neurons within the pPPTg in operant learning and nicotine 

sensitization. Lesions of cholinergic pPPTg neurons, created with Dtx-UII, were highly destructive to this 

neuronal population (over 90% cell loss). These lesions had no effect on instrumental learning or the rate 

of nicotine sensitization ʹ two behaviors which are severely and persistently affected by lesions of all 
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neuronal types within pPPTg.  Our results strongly implicate the role of the non-cholinergic PPTg in these 

behaviors and highlight the importance not attributing the deficits observed after excitotoxic 

manipulation of this region solely to loss of cholinergic neurons.  
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Tables 

Table 1 

 

 

Table 1: Reinforcement schedules and criteria used to advance rats through the schedules. Rats were 

advanced through all schedules from top to bottom. The number of correct presses required refers to the 

number of correct presses required on a given trial to earn food reinforcement. In VR schedules, this 

number was randomly picked from the range on a trial-to-trial basis. 

 

 

 

 

 

 

Schedule Number of correct presses 

required 

Criteria to be met before advancing to the next schedule  

FR1 1 2 consecutive sessions of >80 trials completed 

FR5 5 2 consecutive sessions of >60 trials completed, or 5 sessions. 

VR5 1-9 (mean 5) 5 sessions completed 

VR10 1-19 (mean 10) 2 sessions completed 

VR15 1-29 (mean 15) 2 sessions completed 

VR30 1-59 (mean 30) 7 sessions completed 

Extinction No reward delivered 7 sessions completed 
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Table 2 

 

 

Table 2: Comparison of effects of selective lesions of cholinergic pPPTg neurons (Dtx-UII) in this study and 

excitotoxic (ibotenic acid) lesions performed in our earlier study (Wilson et al. 2009). Arrows indicate 

significant difference and direction of difference ;ĐŽŵƉĂƌĞĚ ƚŽ ƐŚĂŵ ĐŽŶƚƌŽůƐͿ͘ ͟Ͳ͞ ŝŶĚŝĐĂƚĞƐ ŶŽ ƐŝŐŶŝĨŝĐĂŶƚ 

difference. 

 

 

 

 

 

 

 Correct lever presses 
Reward collection 

latency 
Post reinforcement pause 

Schedule Dtx-UII Ibotenic Dtx-UII Ibotenic Dtx-UII Ibotenic 

FR1 - Ļ - Ĺ - Ĺ 

FR5 - Ļ - Ĺ - Ĺ 

VR5 - Ļ - - - - 

VR10 - Ļ - - - - 

VR15 - Ļ - - - - 

VR30 - Ļ - Ĺ - - 

Extinction - - - - - - 
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Figures 

Figure 1 
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Figure 1: Photomicrographs from a sham lesioned rat (left panels) and Dtx-UII lesioned rat (right panels). 

The top row shows cholinergic neurons within anterior PPTg, the middle rows shows cholinergic neurons 

within the posterior PPTg, the cut out shows a high magnification image of the same posterior PPTg 

section. The bottom row shows a NeuN / Cresyl double stained section immediately parallel the ChAT 

section above it, which is through the region of the greatest ChAT cell loss. The black arrows indicate the 

location of the PPTg.  
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Figure 2: Quantification of number of ChAT+ neurons present along the anterior-posterior axis of the PPTg. 

Graph shows group means ± SEM 

 

FŝŐƵƌĞ ϯ͗ PŽƐƚͲƐƵƌŐĞƌǇ ďŽĚǇǁĞŝŐŚƚ ŽĨ ƐŚĂŵ ĐŽŶƚƌŽů ĂŶĚ ƐƵĐĐĞƐƐĨƵů ƐĞůĞĐƚŝǀĞ ĐŚŽůŝŶĞƌŐŝĐ ƉPPTŐ ůĞƐŝŽŶĞĚ ƌĂƚƐ͘ 

Graph shows group means ± SEM.  
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Figure 4: Lesions of cholinergic pPPTg neurons had no significant effect on acquisition of a novel 

instrumental action (FR 1). Panel A shows the number of correct lever presses; panel B shows the reward 

collection latency; and panel C shows post-reinforcement pause. All graphs, group means ±SEM. 
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Figure 5: Number of correct lever presses performed on the first and last day of each schedule after FR1. 

No significant differences were found between sham and lesioned rats. Graph shows group means ±SEM  
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Figure 6: Reward collection latency on the first and last day of each schedule after FR1. No significant 

differences were found between sham and lesioned rats. Graph shows group means ±SEM  
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Figure 7: Post reinforcement pause on the first and last day of each schedule after FR1. No significant 

differences were found between sham and lesioned rats. Graph shows group means ±SEM  
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Figure 8: Quantification of number of ChAT+ neurons present along the anterior-posterior axis of the PPTg. 

Graph shows group means ± SEM 
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Figure 9: PŚŽƚŽŵŝĐƌŽŐƌĂƉŚƐ ĨƌŽŵ Ă ƐŚĂŵ ;ůĞĨƚ ƉĂŶĞůƐͿ ĂŶĚ Ă DƚǆͲUII ůĞƐŝŽŶĞĚ ;ƌŝŐŚƚ ƉĂŶĞůƐͿ ƌĂƚ͘ RŽǁƐ Ă ʹ c 

show ChAT stained sections of anterior PPTg (row a), division between anterior and posterior PPTg (row 

b) and posterior PPTg (row c). Row d shows a NeuN / Cresyl double stained section immediately parallel to 

row c, at the level of the posterior PPTg and greatest ChAT cell loss. Dotted arrow indicates the location of 

the PPTg 
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Figure 10: Beam breaks made by sham and Dtx-UII pPPTg lesioned rats during the habituation sessions. 

Hab = habituation session; Hab+sal = saline injection and habituation session. Graph shows group means 

± SEM. 
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Figure 11: 6.8: Basic movements made during the nicotine testing sessions by sham and Dtx-UII lesioned 

rats. Graph shows group means ± SEM. 
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