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ABSTRACT 

The control of Smart Grids depends on a reliable set of 

measurement information such that distributed 

generation and demand can be effectively managed. The 

cost of procuring and installing sensors at multiple nodes 

in the grid is prohibitive and choosing the optimum 

strategy with regards to sensor location, accuracy, 

number and type is very important. This report describes 

the testing of a sensor placement algorithm developed to 

determine measurement strategies for distribution grids. 

This testing was performed on a laboratory microgrid at 

the University of Strathclyde. The ability of the algorithm 

to choose the optimal subset of measurements was tested 

by comparing the estimated power flow with the 

measured power flow of a fully instrumented grid. The 

chosen subset is found to have the close to the lowest 

overall error and all estimates agree with the rejected 

measurements within the calculated uncertainties. 

INTRODUCTION 

A great deal of research has been carried out into the 

development of algorithms that optimise the use of 

measurements on distribution grids to provide the best 

estimate of system state (power flows and nodal voltages) 

with the fewest measurements (e.g. [1]-[9]). Some 

methods in the literature are focussed on finding the 

optimal measurement set to meet given accuracy 

constraints (e.g. [5]), whereas others focus on robustness 

of the state estimator to failure or degradation in sensor 

performance [9], fault determination [10], ability of the 

algorithm to cope with network changes [11], etc. 

However, the majority of testing and application of such 

algorithms is carried out in simulation and 

demonstrations of their application to real measurement 

data are limited. 

SENSOR PLACEMENT ALGORITHM 

An algorithm was developed to find a measurement 

strategy for distribution grids to determine the system 

state with a required accuracy with minimum 

instrumentation. The algorithm was developed using 

some functions from the MATPOWER power system 

simulation package of Matlab M-files [12]. Preliminary 

testing of part of the algorithm was reported in [13]. 

The procedure applies an analytical sensitivity analysis to 

determine which input measurements are critical to the 

solution and ranks the measurements according to their 

influence on the uncertainties in the state estimates. The 

number of required measurements is first minimised and 

the measurement locations are selected to give the lowest 

average uncertainty in the state estimation. The 

cost/benefit of adding more high accuracy measurements 

is then investigated. The aim is to find the optimum 

position and number of measurements with the best 

cost/accuracy trade-off. 

In order to obtain a thorough understanding of the 

observability of the system and allow the development of 

reliable LV grid control schemes, knowledge of the 

uncertainty in the system state is required. This will be 

achieved through a comprehensive sensitivity analysis 

carried out in simulation on the grid model and state 

estimators, using a variety of scenarios, measurement 

strategies and prior information. 

Uncertainties will be assigned to measured data, which is 

applied to the state estimator, and the sensitivity of the 

estimator to the accuracy of these input parameters will 

be assessed. An uncertainty can then be assigned to the 

state estimation. 

Sensitivity Analysis 

The sensitivity analysis can be performed as follows. For 

the unconstrained case, suppose the state estimation 

problem is given as  

)()(min T xzxzx HH  ,   (1) 

where 
T

1 ),,( nxx x are the parameters to be 

estimated, H is a (linearised) nm  observation matrix 

and z is a vector of length m, storing measured data 

values. The solution x depends linearly on z and can be 

written as zx zS . If the variance matrix associated 

with z is zV , then the variance matrix associate with the 

solution estimate x is given by 
T

zSVSV zzx  . If  zV  

has Cholesky factors [14] 
T

zzz LLV  , then writing 

zz z

1:  L  and HLH
1:  z , (1) can be posed in terms 
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of transformed data z whose corresponding variance 

matrix is an identity matrix. In the analysis below, it is 

assumed that this transformation has been made.  

If  H  has QR factorisation 
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and the solution x is given by  

zx
T

1

1

1 QR
 , 

i.e., 
T

1

1

1 QRS
z . The matrix zS  shows precisely how 

the uncertainties associated with the data vector z 

contribute to the uncertainties associated with the 

parameter estimates x. For example, ),(2
ijS z  is the 

variance component of the variance )(2

jxu  associated 

the jth parameter estimate jx  arising from the ith data 

point iz . The sum of the squares of the elements in any 

column gives the total variation contribution to the 

variance of x arising from the corresponding data point. 

The matrix Sz gives valuable information on which sets of 

measurements contribute most to the uncertainties 

associated with the solution parameters and therefore 

indicate where resources may be most usefully 

concentrated in improving measurement uncertainties. 

The vector of residuals is given by

zxzr )( T

1

1

1 QHRIH
 , showing the dependence of 

r on the data vector. The matrix 
T

11QQI   is the 

variance matrix rV  associated with the residuals and the 

variance )(2

iru  associated with the ith residual is 

simply 1 minus the sum of squares of the elements of the 

ith row of 1Q . (If the orthogonal factorisation is 

computed using Householder transformations [5], then 

1Q  is calculated efficiently as 









0
1

I
QQ .) Since 1Q  

is a submatrix of an orthogonal matrix, 

)(1)(0 ii zuru  . If ,0)( iru  it means that the 

ith model prediction must match the ith observation 

exactly, in other words, the ith model prediction is 

determined by the ith observation and the model fit must 

pass through iz . This situation indicates that iz  is 

pivotal and that removing that date point would lead to 

rank deficiency. It also indicates that if the measured 

value iz  was an outlier due to sensor malfunction, for 

example, there would be no way of detecting that iz  was 

defective. Conversely, if ,1)( iru  it means that the ith 

observation plays no part in determining the ith model 

prediction; it is determined using other information and 

that the measurement iz  is redundant. 

Choice of Measurements 

As explained in above, the relative importance of each 

measurement to the state estimate can be obtained from 

the variance matrix associated with the residuals 

(differences between estimated and measured 

parameters), )(2

iru . Using this matrix, redundant 

measurements can be identified and their removal will 

not have a significant effect on the accuracy of the state 

estimation. 

The state estimation involves finding the voltage 

magnitudes and angles (the state variables) at each bus by 

solving a number of simultaneous equations. As such 

there must be at least as many equations as unknowns, 

which implies a minimum set of input measurements 

[15].  There are many procedures for testing for 

observability and identifying observable islands (e.g. 

[16]). For this work, the values of the residual variances 

are used to assess the importance of each measurement 

and remove those that are redundant. The rank of the 

observation matrix is used to assess whether the network 

remains observable. Measurements are removed until the 

minimum set of measurements is reached. 

There may be several configurations which satisfy the 

requirements for obserability but do not lead to the 

minimum uncertainty for the state estimation, but the use 

of the residual variances to iteratively remove 

measurements leads to a minimum set of measurements 

that is close to optimal. 

In the case of larger real networks, where pseudo 

measurements based on load forecasting would also be 

used in place of real measurements, the most important 

measurements can also be selected using the matrix Sz by 

summing the contributions of all the variances of the 

solution, x, corresponding to each measurement point, zi. 

The measurement points can then be ranked based on 

these sensitivities and those with the highest sensitivity 

values chosen for real measurements. A cost measure can 

also be included based on the difficulty of placing a 

measurement at a given location, so that the 

measurements with the highest sensitivity are only 

selected if their cost can be justified. 

THE STRATHCLYDE MICROGRID 

MEASUREMENT SYSTEM 

A full description of the microgrid at Strathclyde 

University can be found in [17] and this section describes 

the setup that was applied for validation of the 

algorithms. A schematic diagram of the microgrid is 

shown in Figure 1. In conjunction with the development 

of algorithms for state estimation (SE) and sensitivity 

analysis, the characteristics of the sensors to be used on 

the Strathclyde microgrid have been identified. The 

sensors installed on the grid are specified to a precision of 

1 % and isolation amplifiers are designed to be within 
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of measurement equipment in distribution grids has been 

briefly presented. Validation of the method on the 

laboratory microgrid at the University of Strathclyde 

shows that the method provides the optimum minimum 

observable set of measurements or close to this in all 

tested cases. The results show that both the uncertainty 

calculation and placement methods are working as 

expected. The performance with larger networks has been 

verified in simulation but still needs to be validated on 

full-scale real working networks. Also an algorithm that 

can decide on where pseudo measurements might be used 

instead of real measurements for under-instrumented 

networks has been tested in simulation, but has yet to be 

applied on real grids. 

The application of the algorithm to real working grids to 

inform network operators of their measurement 

requirements is the next logical step for this work. It is 

possible that the algorithms can further be adapted to 

reveal lacking information about grid topology and 

structure, for example it may be possible to derive line 

impedances from voltage and power measurements and 

also to identify which phase certain connections are 

made, where such information is poorly documented. The 

expansion of the method to deal with 3-phase models 

would be required for this. 

 

REFERENCES 

 

[1] M. E. J. Z. K. Baran, 1996, "Meter placement for 

real-time monitoring of distribution feeders", IEEE 

Trans. Power Syst., vol. 11(1), pp. 228-233. 

[2] A. Shafiu, G. Strbac, 2005, "Measurement location 

for state estimation of distribution networks with 

generation", Generation, Transmission and 

Distribution, IEE Proceedings, vol. 152(2), pp. 240-

246. 

[3] R. Singh, B.C. Pal and R. B. Vinter, 2009, 

"Measurement Placement in Distribution System 

State Estimation", IEEE Trans. Power Syst., vol. 

24(2), pp. 668-675. 

[4] C. Muscas, et al., 2009, "Optimal Allocation of 

Multichannel Measurement Devices for Distribution 

State Estimation", Instrumentation and 

Measurement, IEEE Transactions on., vol. 58(6), pp. 

1929-1937. 

[5] R. Singh, B. C. Pal, R. A. Jabr, and R. B. Vinter, 

2011, "Meter Placement for Distribution System 

State Estimation: An Ordinal Optimization 

Approach", IEEE Trans. Power Syst., vol. 26, no. 4, 

pp. 2328-2335. 

[6] N. Nusrat, M. Irving and G. Taylor, 2012, "Novel 

meter placement algorithm for enhanced accuracy of 

distribution system state estimation", Power and 

Energy Society General Meeting, San Diego, IEEE, 

pp. 1-8. 

[7] J. Liu, J. Tang, F. Ponci, A. Monti, C. Muscas, P. A. 

Pegoraro, 2012, "Trade-Offs in PMU Deployment 

for State Estimation in Active Distribution Grids", 

Smart Grid, IEEE Transactions on, vol 3(2),  pp. 

915-924. 

[8] J. Liu, F. Ponci, A. Monti, C. Muscas, P. A. 

Pegoraro, S. Sulis, 2013, "Optimal placement for 

robust distributed measurement systems in active 

distribution grids", Proc. IEEE Int. Instrum. Meas. 

Technol. Conf. (I2MTC), pp 206-211. 

[9] P. A. Pegoraro and S. Sulis, 2013, "Robustness-

Oriented Meter Placement for Distribution System 

State Estimation in Presence of Network Parameter 

Uncertainty", Instrumentation and Measurement, 

IEEE Transactions on, vol. 62(5), pp. 954-962. 

[10] J. Chen and A. Abur, 2006, "Placement of PMUs to 

enable bad data detection in state estimation", IEEE 

Trans. Power Syst., vol. 21, no. 4, pp. 1608�1615. 

[11] F. Aminifar, A. Khodaei, M. Fotuhi-Firuzabad, and 

M. Shahidehpour, 2010, "Contingency-constrained 

PMU placement in power networks", IEEE Trans. 

Power Syst., vol. 25, no. 1, pp. 516�523. 

[12] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. 

Thomas, 2011, "MATPOWER: Steady-State 

Operations, Planning and Analysis Tools for Power 

Systems Research and Education,", Power Systems, 

IEEE Transactions on, vol. 26, no. 1, pp. 12-19. 

[13] A. Venturi, P. Clarkson, A. B. Forbes, E. Davidson, 

A. J. Roscoe, G. M. Burt, X.-S. Yang and P. S. 

Wright, 2011, "The role of Accurate Measurements 

within Smart Grids", Innovative Smart Grid 

Technologies (ISGT Europe), 2nd IEEE PES 

International Conference and Exhibition on., pp 1-6. 

[14] G. H. Golub, C. van Loan, 1996, Matrix 

Computations, 3rd edn., John Hopkins, Baltimore, 

USA. 

[15] A. Monticelli, F. F. Wu, 1985, "Network 

Observability: Theory", IEEE Trans. Power 

Apparatus and  Syst., vol. PAS-104, no. 5, pp. 1042�

1048. 

[16] A. Monticelli, F. F. Wu, 1985, "Network 

Observability: Identification of Observable Islands 

and Measurement Placement", IEEE Trans. Power 

Apparatus and  Syst., vol. PAS-104, no. 5, pp. 1035�

1041. 

[17] A. J. Roscoe, A. Mackay, G. M. Burt, and J. R. 

McDonald, 2010, "Architecture of a Network-in-the-

Loop Environment for Characterizing AC Power 

System Behavior", IEEE Transactions on Industrial 

Electronics, vol. 57, pp. 1245-1253.  

[18] R. Singh, B. C. Pal, R. A. Jabr, 2009, "Choice of 

Estimator for Distribution System State Estimation", 

Generation, Transmission and Distribution, IET, 

3(7), p. 13. 

[19] A.P.S. Meliopoulos, G. J. Cokkinides., F. Galvan, B. 

Fardanesh and P. Myrda, 2007, "Advances in the 

Supercalibrator Concept � Practical 

Implementations", System Sciences, 40th Annual 

Hawaii International Conference on HICSS. 

 


