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Operation Efficiency Optimisation Modelling and

Application of Model Predictive Control
Xiaohua Xia and Jiangfeng Zhang

Abstract—The efficiency of any energy system can be chara-
terised by the relevant efficiency components in terms of perfor-
mance, operation, equipment and technology (POET). The over-
all energy efficiency of the system can be optimised by studying
the POET energy efficiency components. For an existing energy
system, the improvement of operation efficiency will usually be
a quick win for energy efficiency. Therefore, operation efficiency
improvement will be the main purpose of this paper. General
procedures to establish operation efficiency optimisation models
are presented. Model predictive control, a popular technique in
modern control theory, is applied to solve the obtained energy
models. From the case studies in water pumping systems, model
predictive control will have a prosperous application in more
energy efficiency problems.

Index Terms—Model predictive control (MPC), operation effi-
ciency, energy efficiency.

I. INTRODUCTION

W ITH the increasing shortage of energy supply, energy

efficiency improvement has been widely recognised

as the quickest and most effective method to alleviate en-

ergy supply pressure. Energy efficiency generally consists

of many components, such as management efficiency, oper-

ational efficiency, carrier efficiency, information and control

efficiency, billing efficiency, maintenance efficiency, conver-

sion efficiency, thermal efficiency, luminous efficiency, etc. In

[1−3], these energy efficiency components were summarised

and classified as performance efficiency, operation efficiency,

equipment efficiency, and technology efficiency (POET). A

prominent application of this kind of POET classification is

to prevent the loss of energy efficiency improvement opportu-

nities, which is shown in the energy audit practices[4]. This

POET classification can also be applied to general energy

optimisation so that all the key aspects of energy efficiency

are optimised. Note the fact that proper sizing and matching

of different system components, which include changing the

operational schedules amongst others, for a given energy

system will often save both energy and energy cost in many

scenarios, therefore this paper focuses on the operation effi-

ciency optimisation. Operation efficiency is often evaluated

in terms of performance indicators such as energy, power,

cost, etc.[1]. It follows that operation efficiency can usually be

This work was supported by National Research Foundation of South Africa
(UID85783), the National Hub for Energy Efficiency and Demand Side
Management and Exxaro.

Xiaohua Xia is with the Department of Electrical, Electronic and Computer
Engineering, University of Pretoria, Pretoria 0002, South Africa (e-mail:
xxia@postino.wp.ac.za).

Jiangfeng Zhang is with the Department of Electronic and Elec-
trical Engineering, University of Strathclyde, G1 1XW, UK (e-mail:
jiangfeng.zhang@strath.ac.uk).

written as an optimisation problem with objective functions to

be the minimisation of energy or power consumption, energy

cost, etc. This kind of optimisation problem is formulated over

a given time period, and can often be understood as an optimal

control problem since the time dependent operation functions

can be treated as the control input in optimal control. Thus

various control techniques will be applicable to these energy

problems. This paper focuses on the establishment of operation

efficiency optimisation models and the application of model

predictive control (MPC) to solve the obtained models.

MPC is well-known for its ability to use simple models, to

handle constraints, and also for its closed-loop stability and

inherent robustness. Therefore, MPC has become a popular

tool for many industrial problems[5−7]. The MPC technique

can be applied to many operation efficiency optimisation

problems in which the energy systems are operated over

evolving time spans. In the literature, there are various case

studies on operation efficiency optimisation, and these studies

include cases such as steel plant peak load management[8],

energy management of a petrochemical plant[9], rock winder

systems[10], water pumping systems[11−12], power generation

economic dispatch[13], power generation maintenance[14], etc.

From these studies, it turns out that the most challenging

part in the MPC applications is not the MPC itself, but

the energy system modelling. Also existing studies focus on

particular systems only, a general description on the operation

efficiency optimisation modelling techniques is necessary. This

paper summarises these modelling techniques and particularly

formulates the general logic correlation constraints. These

general modelling principles are illustrated by a few examples

which include mineral processing, pumping systems and plant

maintenance.

The paper is organized as follows. The next section pro-

vides a unified modelling framework for operation efficiency

optimisation. General steps to apply MPC principles are also

summarised. Section III provides some case studies, and the

last section is the conclusion.

II. OPERATION EFFICIENCY OPTIMISATION MODELLING

AND MPC APPLICATIONS

According to [1], operation efficiency is a system wide mea-

sure which is evaluated by considering the proper coordination

of different system components. This coordination of system

components consists of the physical, time, and human
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coordination parts. Operation efficiency has the following

indicators: physical coordination indicators (sizing and match-

ing); time coordination indicator (time control); and human

coordination indicator. It is usually difficult to model the

human coordinations in operation efficiency, therefore we will

focus on the physical and time coordination indicators.

A. Optimal Control Modelling for Operation Efficiency

The purpose to optimise operation efficiency is usually to

save energy and energy cost while at the same time to

meet certain service requirement. In the following, the objec-

tive functions of the operation efficiency operation model will

be chosen as both the energy and energy cost.

Assume that an energy system consists of N components,

each of them can be independently controlled as on or off.

Whenever the i-th component is switched on, its power con-

sumption will be its rated power Pi kW for i = 1, 2, · · · , N1,

and be any value between 0 and its rated power Pi kW for

i = N1 + 1, N2 + 2, · · · , N , where N1 ≤ N . The first

N1 components have only simple on/off status and include

examples such as electric water heaters, electric kettles, and

incandescent lights, while the last N − N1 components have

variant powers and examples can be motors controlled by

variable speed drives. Let the energy price at time t be $p(t)/
kWh; then the energy consumption function fE and energy

cost function fC over a fixed time interval [t0, tf ] are given

below.

fE =

∫ tf

t0

N
∑

i=1

Piui(t)dt,

fC =

∫ tf

t0

N
∑

i=1

Piui(t)p(t)dt, (1)

where ui(t) represents the on/off status variable and is defined

as follows:

ui(t)







= 1, if the i-th component is on and 1 ≤ i ≤ N1

= 0, if the i-th component is off and 1 ≤ i ≤ N1

∈ [0, 1], if N1 ≤ i ≤ N

The two functions fE and fC will be minimised. After

formulating these two objective functions, the remaining part

on the modelling is to find proper constraints. The coordi-

nation within the N components of the system can be very

complicated. For illustration purposes, the following typical

types of coordination relations between these N components

are modelled.

1) Logic correlations

a) The status ui(ta) does not affect the status of uj(tb). For
this case, we do not need to build any mathematical constraint.

b) If ui(ta) is in the switched on status, then uj(tb) must

be in the off status. To find out a mathematical equivalent

expression for this constraint, the following sign function is

introduced. Let sgn(x) be 1 if x > 0; 0 if x = 0; and −1 if

x < 0. Noting the fact that ui(ta) and uj(tb) are nonnegative,
then it follows that this constraint is equivalent to:

(sgn(ui(ta)) + 1)(sgn(uj(tb)) + 2) 6= 6. (2)

A prominent benefit to use sign function to obtain the above

constraint is that this type of constraint covers the case when i
or j is greater than N1, that is, it covers the case where those

components with variable powers are involved. An example

for this type requirement can be that a piece of equipment

is powered either by the grid, or by a distributed generation

system, but cannot be by the two at the same time. Then

the connection status of the main grid to the equipment at

time t corresponds to u1(t), while the connecting status of the

distributed generation system corresponds at time t to u2(t).
This constraint following two constraints are derived as:

(sgn(u1(t)) + 1)(sgn(u2(t)) + 2) 6= 6, for all t.

c) If ui(ta) is in the switched on status, then uj(tb) must be

in the on status. This constraint is equivalent to the following

inequality.

(sgn(ui(ta)) + 1)(sgn(uj(tb)) + 2) 6= 4. (3)

An example for this case is that at a residential home, when

people switched on the TV at the lounge in the evening, they

must have switched on the light in the lounge first. That is,

when the status of the TV at time ta is on, then the status of

the light must already be on at ta.
d) If ui(ta) is in the switched off status, then uj(tb) must

be in the on status. This constraint is equivalent to:

(sgn(ui(ta)) + 1)(sgn(uj(tb)) + 2) 6= 2. (4)

e) If ui(ta) is in the switched off status, then uj(tb) must

be in the off status. This constraint is equivalent to:

(sgn(ui(ta)) + 1)(sgn(uj(tb)) + 2) 6= 3. (5)

2) Mass balance

Mass balance is a very common constraint in various energy

systems. It can often be simplified as that at a given time

period, the mass should be balanced at any system component.

Mass balance equation can also be established for the overall

system. For illustration purpose, we establish only the mass

balance equation for a single system component:

Mi(t + ∆t) = Mi(t) + M in
i (t) − Mout

i (t), (6)

where Mi(t) and Mi(t + ∆t) are the masses of the i-th
component at time t and t + ∆t, respectively; while M in

i (t)
(or Mout

i (t)) is the amount of mass entered into (or left)

component i during the time period (t, t + ∆t). The mass

Mi(t0) at the initial time t0 is often given. The M in
i (t) and

Mout
i (t) are often determined by the on/off status of the

(i − 1)-th and i-th components, respectively. That is, there

are functions hi and gi such that M in
i (t) = hi−1(ui−1(t))

and Mout
i (t) = gi(ui(t)). In many applications, these hi and

gi are often linear functions, and thus

M in
i (t) = ai−1ui−1(t),M

out
i (t) = biui(t), (7)

where ai−1 and bi are constants. If there is no mass losses

between the (i−1)-th component and the i-th component and

ignore the time taken for the mass to flow from component

(i− 1) into component i, then Mout
i−1(t) = M in

i (t). In a water

pumping system, this mass balance equation is that the water

volume changes in a reservoir equals the difference of the
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amount of water entering into the reservoir and the amount of

water leaving the reservoir. In conveyor belt systems, the mass

balance equation represents the mass changes at a stock silo

equals the differences between incoming and outgoing masses

to and from the stock silo.
3) Energy balance
Energy balance can be established similarly as the mass

balance equation (6) either at a system component level or the

overall system level. That is, the two types of energy balance

equations can be briefly written as the following.

E(t + ∆t) = E(t) + Ein(t) − Eout(t) − Eloss(t),
Ei(t + ∆t) = Ei(t) + Ein

i (t) − Eout
i (t) − Eloss

i (t),

where E refers to energy (e.g., kinetic energy, potential

energy), E(t) or Ei(t) represent the energy stored in the whole
system or component i at time t, the superscripts in, out, loss

represent the energy flows into, useful energy flows out from,

or energy losses at the whole system or system component

during the time period (t, t + ∆t). Ein
i (t) is usually a func-

tion of the switching status ui(t) and/or Eout
i−1(t), i.e., there

exists a function αi such that Ein
i (t) = αi(ui(t), E

out
i−1(t)).

Eout
i (t) is often a function determined by the switching status

ui(t) and/or a given external demand Di(t), that is, there

exists a function β such that Eout
i (t) = βi(ui(t), Di(t)).

The energy loss Eloss
i (t) is often determined by external

variables such as temperature differences, humidity, pressure,

material thermal convection coefficients, etc., and it is usually

computable if ui(t) is given. Therefore, there exists a function
γi such that Eloss

i (t) = γi(ui(t)). Similarly, one can calculate

Ein(t), Eout(t) and Eloss(t).
4) Process and service correlations
To meet special process or service requirements, some

system components are often requested to be switched on

simultaneously for a minimum time duration within a given

period. This requirement is equivalent to request each of these

components to be switched on for a minimum time duration

at the given period. Assume that the i-th component must

be switched for at least a duration of ∆T within the period

[t1, t2]. This requirement can be formulated as the following

inequality:
∫ t2

t1
sgn(ui(t))dt ≥ ∆T There are also other types

of process and service correlations, such as the delivered

electrical power from a generator must meet the end user

demand, an air conditioner must deliver the expected cooling

load, and the pressure of compressed air must satisfy specified

ranges. The corresponding constraints need to be worked out

according to specific requirements.
5) Boundary constraints
There are often boundary constraints for some interme-

diate variables. For example, if the purpose is to save at

least 10 000 kWh per year, and to save energy cost at least

$10 000/year, then the two constraints can be written as

fE ≥ 10 000 and fC ≥ 10 000. Other examples include

the storage capacity limit of mineral silos in a conveyor

belt system, reservoir capacity limit in a pumping systems,

generator minimum and maximum power output, minimum

and maximum temperature limits of hot water inside a water

heater, steam pressure limit of a boiler, etc. These intermediate

variables can usually be written as a function of the switching

status ui(t), i = 1, · · · , N , according to relevant physical

dynamic processes. Generally, the following inequality is

obtained:

λ(u1(t), u2(t), · · · , uN (t)) ≥ 0. (8)

The above mathematical constraints provide a summary for

those frequently met physical requirements in many energy

systems. However, due to the complex nature of physical pro-

cesses and service requirements, there will be much involved

cases where none of the above derived models is directly

applicable, and further analysis on the corresponding energy

systems must be done.

B. MPC for Optimal Control Models

The model obtained in (1)∼ (8) is an optimal control model

with control variables u1(t), · · · , uN (t). This optimal control

problem is often difficult to solve since the sign function is dis-

continuous and the variables u1(t), · · ·uN1
(t) are binary inte-

gers. Therefore, this problem is discretised using the sampling

of t0 < t1 < · · · < tm = tf , ∆t = (tm − t1)/m = ti+1 − ti,
1 ≤ i ≤ m, and then reformulated as follows:

min F1(U),
min F2(U),
s.t. G(U) ≥ 0,

(9)

where U = (u1(t1), u2(t1), · · · , uN (t1), u1(t2), u2(t2),
· · · , uN (t2), u1(tm), · · · , uN (tm))T is the control vari-

able.This discrete form is easy to be implemented in MPC

approach. In the MPC approach, the optimisation horizon is

movable over any consecutive time length m∆t = tm − t0,
i.e., it is solved over [tk, tm+k] for all k = 0, 1, 2, · · · , for the
corresponding optimisation problem:

min F1(U
k),

min F2(U
k),

s.t. G(Uk) ≥ 0,
(10)

with the variable Uk = (u1(tk+1), u2(tk+1), · · · ,

uN (tk+1), u1(tk+2), u2(tk+2), · · · , uN (tk+2), u1(tk+m),
· · · , uN (tk+m))T. After obtaining the solution, u1(tk+1),
u2(tk+1), · · · , uN (tk+1) are implemented over the time period

[tk+1, tk+2). At the end of the time interval [tk+1, tk+2),
initial values are updated according to real time changes, and

the above problem (10) is resolved over the time interval

[tk+1, tk+m+1] for the variable Uk+1 which is defined in the

same way; see [1] for a similar MPC algorithm. The above

MPC iteration steps will be applied in the case studies in

Section III.

III. CASE STUDIES

In this section, a mineral processing system is investigated

to illustrate the energy modelling procedures in Section II-A.

The water purification system in [11] is restudied to propose

an alternative model. The general plant maintenance problem

is formulated to generalise the special case of generator

maintenance in [14].
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Fig. 1. Mineral processing system.

A. Mineral Processing System

In the mineral processing system in Fig. 1, minerals are

fed at the rate of F (t) tons/hour to the 80 kW conveyor belt

B1. From the 200 kW crusher C1, these minerals are further

transported by conveyor belt B2 to a 50 kW screen system.

After the screen, smaller size minerals go to the 150 kW

conveyor belt B3, larger size ones go to the 100 kW crusher

C2 to be recrushed and then sent back to conveyor belt B2.

Minerals from B3 are sent to a 3 000 ton stock silo, where

they will be further supplied to the 50 kW conveyor belt B4

and from B4 to the 150 kW conveyor belt B5. The plant feed

demand at the end of conveyor belt B5 is D(t) tons/hour. The
question for this problem is to minimise electricity cost in

terms of a time-of-use electricity tariff over the time interval

[t0, tN ]. Discretise [t0, tN ] as t0 < t1 < · · · < tN , t1 − t0 =
t2 − t1 = · · · = tN − tN−1 = ∆T .

The overall mineral processing energy system consists of

conveyors B1, B2, B3, B4, B5; crushers C1, C2; and a screen.

Define the on/off switching status functions for these system

components as follows. uB
i,k represents the on/off status of the

i-th conveyor Bi at the k-th time interval, with i = 1, 2, 3, 4, 5;
uC

1,k and uC
2,k are the on/off status of crushers C1 and C2 at

the k-th time interval, respectively; and uS
k is the on/off status

of the screen at time k. The values of these switching status

functions can only be 0 or 1, representing “off” or “on” status.

Following the steps in Section II-A, the objective function to

minimise electricity cost over [t0, tN ] for a given electricity

tariff $pk/kWh, k = 1, · · · , N , is written as:

min

N
∑

k=1

pk(80uB
1,k + 200uC

1,k + 300uB
2,k + 150uB

3,k+

100uC
2,k + 50uS

k + 50uB
4,k + 150uB

5,k)∆t. (11)

Note in the mineral process, conveyors B1, B2, B3, crushers

C1, C2, and the screen have the same operation schedule, i.e.,

they are switched on at the same time, and switched off at the

same time. Similarly, conveyors B4 and B5 must also have

the same operating schedule in order to minimise energy cost.

Therefore, the following equalities hold:

uB
1,k = uC

1,k = uB
2,k = uB

3,k, = uC
2,k = uS

k ,

uB
4,k = uB

5,k, k = 1, · · · , N.
(12)

From the mass balance relations, it is reasonable to assume

that all minerals fed at conveyor B1 will be fed at the same

rate F (t) tons/hour to the 3 000 ton stock silo; and similarly,

the conveyor B4 must be fed at the rate of D(t) tons/hour

from the stock silo. Then the following mass balance relation

at the stock silo can be obtained:

Mk = Mk−1 + F (k) − D(k), k = 1, · · · , N, (13)

where M(k) represents the mass of minerals at the stock silo

at time k, the initial mass M(0) is assumed to be given.

Usually the stock silo has a certain capacity constraint for

safety reasons, such as the stored minerals at any time must be

within the range of 10 tons to 2 980 tons. Then the following

constraints can be obtained.

10 ≤ Mk ≤ 2980, k = 1, · · · , N. (14)

Now the optimisation problem (11)∼ (14) can be solved to

find an optimal on/off status control over the time interval

[t0, tN ]. An MPC algorithm can be easily designed to optimise

the on/off scheduling status over the time interval [tk, tN+k].
We would however leave the MPC applications in the follow-

ing two subsections.

B. Water Purification System

Fig.2̇ is an illustration of the water pumping scheme at a

water purification plant in South Africa[11]. Water flows at the

rate of 40mL/day (mega liter per day) from the purification

plant into reservoir R1. The maximum capacity of R1 is

1.4mL, and it is also supplied with water from a fountain

at the rate of 5mL/day. The water from R1 is pumped to both

reservoir R2 and reservoir R3, with the maximum capacity of

120mL and 60mL, respectively. The water to R2 is pumped
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by pumps K1, K2 and K3, each rated at 300 kW with the same

capacity to pump 22mL/day. Water from R1 to R3 is pumped

by pumps G1, G2 and G3, each rated at 275 kW with the

capacity to pump 10mL/day. R2 and R3 are also supplied by

a water utility called Randwater at the cost of ZAR2.98/kL,

where ZAR represents the South African currency rand. R3

is also supplied by boreholes at a rate of 10mL/day with the

cost of ZAR0.30/kL; water cost from R1 to R2 and R3 has

the same rate ZAR1.03/kL. Pumps K3 and G3 are used as

back-up pumps and usually are switched off. To simplify the

model, it is assumed in [10] that pump G2 keeps running

continuously, and pump K2 is chosen as the control object,

and the following optimisation model is obtained.

minut,z

T
∑

t=1
utpct + P

S
zC

s.t. Lt
1 = L0

1 +
t−1
∑

k=1

(FLOWINk
1 − ukFLOWOUTk

1)

1.3mL ≥ Lt
1 ≥ 0.2mL, t = 1, · · · , T,

kS+S
∑

t=1+kS

utP − Pzs ≤ 0, k = 0, · · · , (T
S
− 1),

(15)

where the two parts in the objective function represent the

energy charge and the maximum demand charge, respectively,

Lt
1 is the volume of water in reservoir R1 which should

always be between 0.2mL and 1.3mL for capacity limit and

safety reasons, ut is the on/off status of pump K2, S = 2,

C =ZAR66.5/kW, P=300 kW, and z is an intermediate variable

which helps to calculate the maximum demand. It is obvious

that the constraint about water levels can be derived from the

general mass balance constraint in (6). Therefore, this model

is a direct application of the general principles in the previous

section. Reference [11] further applies MPC to the above

problem over a moving horizon of 24 hours. Percentage of

savings under benchmarks with the assumptions for real value

ut ∈ [0, 1], the open loop control with binary values of ut,

and MPC with binary values of ut are compared, and Fig. 3

illustrates that MPC and open loop controller have almost the

same amount of savings. However, if there is a positive random

inflow disturbance, i.e., FLOWINt
1 is replaced by FLOWINt

1 +

0.2∼ FLOWINt
1×r(m) with r(m) a random number between

0 and 1, then the open loop solution will violate the reservoir

allowable capacity 1.3mL at R1 as shown in Fig. 4. Therefore,

MPC method will be very helpful to provide a robust solution.

The model in (15) can be further improved by incorporating

more control variables and constraints. For instance, all the

four pumps G1, G2, K1, K2 can be controlled simultaneously,

and the customer water demand can also be considered so as

to minimise the supplementary water supply which has a high

cost of R2.98/kL.Then the objective function in (15) can be

revised as follows.

T
∑

t=1
(

4
∑

i=1

ut
ipct + 2.98Rt

2 + 2.98Rt
3) + P

S
zC, (16)

where ut
i represents the on/off status of the four pumps at time

t, Rt
2 and Rt

3 are the amount of supplementary water supplied

from the water company Randwater at time t to the reservoirs

R2 and R3, respectively. Assume that customer demand at time

t from reservoirs R2 and R3 are Dt
2 and Dt

3, respectively. The

water levels in R2 and R3 will satisfy similar constraints like

those for R1 in (15). For example, the water in R2 must satisfy

the following constraint.

maximum water capacity of R2 ≥ Lt
2 ≥

minimum water capacity of R2,
Lt

2 = Lt−1
2 + (ut

1 + ut
2)v1 + Rt

2 − Dt
2,

(17)

Fig. 2. A water pumping system[11].

Fig. 3. Comparison of the savings by open loop controller and

MPC[11].

Fig. 4. Reservoir level constraint violation of open loop

controllers[11].

where ut
1 and ut

2 are the on/off status of the two pumps K1

and K2, respectively; v1 is the amount of water which can be
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pumped by pump K1 per unit time, which remains the same

for pump K2; Dt
2 is the customer water demand from reservoir

R2. Note that electricity suppliers often have incentives to

industrial customers who are willing to reduce evening peak

load, therefore it is proposed to expect the four pumps K1,

K2, G1, G2 are not switched on simultaneously at the evening

peak period 18:00-20:00. This can be easily formulated as the

following logic correlations:

ut
1 + ut

2 + ut
3 + ut

4 ≤ 3, for t ∈ (18:00, 20:00). (18)

The new model can be further applied in the MPC approach

to achieve better energy savings.

C. Plant Maintenance Optimal Scheduling

Generator maintenance optimal scheduling has been studied

by many authors; see references listed in [414]. Similar main-

tenance scheduling problems exist in many industrial plants.

Starting from the model in [14], this subsection proposes an

optimisation model to characterise the general plant mainte-

nance scheduling problem.

Assume a plant consists of n divisions (or units) which need

to be regularly maintained. Consider a fixed time period of m
days over which an optimal maintenance schedule needs to

be found. For simplicity, assume that each division needs to

undergo one and only one maintenance within the m days.

Let t represent time (in days), and xi,t be the maintenance

state of the i-th division on the t-th day, with xi,t = 1

representing the i-th division is under maintenance on the t-th
day, while xi,t = 0 has the converse meaning. Define yi,t to

be the start up state, with yi,t equal to 1 implying that the i-th
division has been finished maintenance at time (t − 1) and is

started to work normally at time t.
The objective is to minimise maintenance cost by noting the

fact that each division will deliver profits at any given time,

and its closing down for maintenance will cause not only the

maintenance cost but also the loss of the corresponding profits.

For this purpose, assume that $pi,t is the profit produced by

the i-th division on the t-th day if it is operating normally.

Assume that the maintenance cost for division i is $ai per

day, the starting up cost of division i is $bi. Then the objective

function is formulated below.

minJ =

n
∑

i=1

m
∑

t=1

(aixi,t + biyi,t − pi,txi,t). (19)

Note that a division under maintenance cannot be started.

Therefore the following constraint is obvious.

xi,t + yi,t ≤ 1, 1 ≤ t ≤ m. (20)

Equation (21) means that the maintenance for division i
needs ki days within the m days, while (22) implies that

whenever the maintenance of division i starts, it will take ki

consecutive days and no interruption is allowed.

m
∑

t=1

xi,t = ki, 1 ≤ i ≤ I. (21)

T−ki+1
∑

t=1
xi,txi,t+1 . . . xi,t+ki−1 = 1, 1 ≤ i ≤ I. (22)

The maintenance on these divisions may be subject to

certain logic correlations. For instance, the first two divisions

cannot be maintained together (i.e., at least one of them must

be working). This can be written as the following constraint:

x1,t + x2,t ≤ 1, 1 ≤ t ≤ m. (23)

Other types of logic correlation constraints can be formulated

following the formulae in Section II-A.

The number of maintenance crew needed at any mainte-

nance instant must not exceed the number of available crews:

n
∑

j=1

(1 − xj,t−1)xj,t . . . xj,t+q−1M
q
j ≤ At+q−1,

1 ≤ q ≤ ki, 2 ≤ t ≤ m − ki + 1, 1 ≤ i ≤ n,
(24)

where Mq
i is the number of crew needed for the q-th day

of maintenance for the i-th division, and At is the available

number of crew at time t.

There might also be a least requirement on the daily profit

produced even some of the divisions are under maintenance.

For example, the following inequality indicates that the mini-

mum daily profit should be at least $A.

n
∑

i=1

pi,t(1 − xi,t) ≥ A, 1 ≤ t ≤ m. (25)

Other system requirements can be added to the above model

in order to determine a practically implementable scheduling

plan.

The above optimisation model is formulated over the time

period from t = 1 to t = m, and it is easily changed into a

time period starting from any day for the MPC applications.

Dynamic market impact on the profit pi,t can be easily

captured in the MPC approach, therefore, the MPC application

will greatly improve the reliability of the above maintenance

scheduling model.

IV. CONCLUSIONS

This paper summarises general techniques in energy system

operation efficiency modelling and the corresponding model

predictive control approach to the obtained energy optimi-

sation models. Examples from mineral processing and plant

maintenance are used to illustrate the modelling process,

case study on a water pumping system shows further the

effectiveness of the model predictive control approach.
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