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Abstract for the 30th Intl Workshop on Water Waves and Floating Bodies, April 12-15, 2015, Bristol, UK 

Double Doppler shift theory on water waves generated by a 

translating and oscillating source 

Zhi-Ming Yuan, Atilla Incecik, Alexander Day, Laibing Jia 

Dep. of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde, Henry Dyer Building, G4 0LZ, Glasgow, UK 

Highlights 

 Development of double Doppler shift theory 

 Application of double Doppler shift theory on the prediction of water waves generated by a translating and oscillating 

source 

Introduction 

The V-shaped wakes behind a translating source on calm water have been widely investigated by many researchers, and 

the wake half-angle ψ = arcsin (1/3) ≈ 19.47°. However, as the source point are advancing in waves, the scattered wave 

patterns become complicated. As indicated by Becker [1] and Noblesse [2], there exists three wave systems ( shown in 

Figure 1 (a) ) as the parameter Ĳ < 0.25 (Ĳ = Ȧeu/g, Ȧe is the encounter frequency, u is the forward speed, and g is the 

gravity acceleration): one ring wave system, which are approximately elliptical in shape, and two Kelvin fan wave systems 

confined within two distinct wedges, which can be referred as �outer and inner V waves�. At Ĳ < 0.25, as shown in Figure 

1 (b), the upstream portion of the ring waves do not exist. The constant-phase curves depicted in Figure 1 can be obtained 

by the stationary phase method, which is based on the framework of Green function method.  

 

Figure 1 Far-field wave patterns for a translating and pulsating source point located at (0, 0, z), z > 0. (a) Ĳ = 0.2; (b) Ĳ = 0.5. 

The present study attempts to establish a method based on physical propagation of the waves to investigate the far-field 

wave patterns, and this method is referred as double Doppler shift theory hereafter. It should be noticed that the present 

method was firstly used by Das and Cheung [3] to satisfy the radiation condition for the marine vessels advancing in 

waves, and Yuan et al. [4] verified this theory through a series of numerical simulation about a single or two ships 

advancing in waves.

Mathematical expression of double Doppler shift theory 

 

Figure 2 Sketch of the physical propagation of the waves. 

Figure 2 shows the propagation of the scattered waves 

produced by a translating and oscillating source. 

Supposing there is source point travelling along x-axis 

from point A to point O with constant forward speed u0. 

The traveling time should be t = AO/u0. During this 

period of time, the translating and oscillating source 

produces scattered waves all along AO, and the scattered 

waves produced at point A is propagating to point B. 

Compared to waves produced at point O, the wave 
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direction has been rotated by an angle θ. Let�s define the 

velocity of the scattered wave as c, then AO/u0 = AB/c. 

According to the sine theorem, it can be easily 

transferred to 

0 sin

sin

u

c




   (1) 

The scattered wave velocity at B can be expressed as 
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where s  is the angular frequency of the scattered 

waves from a fixed reference point given as 

0 cos( )s e su k        (3) 

The local dispersion relation for the scattered waves is 

2 tanhs s sgk k d    (4) 

where ks is the local wave number at any point on the 

free surface and d is the water depth. The dimensionless 

local wave length and local wave number can be defined 

as 
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Combining Eqs. (1)-(5), the following governing 

equation can be obtained 
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The coefficient A and B are defined as 
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where Fh is the depth Froude number and can be written 

as 

0
h

u
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At infinite water depth, dĺ∞, Eq. (6) can be reduced to  
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2D wave patterns 

Let�s firstly discuss the wave length on x-axis. At Į ĺ0 

or ʌ,  1sin sin 0    and Eq. (10) becomes 

2 2 2cos ( ) 2 cos( ) 1 0            (11) 

The solutions for Eq. (11) can be written as  
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In the positive x-axis (Į ĺ0), cos 1  and Eq. (12) 

can be expressed as 
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Substitute Eq. (13) into Eq.(5), we can obtain the 

dimensionless local wave length on positive x-axis as 
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In the negative x-axis (Į ĺ ʌ), cos 1   and Eq. (12) 

can be expressed as 
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Substitute Eq. (15) into Eq.(5), we can obtain the 

dimensionless local wave length on negative x-axis as 
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The dimensionless local wave length defined in Eq. (14) 

and (16) is depicted in Figure 3. The results in Figure 3 

are consistent with the solutions provided by Becker[1]. 

At Ĳ < 0.25, there are four wave systems on the x-axis. 

At Ĳ > 0.25, the wave systems on positive x-axis vanish 

and only two wave systems exist on negative x-axis. At 

Ĳ = 0, the dimensionless local wave length Ȗ1 and Ȗ3 

(corresponding to the ring wave system, which will be 

discussed further on) turn to be infinity, and Ȗ2 and Ȗ4 

merge together as Kelvin wave with the dimensionless 

local wave length Ȗ = 2ʌ.  

 



 
Figure 3 Dimensionless wavelength on x-axis. 

It should also be noticed that at infinite water depth, as 

Į ĺʌ, 
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The physical explanation of this negative local 

encounter frequency is similar to that of encounter 

frequency [5]. The apparent direction of the scattered 

wave propagation is obtained by observation. When

0s  , the ship outraces the waves and their crests 

actually appear to be moving from the ship�s bow 

toward her stern. Therefore, Ȗ4 represents the wave 

length behind the ship propagating in the opposite 

direction. 

3D wave patterns 

From Eq. (6) we find the dimensionless local wave 

number is determined by three independent parameters:  

Ĳ, Fh and Į. For a given Ĳ in infinite water depth, from 

Eq. (10) it can be found that the dimensionless local 

wave number is only determined by Į. Based on the 

similar idea of stationary phase method, the curves of 

equal phase for the various systems of waves can be 

drawn as Į varies from 0 to 2ʌ. For a given Į, the 

nonlinear equation in Eq. (10) can be solved by a 

numerical iterative scheme. Figure 4 shows the solutions 

of Eq. (10) for parameter Ĳ = 0.25 and Ĳ = 0.5 at infinite 

water depth. Typically, there are four solutions for Eq. 

(10), and these solutions can be only found at some 

limited range of Į. For the case of Ĳ = 0.25, two sets of 

solution can be found in the entire range of Į, and at Į  

= 0, these two sets of solution merge at ț = 25.12. The 

rest two sets of solution are limited at Į  > 162.12°. For 

the case of Ĳ = 0.5, two sets of the solution only exist at 

Į  > 107.47°, and the rest two sets of solution only exist 

at Į  > 163.26°. As parameter increases, these four 

solutions become small and are close to each other, and 

they are limited to a very small range of Į, which is 

approaching 180°. 

 

 

Figure 4 Typical solutions of Eq.(10)  

Defining ți as the i-th solution for Eq.(10), and each 

solution corresponds to an independent wave system, 

then the corresponding points of stationary phase can be 

written as 
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Eq. (18) is parametric equation defining the curves (x, y) 

along which the phase Ȍ remains constant. It can be 

found from Eq. (18) that the curves are symmetrical 

about x-axis. Therefore, only the plane of y ≥ 0 will be 

displayed hereafter. The constant-phase curves defined 

by the parametric equation (18) are depicted in Figure 5 

for a set of values of Ȍ with increment equal to 2ʌ, and 

for following six values of Ĳ: 0.2, 0.25, 0.26, 0.5, 1 and 

4. This figure shows that, for values of Ĳ smaller than 

0.25, three distinct wave systems can be identified. 

These wave systems consist of �ring waves� which are 

approximately elliptical in shape, and two wave systems 

found in two distinct regions. The raindrop-shape wave 

system appeared downstream can be called �raindrop 

waves�, and the helical-shape wave system, which 

appears mainly upstream, can be called �helical waves�. 

For value of Ĳ = 0.25, the helical waves merge with the 

ring waves in the positive x-axis. As Ĳ ĺ 0.25+, there is 

no wave existing in the positive x-axis. For value of Ĳ > 

0.25, the helical waves merge with the ring waves, 

forming an integrated and closed wave system. And as 

the parameter Ĳ increases, this integrated wave system 

shifts downstream, merging with the raindrop-shape 

wave system gradually. 
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Figure 5 Far-field wave patterns for a translating and pulsating source point with six values of Ĳ: 0.2, 0.25, 0.26, 0.5, 1 and 4. 

 

Steady wave patterns 

Particularly, as Ĳ ĺ 0, Eq. (10) can be reduced to 
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The solutions for Eq. (19) can be written as  
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Substituting Eq. (20) into Eq. (18), we can obtain the 

constant-phase wave patterns, as shown in Figure 6. ț1 

corresponds to the particular case u = 0 and Ȧe ≠, and 

the wave pattern represents the waves generated by a 

pulsating source. The other case which makes Ĳ = 0 is u 

≠ 0 and Ȧe = 0, and the wave pattern represents the 

waves generated by a translating source. ț2 and ț3 are the 

solutions corresponding to this case. It can be observed 

from Figure 6 that ț2 and ț3 merged into the raindrop 

waves as 22cos (9cos 2 7)   ĺ 0. The raindrop 

waves will confined within 11 7
cos 19.47

2 9
     

 
 , 

which is exact the same as Kelvin angle. 

 
Figure 6 Far-field wave patterns for a translating and 

pulsating source point at Ĳ = 0. 
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