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ABSTRACT 17 

 18 

A tidal channel can retain phytoplankton, despite a residual flow if the phytoplankton 19 

migrate vertically with a daily rhythm. Tidal currents are slowed down by bed friction and so 20 

plankton experience faster flow when higher in the water column. The lateral movement of 21 

the plankton depends on the nature of the vertical migration, particularly the time spent near 22 

the surface and the phase of the tide. A model of this accorded with observations of 23 

chlorophyll derived from in situ fluorescence at a mooring in a tidal channel. Peaks in 24 

chlorophyll at the end of the flood tide indicated the presence of a phytoplankton bloom 25 

downstream of the mooring. Peaks in chlorophyll at the ends of the morning flood tides were 26 

three to four times larger than at the ends of the evening floods, over several days. In contrast 27 

well mixed particulates were removed from the channel by the residual flow in just two days. 28 

Both the day-night asymmetry and the sustained presence of chlorophyll were explained by 29 

allowing for vertical migration of the phytoplankton and constraining the period during which 30 

they were near the surface. Tidal channels retaining phytoplankton that migrate vertically can 31 

be ecologically more diverse and yield higher commercial output of farmed bivalves. The 32 

natural timings of some phytoplankton blooms in tidal channels are controlled by the nature 33 

of the migration. Although a by-product of vertical migration, longer residence in the tidal 34 

channel affords the phytoplankton more nutrients than phytoplankton that advect offshore.  35 

 36 

INTRODUCTION 37 

 38 

Vertical migration with a daily rhythm is a characteristic of many plankton. 39 

Phytoplankton travel upwards with daylight (light ascent) and downwards as daylight is lost, 40 

whilst zooplankton have the opposite sense of migration (dark ascent) (Eppley et al., 1968; 41 
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Cullen and Harrington, 1981; Ross, 2004). Some move by swimming and others by changes 42 

in buoyancy. Although vertical migration is slow (typically less than 1 mm s
-1

) compared to 43 

flow speeds (typically 100s to 1000s mm s
-1

), the combination of vertical migration and a 44 

vertical shear in horizontal current speed can lead to significant horizontal transport of 45 

organisms. For example, if a plankter is high in the water column during the day with a tidal 46 

current flowing e.g. eastward, and sinks at night into weaker currents flowing westward, there 47 

is a net movement towards the east over a tidal cycle. That movement can be up to several 48 

km per day (Hill, 1991a; 1991b; Smith & Stoner, 1993). 49 

Tidal channels are shallow, narrow sea straits or creeks connecting two larger bodies 50 

of water. For a relatively short channel compared to the tidal wavelength, the tidal flow is 51 

driven by the difference in water level between its two ends (Pugh, 1987). The water in the 52 

channel flows back and forth with the period of the tide at the ends of the channel; maximum 53 

flow occurs when the level difference is greatest and slack tide when the levels are the same. 54 

Because the gradient in the water surface can be large, fast turbulent flows are characteristic 55 

of many tidal channels. Differences in friction on the flood and ebb tides in the channel can 56 

lead to a residual current.  57 

Phytoplankton are the major food source for commercial bivalve species such as 58 

cockles, mussels and oysters living in tidal channels (Cohen et al., 1984; Wildish & 59 

Kristmanson, 1984; Simpson et al., 2007; Malham et al., 2009). Commercial bivalves can 60 

feed selectively on light-ascending species (Shumway et al., 1985; Baker & Levington, 61 

2003). The physical mechanisms which can retain phytoplankton blooms in tidal channels 62 

(against a residual flow) would tend to improve commercial yields. The retention of 63 

phytoplankton (as primary producers) also potentially improves biodiversity at higher trophic 64 

levels. Such retention can occur with vertical migration in a daily rhythm, in two scenarios. 65 

Firstly the migration can happen in the tidal channel. However in a second scenario high 66 
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turbulence in tidal channels prevents weakly-swimming phytoplankton from making 67 

meaningful vertical migrations. Instead the phytoplankton are vertically mixed in the channel 68 

and vertical migration happens in a quiescent bay at one end. In the theory section next, 69 

annual movement patterns are presented for a phytoplankter migrating vertically in a tidal 70 

current which diminishes in amplitude towards the sea bed. In a case study that follows the 71 

theory, short periods of the movement patterns are considered alongside coincident 72 

observations of chlorophyll in the Menai Strait. 73 

 74 

THEORY 75 

 76 

The following theory determines the motion of a single phytoplankton cell along a 77 

tidal channel, taking a diurnal vertical migration in an advective flow. The phytoplankton cell 78 

has an initial position, set as 0 km along-channel, on the first of January. It moves relative to 79 

this position for a year, effectively in an infinite channel i.e. it doesn’t move into a water 80 

body where other processes dominate. The theory can be applied to movements starting on 81 

any day of the year by resetting a new initial position. The limits of the theory in any case 82 

study are the length of the channel over which this linear advection dominates and the 83 

lifetime of the plankter or plankton community. 84 

Consider a single phytoplankton cell migrating vertically in a tidal channel, close to 85 

the surface during the day and towards the bed at night (Fig. 1A & B). In the simplest model, 86 

this movement is represented by a square wave with a shape modified by the day length, so 87 

that the cell spends longer at the surface in summer, when days are longer, than it does in 88 

winter (Fig. 1C). The square wave represents very good swimmers, which spend much more 89 

time at their intended locations than swimming between them. In a variation of this model, 90 

the vertical motion is governed by a triangle wave, such that the cell spends time near the bed 91 
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during darkness and starts moving towards the surface at sunrise, reaching closest to the 92 

surface at noon. In the afternoon, the cell swims back towards the sea bed, reaching 93 

maximum depth at sunset. 94 

The tidal current at the surface, us, varies with a semi-diurnal period: 95 

 96 

))(sin(   tAus      (1) 97 

 98 

where A is the amplitude of the current, Ȧ is the angular frequency of the main lunar semi 99 

diurnal tide (period 12.4 hours), t is time and ĳ is tidal phase. For convenience, periods in 100 

which us has a positive sign are defined as the flood tide and periods of negative us as the ebb 101 

tide. High water occurs at the end of the flood tide. The current amplitude was varied with the 102 

springs neaps cycle, with A = 1 m s
-1

 at spring tides and 0.5 m s
-1

 at neap tides. The tidal 103 

phase was set with high water spring tides at noon. The direction of flood tide is therefore the 104 

direction of the flow between 05:54 – 12:00 and 18:06 – 00:13 on a day of spring tides. 105 

Tidal current speed decreased linearly with depth, such that the current at depth z is 106 

given by 107 

 108 







 

h

z
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 110 

where z is depth below the surface and h is total water depth. The cell migrates 111 

between depth ݖ ൌ ସ during the day (or at noon in the triangle wave forcing) and ݖ ൌ ଷସ  at 112 

night (Fig. 1C). The daytime value of z was chosen to match a case study presented later. In 113 

the model the phase of the phytoplankton movements is set to be the same as the phase of 114 

daylight. This infers the need of phytoplankton to move upwards in the water column as soon 115 
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as daylight arrives. This is most pertinent for channels that are sufficiently deep or 116 

concentrated with particles so that the photic zone is less than the whole water depth. It is 117 

also pertinent for phytoplankton with the most energy needs (from photosynthesis). The 118 

phytoplankton also go down on the disappearance of daylight and this fact assumes no 119 

environmental pressures such as dissolved chemicals, nutrient availability or adverse 120 

temperature or salinity. 121 

The horizontal motion of the cell in an infinitely long tidal channel at a temperate 122 

latitude varied by hundreds of kilometres per year depending on the vertical migratory pattern 123 

and the tidal phase (Fig. 2). The cell was released at position x = 0 and depth ݖ ൌ ଷସ  at 124 

midnight at the start of day 1 (January 1
st
). With square wave migration, the cell spent all 125 

hours of darkness at depth ݖ ൌ ଷସ  and all daylight hours at ݖ ൌ ସ. When day length was 126 

greater than 12 hours, between the spring and autumn equinoxes, the cell moved in the 127 

negative (ebb) x-direction. When day length was less than 12 hours, the general direction of 128 

movement was in the positive (flood) x-direction. The extent of the horizontal motion was 129 

considerable: over 200 km in 6 months, or of order 1 or 2 km per day. A cell could maintain 130 

its position, or make headway against moderate residual flows by riding the tide in this way. 131 

The general seasonal pattern of movement had small oscillations associated with the springs-132 

neaps tidal cycle. Despite being small compared to the annual oscillations, these oscillations 133 

were large enough to reverse the direction of motion for short periods (Fig. 2).  134 

The particular solution in Figure 2 is for a tidal channel at approximately 48° latitude, 135 

with 16 hours daylight on Midsummer Day. Solutions for other temperate latitudes for these 136 

tidal conditions had similar patterns, with lower amplitude at lower latitudes. At higher 137 

latitudes the amplitude was lower in the first half of the year and higher in the second half of 138 

the year. 139 
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 The horizontal motion of a cell undergoing triangle-wave vertical migration could be 140 

considered appropriate for slower swimmers which spend more time closer to the sea floor 141 

than the sea surface. For a tidal channel in temperate latitudes for which high water springs 142 

occurs at midday, the motion of the cell was generally in the flood direction throughout the 143 

year, being faster when day length is less than 12 hours (4 km day
-1

) and slowing down 144 

considerably as the day length increases in summer (to 0.4 km day
-1

). As in the square wave 145 

migration pattern, the motion is temporarily reversed within the springs-neaps cycle, 146 

consistent with Smith and Stoner (1993). The motion as modelled by Hill (1991a; 1991b) did 147 

not have a spring-neap pattern and was associated with different velocity in the water column 148 

(one a power law velocity profile, the other a linear two-layer problem for deeper water). 149 

To allow for unsuccessful swimming in a turbulent channel, a second model 150 

represented a channel that opens into a more quiescent bay at one end (Fig. 1B). In the bay, 151 

turbulence is low, the Péclet number of a plankter is greater than 1, and phytoplankton are 152 

able to migrate vertically. To match conditions in the case study presented in the next section, 153 

a sill separates the bay from the channel. The concentration of cells above the level of the sill 154 

increases in the day and decreases at night because of vertical migration in the bay and that 155 

concentration is carried in and out of the channel with the tide. Results from this alternative 156 

model are compared to observations later in the paper. 157 

 158 

CASE STUDY METHODS: CHLOROPHYLL TIME SERIES IN THE MENAI 159 

STRAIT, UK 160 

 161 

The Study Site 162 

 163 
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The Menai Strait lies between the isle of Anglesey and the north coast of Wales, UK 164 

(Fig. 3). It is 34.5 km long and stretches between two bays: Caernarfon Bay in the south-west 165 

and Conwy Bay in the north-east. There is a sand bar (Caernarfon Bar) at the southwest end, 166 

which spans more than half the channel width and dries out at low tide. The main channel of 167 

the strait varies between 200 – 800 m in width and 6 – 33 m in depth, with mean depth 15.7 168 

m below mean high water. Tides are semi-diurnal; mean spring tidal range varies between 5.2 169 

m at the southwest end (Caernarfon) and 7.4 m at the northeast end (Beaumaris). Tidal 170 

streams exceed 1 m s
-1

 at several places, especially in the narrow central part of the strait 171 

where maximum speeds reach 4 m s
-1

 at spring tides. Flow depth is greater during the ebb 172 

tide than during flood tide, causing higher bottom friction on the flood and resulting in a 173 

residual flow towards the south-west (Harvey, 1967; Simpson et al., 1971). The residual flow 174 

varies with the springs-neaps cycle (faster at springs) and averages approximately 0.1 m s
-1

 175 

(Simpson, 1971), replacing the water in the strait roughly every 3 days. Turbulence 176 

associated with the fast tidal streams produces well-mixed conditions throughout the strait. 177 

There is no stratification of turbulence despite the complex bottom topography. Dissolved 178 

and particulate material advects along the strait with the tide (excursion of order 10 km per 179 

tide) and leaves via the south-western end with the residual flow.  180 

A number of vertically migrating species of diatoms have been recorded in the strait 181 

in summer. The buoyancy of each of these varies between positive and negative due to (1) the 182 

production and consumption of carbohydrates, (2) regulation of gas in vesicles during 183 

photosynthesis, (3) ballasting by adsorbed polysaccharides and particles that may stick to 184 

them and (4) colonial behavior. In August of any year a set of the following have dominated: 185 

Astrionella spp., Chaetoceros spp., Cylindrotheca, Fragiliara spp., Guinardia spp., 186 

Leptocylindrus danicus, Nitzschia spp., Paralia sulcata, Phaeocystis pouchetti, Rhizosolenia 187 

spp., Skeletonema costatum and Thalassiosira spp. (Table 1). All the quantitative data found 188 
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and tabulated are from diatoms. Although diatoms normally dominate the Menai Strait in 189 

August (c. 83 % of the phytoplankton population in 2002 - 2009; Greenwood et al., 2012), in 190 

at least one past year flagellates have dominated (Ewins & Spencer, 1967). 191 

The Menai Strait is home to intensive commercial farming of bivalves, primarily 192 

mussels. At 23 – 30 km into the strait in the direction of the flood tide, they are beyond the 193 

excursion of algal blooms sited in Caernarfon Bay, but would graze on background levels of 194 

algae and any algal blooms passing through the channel from Liverpool Bay. Grazing less 195 

than 1 % of algae in the bottom metre of water only (Simpson et al., 2007) they do not affect 196 

the particular case study given here. The buoyant speeds of diatoms in the Menai Strait are 197 

likely to be up to 20 µm s
-1

 (0.072 m hr
-1

) and movements of colonies (individual aggregated 198 

groups) could be on the order of hundreds of µm s
-1

 (or m hr
-1

). 199 

 200 

Mooring deployments, profiling and instrument setup 201 

 202 

An instrumented mooring was deployed in the central part of the Menai Strait for nine 203 

days, starting on August 16
th

 2011 (day 228). The mooring was sited at 04°12.71’west, 204 

53°12.14’ north in a mean depth of approximately 10 m (Fig. 3). The site is 16 km eastward 205 

of the sill separating the strait from Caernarfon Bay to the south west (south sands sill, Fig. 206 

3). Irradiance profiles were taken on August 17
th

 and 23
rd

, approximately hourly from just 207 

after dawn to just before dusk. This profiling was done from an 8 m-long boat that started at 208 

the mooring location and drifted with the tide to follow the water. 209 

The moored instruments were in a frame on the seabed and included a YSI CTD to 210 

measure depth, temperature, salinity and chlorophyll fluorescence; a Sequioa LISST-100X 211 

for particle size distributions and an upward-looking Workhorse Sentinal ADCP for flow 212 

velocities. The fluorescence and particle size measurements were 1.5 m above-bed. The 213 
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velocity measurements were in 90 bins between 1.5 m above-bed and the water surface. 214 

Velocity and particle size distributions were recorded at 1.5 s intervals and fluorescence at 60 215 

s intervals. Water samples were collected using an opaque 4.2 L Wildco Beta Water Sampler 216 

(van Dorn type) approximately hourly from just after dawn to just before dusk. They were 217 

analysed for chlorophyll a using a calibrated Turner 10AU fluorometer. These chlorophyll 218 

data were used to calibrate the CTD fluorescence record. LISSTs measure light scattered by 219 

particles in suspension (Agrawal & Pottismith, 2000). By assuming that the particles are 220 

spherical, Mie theory is used to estimate the size distribution of the particles. The LISST-221 

100X type C used returned the volume of particles in 32 size classes ranging from 2.5 – 500 222 

ʅm. A TriOS Ramses irradiance meter was used to measure downwards irradiance at a series 223 

of depths through the water column, with multiple measurements averaged at each depth and 224 

integration time allowed to vary to optimise signal to noise. 225 

 226 

CASE STUDY RESULTS 227 

 228 

Tides 229 

 230 

Spring tides occurred at the start of the record. The ends of the first flood tides (and 231 

high waters) were at 12:10 and 00:31. At spring tides, the current speeds exceeded 1 m s
-1

. 232 

The flood current, which occurs before high water and flows north-east is slower than the ebb 233 

current flowing south-west (Fig. 4). The residual flow averaged over a tide varied from 0.15 234 

m s
-1

 at springs to 0.08 m s
-1

 at neaps. The residual depended on the square of the tidal range, 235 

consistent with Simpson (1971).  236 

 237 

Characteristics of the algal bloom 238 
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 239 

To estimate the size of the phytoplankton in the Menai Strait in August 2011, the 240 

volumes of particles in each of the 32 LISST-C size classes were regressed against the 241 

chlorophyll a concentration measured by the fluorometer on the CTD for the whole mooring 242 

period to determine likely numbers of chlorophyll-bearing particles (example correlation Fig. 243 

5B). High correlation coefficients indicate that a change in particle volume of that particular 244 

size class was associated with a change in chlorophyll and therefore that particles of that size 245 

were phytoplankton. The phytoplankton were most likely most abundant in the range 7 – 21 246 

ʅm where the coefficient of regression, R
2
 > 0.89 (Fig. 5A). Secondary groups of 247 

phytoplankton were in the ranges 21 – 50 ʅm (0.60 < R
2
 > 0.89) and 50 – 115 ʅm (0.40 < R

2
 248 

> 0.60). Above 115 ʅm, R
2
 < 0.40 and so fewer of these particles are likely to have been 249 

phytoplankton. To estimate the number concentration of particles present, the particle volume 250 

concentrations of the LISST-C size classes were converted to particle number concentrations 251 

by assuming spherical particles of median diameter for each class. To estimate how many of 252 

the particles were phytoplankton the particle number concentrations were multiplied by the 253 

R
2
 value for each class. Phytoplankton concentrations were up to 3.6 x 10

7
 L

-1
 at the 254 

westward extent of the observations (start of the measurement period, Fig. 5E), hence 255 

phytoplankton were in a bloom. 256 

A large peak in chlorophyll a (over 10 mg L
-1

) occurred at the end of each morning 257 

flood tide (Fig. 5D; for flood tide Fig. 4). The chlorophyll a peaked just after noon on the first 258 

day and progressively later on subsequent days. There was a second smaller peak in 259 

chlorophyll a (3 – 4 mg L
-1

) at the end of the evening flood tide. Both these peaks were 260 

consistent with a bloom to the south-west being advected with the tide, producing maximum 261 

chlorophyll a at the mooring at the end of the flood. It is unlikely that the night-time peak is 262 

smaller because of fluorescence quenching effects; instead particle size and volume data 263 
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suggest fewer diatoms and dinoflagellates were present at night time flood slack and 264 

chlorophyll a magnitudes were commensurately lower. 265 

 266 

The photic zone and the phytoplankton bloom  267 

 268 

 Irradiance profiles were taken on the day after spring tides (day 229) and the day of 269 

neap tides (day 235). For most of those two days the photic zone at the mooring location was 270 

the whole water depth (Fig. 6C & D). In those two figures, where the ratio of photic depth : 271 

water depth is greater than 1, irradiance is still greater than 1 % of the surface irradiance at 272 

the seafloor. The attenuation coefficient, Kd integrated over the visible light spectrum (400 – 273 

700 nm), varied between 0.35 – 0.5 during most of that measurement period (Fig. 6A & B). 274 

The exception was on day 229 when the algal bloom traveled past the mooring on a spring 275 

flood tide (first period highlighted in blue). With the algal bloom present, Kd approximately 276 

doubled to 0.75 – 0.95 (Fig. 6A) and the photic zone decreased to half the water depth (the 277 

top half). At that time a high number of phytoplankton were measured in the bloom (up to 2.9 278 

x 10
7
 L

-1
, Fig. 5E). There was also a greater proportion of organic material (possibly 279 

phytoplankton) closer to the surface than the bed (Fig. 6E). This suggests that the numbers of 280 

phytoplankton nearer the surface were attenuating light sufficiently to constrain the photic 281 

zone to the top half of the water column. On the other flood tide when irradiance was 282 

measured (last period highlighted in blue), the bloom travelled less far past the measurement 283 

location and consequently fewer phytoplankton passed the mooring (up to 1.1 x 10
7
 L

-1
, Fig. 284 

5E). This smaller concentration of phytoplankton had less effect on Kd than the first flood tide 285 

measured; Kd increased to just 0.49 and the photic zone was still the whole water column 286 

(compare Figs 6B & D). The proportion of the organic fraction of suspended material 287 

increased when the bloom was present at the mooring location but there was little difference 288 
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in proportion between the surface and bottom waters (blue section, Fig. 6F). 289 

 290 

Chlorophyll a record predicted with vertical migration 291 

 292 

The chlorophyll a concentration south-west of the mooring is represented by a 293 

Gaussian curve; though the exact shape is not critical to the solution. If the position of the 294 

centre of the bloom in the channel is xC and the position of the mooring is xM, then the 295 

chlorophyll concentration measured at the mooring is given by 296 

 297 

])(exp[ 2

0 CM
xxacc      (3) 298 

 299 

where C0 is the concentration of chlorophyll in the centre of the bloom and a sets the size of 300 

the bloom. The position of the centre of the bloom, xC moves with the tide and the residual 301 

flow, which varied with the tidal current amplitude A as  302 

 303 

2Au
R

      (4) 304 

 305 

with a representative ȕ = 0.1 m s
-1

. With this residual flow and no vertical migration, the 306 

bloom moved steadily away from the mooring. The chlorophyll a at the mooring rapidly 307 

decreased and did not return on subsequent tides, but passed away with the ebb (Fig. 7B). 308 

Vertical migration was then imposed. Cells began migrating on cue of sunrise at 309 

approximately 05:00 BST (start of the white sections, Fig. 7). They migrated at constant 310 

speed, upwards until noon and then downwards until sunset (approx 19:00; start of the black 311 

sections). On that course the cells migrated 5 m up and 5 m down at 195 µm s
-1

 (0.7 m hr
-1

). 312 

This would be high for individual diatoms moving buoyantly in the Menai Strait (Table 2) 313 
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but achievable if they were aggregated into colonies or if the dinoflagellate blooms noted by 314 

e.g. Ewins and Spencer (1967) and Lucas (1982) prevailed. Kamykowski et al. (1988) show 315 

these dinoflagellates could easily have swimming speeds of 100 – 500 µm s
-1

. The cells had a 316 

net motion in the flood direction, almost compensating the residual flow (Fig. 7C & D). This 317 

matched the annual observations (Fig. 2C). After the first day, the scenario of cells achieving 318 

successful swims in the strait underestimated the chlorophyll a pattern (compare Fig. 7A & 319 

C) but the scenario of cells swimming successfully in the bay only, represented the 320 

chlorophyll a pattern well (compare Fig. 7A & D).  321 

  322 

Minor effect of fluorescence quenching 323 

 324 

Chlorophyll fluorescence is a mechanism for releasing excess light energy not needed 325 

for photosynthesis. In the daytime, solar light energy is more likely to be in excess of 326 

requirements for photosynthesis than at night. In consequence fluorescence is quenched in the 327 

day when the plankton are flooded by light from the sun (Amesz & Fork, 1967; Oquist et al., 328 

1982). The night time chlorophyll peaks in the bay model infer that quenching was not a 329 

major contributory factor in the recorded chlorophyll time series. In that model output the 330 

night time peaks were initially underestimated but the final night time peaks were 331 

overestimated compared to the observations (Fig. 7D). Quenching would have caused all 332 

peaks to be underestimated. 333 

Further evidence of the minor effect of quenching is in the LISST data. The time 334 

series of the volume of 7 – 21 ʅm particles at the mooring, in which phytoplankton were most 335 

likely to have been most abundant, show day-night differences in peak concentration 336 

consistent with the chlorophyll a record and the vertical migration mechanism of movement 337 

in the bay (Fig. 8A). In the first six days the size class 21 – 50 ʅm had day-night differences 338 
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in particle volume that were generally less consistent with the chlorophyll a record but in the 339 

last two days the structure was more like the chlorophyll a record. This could be due to 340 

growth of the individual phytoplankton cells or species succession. In higher size classes (50 341 

– 160 ʅm) the time series of particle volumes had a tidal advective pattern but no day-night 342 

pattern like the chlorophyll a pattern, and in the highest classes sizes measurable by the 343 

LISST (160 – 500 ʅm) the same advective signal was dominated by noise, indicating 344 

particles above 50 ʅm were dominantly non-algal (compare Fig. 4A with Fig. 8C & D). 345 

Additionally fluorescence has a linear relationship with chlorophyll a from filtered samples. 346 

The alternative mechanism to quenching, explored herein, is that (1) both the difference in 347 

daytime and night time chlorophyll a peaks and (2) the retention of the bloom in the strait 348 

against the residual flow, are consequences of diel vertical migration. 349 

 350 

DISCUSSION 351 

 352 

The essentials of the modelled mechanism are that (1) bottom friction creates a 353 

vertical shear in the tidal flow with the fastest flow near the surface. A plankter will therefore 354 

experience a greater tidal velocity when it is near the sea surface than when it is deeper in the 355 

water. (2) The net horizontal movement over a day will then depend on the phase of the tide 356 

and the nature and timing of the cell’s movements up and down. 357 

 358 

Phytoplankton physiological effects on the theoretical results 359 

 360 

Annual movements of phytoplankton communities were presented and these 361 

movements hold for the case that the plankter can move up and down despite turbulent 362 

mixing (Fig. 2). To achieve this, the swimming timescale should be shorter than the mixing 363 
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timescale, i.e. the ratio of timescales: the Péclet number, ܲ݁ ൌ ௐ  is less than one, where W 364 

is the vertical velocity scale; L the length scale of migration; せ the eddy diffusivity. Globally, 365 

many tidal channels are shallow (order 10 m deep) and the full depth of water is mixed on the 366 

order of minutes to hours, associated with vertical velocities of a few percent of the tidal 367 

current speed (Rippeth et al., 2002). Typical migration speeds of diatoms (buoyant movers) 368 

and dinoflagellates (swimmers) cannot overcome the mixing. Commensurately Pe > 1. 369 

However blooms of dinoflagellates, normally mixed vertically by turbulence, can exhibit 370 

gradients in number concentration if aggregated into colonies. Bigger colonies (individual 371 

aggregates) move more effectively against turbulence than smaller ones. For instance small 372 

colonies above 50 ʅm diameter move effectively with eddy diffusivities less than 7 x 10
-4

 m
2
 373 

s
-1

 and colonies above 250 ʅm diameter move effectively with eddy diffusivities less than 10
-

374 

2
 m

2
 s

-1
 (section 5.5.2 of Ross, 2004). Both of these eddy diffusivities lie in the range 375 

common to tidal channels (Lu et al., 2000). In consequence, if blooms contain colonies, the 376 

centre of gravity of the bloom can move up and down with a daily rhythm. The theoretical 377 

result is not limited to suitably strong swimmers.  378 

The two ubiquitous limitations on using the annual theoretical migration patterns were 379 

natural channel lengths and phytoplankton community lifetimes. In site-specific or taxon-380 

specific contexts, light availability and environmental pressures would provide further 381 

limiting factors. It is not the purpose of this paper to present lots of model runs for specific 382 

scenarios; instead previously published literature is referred to here for guidance. For the 383 

given latitude, the annual results (Fig. 2) hold if the community moves between 
4

3

4

hh
 daily. 384 

That pattern is modified for weaker swimmers or deeper channels. The amplitude of the 385 

excursion (Fig. 2) decreases with smaller daily excursions. Diatoms moving buoyantly with 386 
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the proposed model would not resist the residual flow. However dinoflagellates clearly can 387 

when they are abundant in the Menai Strait (around April, occasionally in the summer). 388 

 389 

Correspondence between observations and model output in the case study 390 

 391 

At the observation site, high water spring tides occurred at the end of the flood tide, 392 

around noon. At springs, the flood tide lasted for 6.21 hours before noon and the ebb tide 393 

6.21 hours after noon (Fig. 9). If a cell moves up and down in a symmetrical way before and 394 

after noon, it will spend equal times near the surface during flood and ebb tides (Fig. 9). The 395 

effects of the tide cancel and there is no net movement at spring tides. If there is a residual 396 

flow, the cell will move in the direction of this residual. Now consider a time shortly after 397 

spring tides, when the end of the flood occurs in the afternoon. For illustration, let the end of 398 

the flood occur at 15:00. The timing of the vertical migration now makes all the difference. If 399 

the cell chooses to spend 10 hours near the surface, centred on noon, it will experience six 400 

hours of flood and 4 hours of ebb (Fig. 9) when it is near the surface, so an excess of 2 hours 401 

of flood tide when near the surface. In the same day, it will also experience an extra 2 hours 402 

of ebb tide when at depth, but because the surface currents are faster there will be a net 403 

movement, over the day, in the flood direction. This motion will therefore enable a cell in a 404 

tidal channel with residual flow towards the ebb direction to make headway against (or at 405 

least resist) the residual flow in the days after spring tides. It is proposed that this happened in 406 

the case study of the Menai Strait and could happen for other tidal channels with similar 407 

properties (chiefly a quiescent bay at the ebb end, a velocity profile with constant gradient 408 

and spring tide slack water approximately at noon). It can be shown in the same way that, if 409 

the cell spends more than 12 hours near the surface there will be a net movement in the ebb 410 

tide direction. This explains why the triangular wave motion (which limits the time spent near 411 
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the surface) is a better mode of motion than the square wave for producing net movement in 412 

the flood direction. For buoyant movers, the more rapid the change from positive to negative 413 

buoyancy, the more effective the resistance to the residual flow. Since for colonial diatoms 414 

this change in sense of buoyancy requires the colony to break up, which can be achieved 415 

quickly (Ross, 2004), the triangular-like movement patterns are likely, so long as buoyant 416 

movement overcomes turbulence. Note again that the bay model is preferred for the particular 417 

case study because the key there is migration above and below a sill not migration dependent 418 

on an excursion of the phytoplankton up and down. 419 

The vertical migration model presented in this paper represents a plausible 420 

mechanism for explaining the observed chlorophyll record. Unfortunately there are no 421 

measurements of chlorophyll in Caernarfon Bay to confirm the presence of a bloom there. 422 

Instead it is inferred from observations that the chlorophyll concentration at the mooring 423 

increased at the end of the flood tides. The existence of the bloom, however, is the only 424 

reasonable inference from this evidence. The values of 14 mg L
-1

 chlorophyll recorded at the 425 

start of the observation period are high for blooms in that particular strait (Al-Hasan et al., 426 

1975; Blight et al., 1995). Other motile chlorophyll a-bearing species (chiefly seaweed and 427 

zooplankton) are not abundant in the water column of the strait. Suspension of 428 

microphytobenthos is also not the cause. Suspension above the mooring height followed by 429 

subsequent settling would result in two peaks per tide, but there was just one peak per tide. 430 

Suspension as high as the mooring location (but not past it) would cause one peak that was in 431 

phase with maximum shear, but each peak was in phase with flood tide slack water. 432 

Unfortunately there were no observations that phytoplankton migrated vertically; the 433 

model study was undertaken opportunistically because of the puzzle presented by the 434 

chlorophyll observations. It is not possible to confirm vertical migration from a record of 435 

chlorophyll taken near the sea bed; the assumption is taken that species known to migrate 436 
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vertically in the strait at this time of year for more than fifty years were again present (Table 437 

1). However, near the start of the observation period there had been a greater proportion of 438 

organic mass closer to the water surface than the seafloor at the end of the flood tides and that 439 

was not true near the end of the observation period (compare Fig. 6E & F). This infers the 440 

possibility of the tidal channel model TC】 enhancing the bay model B】 at the start of the 441 

observation period. 442 

The ecological diversity and commercial opportunities within tidal channels can be 443 

dramatically enhanced by the supposed mechanism of diel vertical migration countering a 444 

residual flow. Furthermore many tidal channels are likely to have a residual flow causing 445 

throughput of water and non-motile particulates in days or even hours. Whilst non-migrating 446 

phytoplankton will not establish themselves in the channel, those with optimum vertical 447 

migrations do. By chance virtue of doing, they take advantage of nutrients in tidal channels, 448 

which are in short supply offshore. So, natural retention of high phytoplankton abundances 449 

promotes high commercial yields in tidal channels. This is especially true of near-sedentary 450 

species such as cockles, mussels and oysters, which cannot follow phytoplankton to adjacent 451 

water bodies. Since the ability to overcome a residual flow depends critically on the nature 452 

and timing of vertical migration, the mechanism contributes to the succession of 453 

phytoplankton species and their predators in tidal channels. Non-migratory species that 454 

necessarily move out of tidal channels with advection (often in just a few days) would 455 

normally find their fate in the water body they move into, be that fate growth, death or 456 

dispersal. However, migratory species that remain in tidal channels or even re-enter them 457 

twice daily, probably find their fate in the tidal channel. Tidal channels with vertically-458 

migrating phytoplankton are likely to be abundant in zooplankton, bivalves and other 459 

predators, in turn enriching those particular tidal channel ecosystems. In contrast non- 460 

migrating phytoplankton more likely enrich water bodies downstream of tidal channels, 461 
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promoting ecological diversity there. 462 

 463 

CONCLUSIONS 464 

 465 

1. In a tidal channel phytoplankton can maintain their position or move against a 466 

residual flow if they migrate vertically with a daily rhythm. How the phytoplankton 467 

move along the channel depends on the vertical migration, especially the phase of the 468 

tide and time spent near the water surface.  469 

2. A simple model of phytoplankton migration in a tidal channel accorded with 470 

observations of chlorophyll for eight consecutive days. A phytoplankton bloom above 471 

10
7
 plankton per litre occurred downstream of a mooring, from which observations 472 

were made. The bloom advected into and back out of the mooring location on each 473 

flood tide and at the time of each flood tide, peaks in chlorophyll were observed. 474 

3. The phytoplankton number concentration near the centre of the bloom caused 475 

significant attenuation of light, with maximum phytoplankton numbers (and 476 

chlorophyll levels) being associated with a doubling of the attenuation coefficient. 477 

Where phytoplankton were most abundant, and attenuation highest, the photic zone 478 

covered the top half of the 10 m deep channel. In this fact there is an associated need 479 

for diel vertical migration, on top of common optimisation strategies for light and 480 

against predation. Away from the bloom the photic zone was the whole water depth. 481 

4. Chlorophyll peaks at night were one quarter to one third the magnitude of chlorophyll 482 

peaks during the day. Chlorophyll peaks recurred for eight consecutive days. These 483 

patterns are in contrast to the movement of well mixed particles, which pass through 484 

the channel used to make observations in two days. Both the day-night asymmetry 485 

and the sustained presence of chlorophyll were explained by allowing for vertical 486 
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migration of the phytoplankton and constraining the period during which they were 487 

near the surface. 488 

5. Regressions between chlorophyll a and particle size indicated that phytoplankton were 489 

most abundant in the size range 7 – 21 µm. Judging by historical occurrences of 490 

phytoplankton in the tidal channel used for observations, they were almost certainly 491 

diatoms existing as individuals or small colonies. 492 

6. Tidal channels that retain phytoplankton against a residual flow can be more diverse 493 

ecologically than channels without this retention mechanism. Channels that retain 494 

phytoplankton can be prime sites for commercial farming of bivalves. 495 

7. The natural timings of some phytoplankton blooms in tidal channels are controlled by 496 

the nature of the migration. Although a by-product of vertical migration, longer 497 

residence in the tidal channel affords the phytoplankton more nutrients than 498 

phytoplankton that advect offshore. 499 

8. Annually phytoplankton can migrate or effectively resist a residual flow by up to 500 

hundreds of kilometres, effectively limited by the natural length of a tidal channel or 501 

the duration of existence of a phytoplankton bloom. 502 

 503 
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LIST OF FIGURE CAPTIONS 595 

 596 

Figure 1. Phytoplankton migrating vertically in an advective tidal channel. (A) Conceptual 597 

model with vertical swim in the tidal channel. (B) Conceptual model with vertical swim in a 598 

quiescent bay at one end of the tidal channel. Phytoplankton can move into the channel when 599 

they are higher than the sill. The phytoplankton are well mixed in the tidal channel and can 600 

move back into the bay at any time, with the tide. (C) The vertical migratory pattern of the 601 

phytoplankton at four stages of the year. The water surface is at z = 0, the seafloor at z = h 602 

and each day the phytoplankton move between 
ସ and 

ଷସ , starting at sunrise and finishing at 603 

sunset. The timing of sunrise and sunset sets the width of the pattern. The square waves 604 

represent good swimmers that spend much more time at their intended locations than 605 

travelling between them. The triangle waves represent moderate swimmers that spend more 606 

time reaching the location. The label of day number represents 00:00 on that day. 607 

 608 

Figure 2. Variation of position along a tidal channel by an organism making a diurnal vertical 609 

migration between three quarters of the flow depth above the bed during daylight hours and 610 

one quarter above the bed in hours of darkness. Positive values are oriented with the flood 611 

tide and negative values with the ebb tide. Solid lines represent the daily mean values. Panel 612 

A represents square wave migration and panel C represents triangular wave migration (cf. 613 

Fig. 1C). Panel B represents the tidal current amplitude; in spring tide conditions amplitude is 614 

1 and in neap tide conditions amplitude is 0.5. The vertical dashed lines highlight portions of 615 

two spring-neap periods where phytoplankton move oppositely to the long term trend, 616 

associated with falling and low-amplitude current. 617 

 618 
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Figure 3. Location and geometry of the tidal channel case study. (A) England and Wales. The 619 

Menai Strait (red box) is between the isle of Anglesey and mainland Wales, UK. (B) Map of 620 

the tidal channel. The bounding red box corresponds with the red box in (A). The instruments 621 

were moored at the position of the orange diamond. (C) Bathymetric section of the strait 622 

highlighted by orange line in (B). Mean high water slack (MHWS) = 0 m depth. The purple 623 

and green dots indicate spring and neap tidal ranges respectively, at Caernarfon and 624 

Beaumaris, which are 19 km apart. The black lines interpolate and extrapolate the tidal ranges 625 

from these towns. Three red arrows indicate sill-like features at the western end of the strait. 626 

Figure 4. Time series of (A) tidal elevation and (B) depth mean current speed at the mooring 627 

location (orange diamond, Fig. 3B) during the observational period (August 16
th

 – 24
th

).  628 

 629 

Figure 5. Characteristics of the chlorophyll a-bearing species suggest they are diatoms or 630 

dinoflagellates. (A) The chlorophyll a concentration was correlated with total particle volume 631 

for each LISST-100X class for the whole mooring period. High correlation coefficients (R
2
) 632 

indicate that most of the particulate material in the particular size class is phytoplankton. (B) 633 

Example correlation between chlorophyll a and total particle volume, which is for LISST-634 

100C class 8 (class range 8 – 9.5 ʅm) and had R
2
 = 0.89. (C – E) Time series of mean particle 635 

size, chlorophyll a and number of phytoplankton. Mean particle size varies with tidal 636 

advection and lowest mean particle sizes are associated with the phytoplankton bloom (with 637 

high chlorophyll a). Each daytime chlorophyll peak is higher than both adjacent night time 638 

peaks and the mean particle size is smaller too (compare troughs in C with peaks in D). 639 

 640 

Figure 6. (A & B) Irradiance attenuation coefficients derived from TriOS Ramses irradiance 641 

profiles. (C & D) The ratio of photic depth to the water depth. Where the ratio is greater than 642 

one, irradiance at the seafloor is greater than 1 % of the surface irradiance. (E & F) Ratio of 643 
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organic suspended sediment to total suspended sediment mass concentrations. These were 644 

taken at 1.5 m below the water surface and 1.5 m above the seafloor. 645 

Figure 7. (A) Observed chlorophyll a: five minute average values from a YSI CTD moored in 646 

the centre of a 34.5 km long channel between August 16
th

 – 24
th

 2011. The CTD was 1.5 m 647 

above the bed of the strait, in a mean of 10 m water depth and recorded at 60 s intervals. (B – 648 

D) Time series of chlorophyll a output from three models of a phytoplankton bloom 649 

advecting in a tidal channel. In model M the phytoplankton were always vertically mixed. 650 

They left the mooring site with the residual flow on the first tide (leaving the Menai Strait in 651 

about a day). In model TC】 the phytoplankton had a triangular wave diurnal vertical 652 

migration in the tidal channel and bay, and in model B】 the same migration happened in 653 

Caernarfon bay only (cf. Fig. 1B). In both scenarios the phytoplankton bloom resisted the 654 

residual flow and the chlorophyll a signal returned to the measurement location on eight 655 

consecutive days. White and black tick marks indicate 00:00 and 12:00 BST for that day. 656 

Night time periods (from sunset to sunrise) are highlighted in black on the x-axes and 657 

daytime in white. The phase of the moon is shown as tides varied from springs to neaps.  658 

 659 

Figure 8. Time series of total particle volume for four particle size classes. There was a large 660 

daytime peak and small night time peak in total particle volume between 7 – 21 µm, 661 

corresponding to the end of the flood tide; in the same pattern as the chlorophyll a time series 662 

(compare Fig. 4A). Short breaks in the data occurred around the start of day 229. 663 

 664 

Figure 9. There is net movement of phytoplankton in the flood direction with day length less 665 

than twelve hours. (A) For the example of the Menai Strait, spring flood slack water occurs at 666 

noon. Any day length covers equal amounts of ebb and flood flow and there is no net 667 

movement, however (B) after spring tide there is net movement in the flood direction. More 668 
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of the daytime is during flood flow, and whilst more of the night time is during ebb flow, the 669 

phytoplankton are lower in the water column where tidal flow is slower. The example in B is 670 

three days after spring tides with peak flood around noon. 671 

  672 
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(Figure 8) 698 

 699 



38 

 

 700 
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LIST OF TABLE CAPTIONS 703 

 704 

Table 1. Taxons that dominated phytoplankton populations in August of a given year. Colour 705 

code gives their abundance. Data are derived from 
1
Jones & Spencer 1970, 

2
Kenchington 706 

1970, 
3
Al-Hasan et al. (1975), 

4
Blight et al. (1995), 

5
Greenwood et al. (2012). The data 707 

represented by white hatching are calculated from volumetric concentrations by inferring 708 

spherical-equivalent diameters. 709 

 710 

Table 2. Sizes and achievable speeds of diatoms with buoyant movement. Each of the taxons 711 

listed has been recorded to dominate the phytoplankton population in the Menai Strait in 712 

August of a given year (Table 1). Data derived from 
1
Kenchington (1970), 

2
Al-Hasan et al. 713 

(1975), 
3
Blight et al. (1995), 

4
Ross (2004), 

5
UBC (2012), 

6
Perperzak et al (2003), 

7
Moore & 714 

Villareal (1996), 
8
Skreslet (1988), 

9
Smeyda & Boleyn (1965). Size data are from the original 715 

works where possible or from the phytoplankton encyclopedia “phyto’pedia” where not 716 

(UBC 2012). Recorded sizes and speeds of the same taxons in Southampton Water are given 717 

for comparison. 718 

  719 
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TABLES 720 

 721 

  Year in which the study took place 

 

Abundance, 

Taxon 1962 & 1963
1
 1967

2
 1973

3
 1993

4
 2002 - 2009

5
 

 

log10N per L 

Astrionella spp. 

  

  

   
N = 3.5 

Chaetoceros spp. 

    

  

 Cylindrotheca 

    

  

 
N = 4 

Fragiliara spp. 

  

  

   Guinardia spp 

   

day 237   

 
N = 4.5 

Leptocylindrus danicus 

  

  

 

  

 Nitzschia spp. 

  

  

 

  

  Paralia sulcata 

  

  

   Phaeocystis pouchetti 

 

  

     Rhizosolenia spp.   

 

  

    Skeletonema costatum 

  

  

    Thalassiosira spp.           

  (Table 1) 722 

 723 

  Size (µm) Ws
4 (µm s-1)   

Taxon 
Menai 

Strait1,2,3 
Southampton 

water4 Phyto'pedia5 Individual4,6 Colonial7-9 
Number in 

colony 

Astrionella 
spp. > 10 30 - 150 7 - 18 

   Chaetoceros 
spp.   10 - 40 2 - 85 0 - 20 

  Cylindrotheca   
 

2.5 - 8 
   Fragiliara spp. > 10 

 
  

   
Guinardia spp 

25 % <20       
 

6 - 50 3.8 - 18 
  75 % 20 - 200 

   Leptocylindrus 
danicus > 10 

 
5 - 16 

   Nitzschia spp. > 10 
 

  6.3 - 17 
  Paralia 

sulcata > 10 
 

  
   Phaeocystis 

pouchetti > 190 
 

  0 - 15 > 280 
 Rhizosolenia 

spp. > 10 4 - 25 4 - 20 0.12 - 12 28 - 2200 75 - 10000 
Skeletonema 
costatum > 10 5 - 25 2 - 21 0 - 17 

  Thalassiosira 
spp.   12 - 78 2 - 80 0 - 27 < 540   

(Table 2) 724 


