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Abstract. A model, called pressure-driven growth, is analysed for propagation of a foam front through an
oil reservoir during improved oil recovery using foam. Numerical simulations of the model predict, not only
the distance over which the foam front propagates, but also the instantaneous front shape. A particular case
is studied here in which the pressure used to drive the foam along is suddenly increased at a certain point
in time. This transiently produces a concave front shape (seen from the domain ahead of the front): such
concavities are known to be delicate to handle numerically. As time proceeds however, the front evolves
back towards a convex shape, and this can be predicted by a long-time asymptotic analysis of the model.
The increase in driving pressure is shown to be beneficial to the improved oil recovery process, because it
gives a more uniform sweep of the oil reservoir by foam.

PACS. 82.70.Rr Foams – 47.56.+r Porous materials, flow through – 89.30.aj Petroleum

1 Background

When extracting oil from an underground reservoir, the
amount of oil recovered can be increased by injecting a
displacing fluid into the reservoir under pressure. Foam is
known to have advantages over other choices of displacing
fluid (e.g. gas injection or water injection) since foam tends
to give a more even sweep/displacement [1–3].

Rather than direct injection of foam into an oil reser-
voir, improved oil recovery often uses so called surfactant
alternating gas. In that process, foam is produced in situ
in the reservoir by injection of surfactant solution followed
by gas [2,4]. There is a wet foam front containing small
bubbles formed where the gas meets the surfactant. Typi-
cally the thickness of this wet foam front is much less than
the distance over which it propagates. Moreover most of
the dissipative resistance to the foam motion is known to
be located in this wet foam region [2].

Shan and Rossen [2] proposed a simple idealised model
for the foam motion where all the resistance is assumed
to be contained in the wet foam region. This model has
been termed ‘pressure-driven growth’ [5] and it allows the
prediction of how the shape of the wet foam front evolves
over time [6]. The model (in its simplest form) assumes
that an element of foam front moves in a direction that is
normal to the front and at a speed that is proportional to
the difference between the driving injection pressure and
the background hydrostatic pressure in the reservoir, the
latter increasing with depth.

This implies that the speed of the front decreases with
increasing depth. The dissipative wet foam zone is also
known [2,5,7] to spread out proportionally to the distance
the front travels (albeit with a coefficient of proportional-
ity much smaller than unity). This leads to further reduc-
tions in the speed of the foam front over time.

The model is most compactly described in dimension-
less position and time variables (denoted in what follows
via a subscript ‘D’). Specifically length scales are made
dimensionless [2,5] by dividing through by Pdrive/(∆ρg)
where Pdrive is the pressure initially used to drive the
foam along, ∆ρ is the density difference between the in-
jected surfactant solution and the injected gas, and g is
the acceleration due to gravity. Meanwhile time scales are
made dimensionless [2,5] by dividing through by the quan-
tity (1 − Sw)φPdrive τ/(k λr ∆ρ2 g2) where Sw is the liq-
uid fraction in the foam (generally considerably smaller
than unity), φ is the reservoir porosity, τ is the ratio be-
tween the thickness of the wet foam front and the distance
over which it propagates (τ is expected to be nearly con-
stant [2]), k is the reservoir permeability, and λr is the rel-
ative mobility of the wet foam front. In the ‘typical’ exam-
ple presented by Shan and Rossen [2], 1 unit of dimension-
less distance corresponds to around 300 m and 1 unit of
dimensionless time corresponds to 14 days. In dimension-
less form, the governing system of differential equations
(1)–(5) for this process known as pressure-driven growth
describes the evolution of the foam front inside a homo-
geneous and isotropic reservoir (the simplest case) during
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improved oil recovery [2,5]:

dXD

dtD
=

(1− ZD) cosα

sD
(1)

dZD

dtD
=

(1− ZD) sinα

sD
(2)

dsD/dtD =

√

(dXD/dtD)2 + (dZD/dtD)2 (3)

XD(ZD, 0) = sD(ZD, 0) = sD0
(4)

α(0, tD) = 0 (5)

which are actually equivalent to Eqs. (2.10)–(2.11), (2.13)
and (2.18) of [5]. Here XD is the horizontal position in a
rectangular reservoir, ZD the vertical position downwards,
tD is the time, sD the distance that a material point on
the front travels, sD0

is a value much smaller than unity
that we chose as sD0

= 0.001 (which can be taken to rep-
resent the initial thickness of the wet foam front relative
to its initial length), and α the angle giving the orien-
tation of the front normal with respect to the horizontal
(which can be determined given the position of a material
point on the front and its neighbours). Note that whereas
equations (1)–(3) apply to front material points, specify-
ing ZD at any given tD is sufficient to fix a material point,
so that XD and sD can alternatively be written as func-
tions of the two arguments ZD and tD, and this is reflected
in the notation used in equations (4)–(5).

Equations (1)–(2) are specific to the case of a unit
driving pressure (in dimensionless units) corresponding to
a front that penetrates to a unit depth below the surface:
in dimensional units this corresponds to the depth that
matches the injection pressure to the hydrostatic pressure
in the system. Note that, by design, the driving pressure is
chosen such that the penetration depth for the foam front
is at least as large as the depth at which the oil is located.
There can however [6] be gains in choosing a penetration
depth substantially larger than that (corresponding then
to the oil being located in just a small fraction of one
dimensionless depth unit). One advantage of this is that
(upon converting back to dimensional variables) the dis-
tance over which the front propagates is greater at any
given time. Another advantage of choosing a larger pen-
etration depth is that it reduces the amount of so called
‘gravity override’ [2]. If the front is highly inclined across
the region where the oil is located, then the leading edge
of the front has run far ahead other parts of the front that
are still sweeping oil: in effect some oil is being left behind.
However if driving pressure is higher and the front is close
to vertical across the region where the oil is located, the
sweep is more uniform and hence considered to be more
efficient.

Numerical and analytical solutions for equations (1)–
(5) give a front described by convex curves in a two-
dimensional XD vs ZD plot. This is fortunate because
the equations governing pressure-driven growth are well
behaved in the case of convex shapes, whereas to handle
concave shapes [5], special strategies need to be put in
place for solving the equations. Unfortunately there are

a number of scenarios (generalisations of the simple ho-
mogeneous, isotropic, unit driving pressure case that is
discussed above) for which the foam front will no longer
be convex, instead concavities will appear [5,8]. Amongst
these is the case of a sudden rise in the driving pressure
which is what is considered here.

The remainder of this study is laid out as follows. Sec-
tion 2 introduces the case where the driving pressure is
variable, presenting the equations that are used, along
with explanation about how those equations are imple-
mented in a computer program. Section 3 gives more de-
tail on the parameter values used in the numerical solution
and the results obtained for the foam front displacement.
Section 4 presents an analytical solution for the foam front
shape at long time, and quantifies how this shape changes
in response to changing pressure. Finally, Section 5 offers
conclusions.

2 Increase in pressure

The whole idea of improved oil recovery processes is main-
taining the pressure necessary for production in the reser-
voir. Unfortunately the production rate is not constant
over the course of the process. In particular (as was men-
tioned earlier) the dissipative wet foam front spreads out
over time [2,5,7], albeit still maintaining a thickness that
is smaller than the distance over which the front propa-
gates. If the driving pressure is held fixed as the dissipative
wet foam front thickens, the front propagation speed must
fall. A production engineer could respond to this falling
rate by raising the driving pressure1. Thus, after some
time during the displacement of a foam front, a higher
pressure than the one used at the start of the operation
might be required. The higher pressure may also have the
additional benefit of reducing the amount of gravity over-
ride, bringing the foam front closer to vertical across the
region where the oil is located.

Here we consider how this increase in the driving pres-
sure will affect the shape of the foam front that has been
described above. As has been postulated in [5], we expect
that the pressure increase will introduce concavities on the
curves as shown schematically in Fig. 1. Such concavities
are known to be problematic for implementation of the
pressure-driven growth model and special techniques are
required to handle them [5]. Basically the concavity (once
it becomes sufficiently sharp) needs to be propagated at
a higher velocity than surrounding parts of the front to
avoid the appearance of spurious loops in the front shape.

The equations describing horizontal and vertical front
velocity must moreover include a term for the relative
pressure increase Pi, that is imposed after some time that
we specify as tp. The modified equations are shown below

dXD

dtD
=

(1 + Pi − ZD) cosα

sD
(6)

1 Shan and Rossen [2] in fact studied some cases where pres-
sure was continually increased over time to hold injection rate
fixed – see Figs. 24(a) and 25(a) in the cited reference.
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XD

ZD

1

at time tp

1+Pi

later than time tp

Fig. 1. Schematic of foam front shape in coordinates XD vs
ZD with an increase in driving pressure. For a front material
point, both XD and ZD are functions of time tD. At a certain
time tp pressure is raised so as to become 1 + Pi times the
original pressure.

dZD

dtD
=

(1 + Pi − ZD) sinα

sD
(7)

where the other variables have been described previously
in Section 1.

The XD and sD values at the top of the front are given
by Eq. (8), which is obtained with the aid of the boundary
condition, Eq. (5),

XD(0, tD) = sD(0, tD)

=
√

2(1 + Pi)(tD − tp) + 2tp + s2D0
. (8)

As depicted in Fig. 1, the pressure increase will also
affect the depth to which the foam front extends, for this
reason it is necessary to give initial conditions for this
region, 1 < ZD < 1 + Pi (recall that the maximum ver-
tical dimensionless distance has been unity up till now).
Hence, initial conditions for this vertical interval will sat-
isfy XD = sD = sD0

at tD = tp; and from there we will
follow the advance of the front.

This case has been implemented numerically with Mat-
lab via a discretised representation of the foam front. Here
we describe the changes that have been done to the com-
puter code used originally for a constant driving pressure
(the algorithm for the constant pressure case having been
described already in literature [5]). First of all, it is neces-
sary to specify the values of the new parameters tp and Pi.
Then, new variables (i.e. points on the foam front) used in
calculations are set for vertical positions 1 < ZD < 1+Pi

at time tp. Discrete positions of points (XD, ZD) are used
to obtain segment orientations (angle α), and then it is
possible to calculate velocities for each point.

Calculation of the speed of the front advance is per-
formed using a conditional construction in the following
way: if tD < tp, Eqs. (1)–(2) are used; on the other hand, if

tD ≥ tp, the code checks for the sign of front curvature (K)
and magnitude of turning angle (θ) between adjacent seg-
ments2 and applies either Eqs. (6)–(7) for K > 0 and/or
θ less than a specific value (specified here as θsharp), or
(9)–(10) for K < 0 and θ > θsharp

dXD

dtD
=

(1 + Pi − ZD) cosα

sD cos θ
2

(9)

dZD

dtD
=

(1 + Pi − ZD) sinα

sD cos θ
2

(10)

where the additional term in the denominator, compared
to (6)–(7), speeds up the displacement of concave regions
correcting the velocity of points there. The reasons for
needing to do this are explained at length in [5]: physi-
cally the reason is that front material points travel at dif-
ferent speed from ‘shocks’, i.e. corners or cusps (into which
concave regions develop). Such ‘shocks’ arise because the
pressure-driven growth is a singular limit of a more gen-
eral model called the ‘viscous froth’3 which is well known
in the foam physics literature [9,10]. Note that the corner
shown on Fig. 1, which joins points originally in ZD < 1
to points newly set in motion in ZD > 1 will always be
propagated via Eqs. (9)–(10) (at least for any reasonable
choice of the value of θsharp). Careful consideration has
been given in the literature regarding how to choose val-
ues of θsharp, with any value chosen significantly smaller
than unity being deemed suitable for keeping otherwise
problematic concavities localised and contained [5].

The values ofXD and sD at the top are calculated with
a conditional construction also, where Eq. (8) is used if

tD ≥ tp, but XD(0, tD) =
√

2tD + s2D0
applies if tD < tp.

The next section presents results obtained from these
modifications to the program.

3 Results

For the numerical solution of the displacement of foam
for increase in the driving pressure at a certain tD = tp, a
Heun method is used. The front is discretised by setting
200 intervals along the ZD axis, the time step used is cho-
sen as 1× 10−5, front segments at the top are split when
they grow up to a length of 0.05 (to avoid having exces-
sively long intervals and keep a fair representation of the
curves at the top), short segments are removed when they
decrease to a length of 0.002 (helping to avoid formation
of spurious loops [5]), θsharp = π/18, tp = 1 and Pi = 0.2:
these values have been chosen arbitrarily for the purpose
of illustrating the model.

2 Determining curvature and angle between segments is nec-
essary for handling concavities: see [5] for more details on this
matter.

3 Realising the analogy between pressure-driven growth and
viscous froth is non-trivial [5], as one model describes the ad-
vance of an entire foam front on a reservoir engineering scale
and the other describes individual foam films on a much smaller
scale.
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Fig. 2. Foam front for pressure increase with tp = 1 and Pi =
0.2, for 0.5 ≤ tD ≤ 1.5. The inset shows a zoomed view.
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Fig. 3. Foam front for pressure increase with tp = 1, Pi = 0.2,
for 1 ≤ tD ≤ 5.

The foam front obtained with the above mentioned val-
ues is presented in Fig. 2: it is observed that the pressure
increase leads to formation of concavities. There is a clear
concave corner or cusp, separating points that have been
moving continuously since the start of the process from
those that have only newly been set in motion at time tp.
These results also confirm a suggestion by Grassia et al.
[5] that points in the proximity of the cusp (formed due
to a sudden increase in pressure) could have negative cur-
vature4. In fact, some points above and to the right of the
cusp have negative curvature for the curves in Fig. 2: al-
though this is difficult to see even on the zoomed inset in
that plot. The reason why those negative curvature points
appear is because points immediately to the right of the
cusp have historically displaced less distance than points
further to the right. Since the thickness of (and hence the
dissipation of) the wet foam front grows according to the
displacement, points immediately to the right of the cusp

4 The fact that some points have a negative curvature just
to the right of the cusp also corroborates a finding by Shan
and Rossen [2], in their Figs. 24(a) and 25(a).
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Fig. 4. Foam front for analytical and numerical results with
Pi = 0.2. For the numerical computations tp = 1.

move faster than those further to the right (owing to the
1/sD factor in Eqs. (6)–(7)): this then produces negative
curvature (transiently). Subsequently, these negative re-
gions eventually focus down into the cusp itself.

Figure 3 presents data for a longer tD interval, where
it is shown that after a while the concavity becomes less
significant and indeed (after tD ≈ 3 in this case) the con-
cavity is pushed virtually to the bottom of the front where
the front is barely advancing any more, and so the shape
is dominated by the convex part of the front higher up,
which corroborates the findings presented in [8].

As we have seen, over time concavities tend to be
pushed right to the bottom of the solution domain, and the
foam front is dominated by a convex front shape higher up.
It is possible to obtain an analytical solution for the (con-
vex) foam front through an asymptotic analysis, which is
presented in the following section.

4 Asymptotic analysis

Here we present the asymptotic analysis of the system of
Eqs. (6)–(7) which gives the shape of the foam front for
long times.

We define
ξp = XD −XD(0, tD) (11)

where ξp is the displacement from the topmost point of the
front to an arbitrarily chosen point XD. The subscript ‘p’
on ξp is to remind us that the solutions depend on driving
pressure. By definition ξp is negative, since the topmost
point displaces the furthest.

At long times, tD ≫ 1, the value for XD(0, tD) and
sD(0, tD) given by Eq. (8), can be simplified to

XD(0, tD) = sD(0, tD) ≈
√

2(1 + Pi)tD (12)

where the terms tp and sD0
in Eq. (8) are now negligible.

Therefore, Eqs. (6)–(7) and (11) can be written

dXD

dtD
=

(1 + Pi − ZD) cosα
√

2(1 + Pi)tD
(13)
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dZD

dtD
=

(1 + Pi − ZD) sinα
√

2(1 + Pi)tD
(14)

ξp = XD −
√

2(1 + Pi)tD (15)

where we have introduced an approximation [5] that (for
the purposes of computing velocities) at leading order,
all points on the foam front displaced through the same
distance sD(0, tD) as the topmost point.

To simplify the expressions above, we define the fol-
lowing modified variables:

ξmod = ξp/(1 + Pi), ZDmod
= ZD/(1 + Pi), (16)

and an expression for dZDmod
/dξmod can be obtained:

dZDmod

dξmod
=

1− ZDmod
√

1− (1− ZDmod
)
2

(17)

which is an equivalent expression to the one obtained for
the case of constant pressure reported by Grassia et al.
[5]; the integral of which is,

−ξmod = −
√

1− (1− ZDmod
)
2

+ log (1/(1− ZDmod
)) (18)

+ log

(

1 +

√

1− (1− ZDmod
)
2

)

which in turn, gives

− ξp
1 + Pi

= −
√

1− (1− ZD/(1 + Pi))
2

+ log ((1 + Pi)/(1 + Pi − ZD)) (19)

+ log



1 +

√

1−
(

1− ZD

1 + Pi

)2


 .

Equation (19) is thus a rescaled version of Eq. (4.9) in [5].
Now, given a range of ZD values, the time tD and the

pressure increase Pi, it is possible to obtain the corre-
sponding XD using Eqs. (15) and (19). Results for ana-
lytical calculations are presented in Fig. 4, where they are
compared to numerical results, both for tD = 20. Note
that the asymptotic analytical shape is slightly higher up
in the reservoir than the numerical one: by construction,
the asymptotic shape only attains the lowermost point
ZD = 1 + Pi as XD → −∞, i.e. at horizontal locations
that are arbitrarily far behind the leading edge at the top
of the front.

4.1 Unswept area

In oil recovery applications, once foam begins to exit from
a production well, one quantity of interest to the reser-
voir engineer is the ‘unswept area’ [5], i.e. the amount
of area underneath the foam front (measured from the
leading edge at the top) where foam has not yet reached
to displace liquid. Areas here are made dimensionless on

the scale P 2
drive/(∆ρ2 g2) where recall Pdrive is the driv-

ing pressure, ∆ρ is a density difference (between injected
surfactant solution and injected gas) and g is acceleration
due to gravity. The lower the unswept area, the more ef-
ficient the reservoir sweep by foam, i.e. gravity override is
reduced.

We consider two distinct cases. In the first case (to
be discussed further in Sections 4.2 and 4.3), we suppose
that the driving pressure has initially been set at the level
such that the maximum penetration depth of the foam
front corresponds to the greatest depth at which oil is lo-
cated: as mentioned previously, the initial driving pressure
would not be set any lower than that. We then define the

unswept area by Au =
∫ 1

0 |ξp| dZD, where (to permit a
fair comparison between cases with different values of Pi)
the integration proceeds only to the maximum front depth
prior to imposing a pressure increase. In other words, the
integration does not extend all the way to the bottom of
the front after pressure increase, as indeed the front now
extends even further down than the depth to which the
oil is located [6]. In the second case (discussed in more de-
tail in Section 4.4), we suppose that the driving pressure
has initially been set such that the maximum penetra-
tion depth (even prior to any pressure increase) is a factor
Dmax times larger than the greatest depth at which oil is
located, with the parameter Dmax ≫ 1. The consequent

definition of Au becomes Au =
∫ 1/Dmax

0 |ξp| dZD. Now the
integration does not extend all the way to the bottom of
the front, even before the pressure increase: it only ex-
tends down as far as the oil itself extends, i.e. 1/Dmax

dimensionless units.
In the first case it is possible to calculate the unswept

area for a given pressure increase as5

Au =

∫ 1

0

|ξp| dZD = (1 + Pi)
2

∫ 1/(1+Pi)

0

−ξmod dZDmod
.

(20)
Using, for example, Pi = 0.2 (as in Figs. 2–3) and

integrating numerically Eq. (20) with Simpson’s rule (us-
ing 10 intervals6), the unswept area is Au = 0.534, which
is a smaller value than for the constant pressure case,
where the unswept area is π/4 (see [5]); hence the foam
front sweep is more efficient with an increase in pressure.
Figure 5 plots the unswept area (Au) against relative in-
crease in pressure (Pi). Unswept area decreases as Pi in-
creases, because a larger pressure increase will make the
foam front at any given depth displace further, so the area
left unswept will be smaller.

Furthermore, we can obtain asymptotic expressions for
Au in the cases of small and large Pi as explained below.

5 In the present work we only consider a 2-dimensional foam
displacement. In the case of an axisymmetric displacement
about a production well, the ‘unswept area’ would be replaced
by an ‘unswept volume’. This is readily calculated [5] by multi-
plying the ‘unswept area’ by the perimeter of the leading edge
of the foam front. This perimeter is given by 2π times Eq. (12).

6 Using more intervals, e.g. 20 or 30, shows a very close agree-
ment to using 10 intervals.
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4.2 The small Pi limit

If Pi ≪ 1, the right hand side of Eq. (20) becomes:

(1 +Pi)
2

(

∫ 1

0

−ξmod dZDmod
−
∫ 1

1/(1+Pi)

−ξmod dZDmod

)

(21)
where the first integral in the bracket is [5]:

∫ 1

0

−ξmod dZDmod
=

π

4
. (22)

The integration range of the second integral remains close
to one (since Pi is assumed small). When ZDmod

is close
to one (towards the bottom of the foam front)[5]:

−ξmod ≈ −1 + log (2/(1− ZDmod
)) (23)

making the second integral in (21) become:

∫ 1

1/(1+Pi)

−ξmod dZDmod
=

Pi

1 + Pi
log

(

2(1 + Pi)

Pi

)

.

(24)
The unswept area for this small Pi case is then

Au = (1 + Pi)
2

[

π

4
− Pi

1 + Pi
log

(

2(1 + Pi)

Pi

)]

(25)

which in turn can be written as:

Au ≈ π

4
− Pi log (1/Pi)

+ corrections of order Pi or smaller. (26)

From (26) it can be observed that the term Pi log(1/Pi)
vanishes as Pi → 0, but its derivative is infinite. This
is why Fig. 5 shows a very sharp decrease in Au as Pi

increases near Pi = 0.

4.3 The large Pi limit

In the case of a large Pi the integration range in Eq. (20)
includes only ZDmod

values much smaller than unity. In
that domain [5],

ξmod ≈ −2
√
2

3
Z

3/2
Dmod

. (27)

Substituting Eq. (27) into the right hand side of (20),
integrating and evaluating the limits, an expression for
Au is obtained for this case:

Au ≈ 4
√
2

15
(1 + Pi)

−1/2. (28)

Figure 6 compares unswept area obtained from Simp-
son’s rule and analytical results using Eqs. (25), (26) and
(28). Here it can be observed that results from Eqs. (25)
and (26) match Simpson’s rule computations for values of
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Fig. 5. Unswept area Au (obtained via Simpson’s rule applied
to Eq. (20)) versus Pi. Here the initial driving pressure for the
foam front is set such that, prior to pressure increase, the front
only penetrates to the same depth as the oil.
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Fig. 6. Comparison between Simpson’s rule determination
of unswept area and asymptotic analytical formulae. Equa-
tions (25) and (26) apply for small Pi values, and Eq. (28)
for large Pi values. As in Fig. 5, prior to pressure increase, the
front only penetrates to the same depth as the oil.

Pi close to Pi = 0, whereas predictions from Eq. (28) are
close to the Simpson’s rule results for larger values of Pi.

This completes our discussion of the first case for which
the penetration depth of the foam front (prior to any pres-
sure increase) is chosen to match the depth to which the
oil is located. The next section treats the second case,
for which the initial penetration depth of the foam front
is Dmax times greater than the depth to which oil is lo-
cated, with Dmax ≫ 1. The penetration depth following
pressure increase then becomes larger still.



Elizabeth Mas Hernández et al.: Foam improved oil recovery: Modelling the effect of an increase in injection pressure 7

4.4 The large Dmax limit

As mentioned in Section 4.1, in the case Dmax ≫ 1, we
evaluate Au via

Au =

∫ 1/Dmax

0

|ξp| dZD

= (1 + Pi)
2

∫ 1/(Dmax(1+Pi))

0

|ξmod| dZDmod
. (29)

Substituting for ξmod from equation (27) and integrat-
ing we obtain

Au =
4
√
2

15
(1 + Pi)

−1/2D−5/2
max . (30)

Relative to the situation prior to pressure increase, Au

has decreased by a factor (1 + Pi)
1/2 although it should

be remembered that both before and after pressure in-

crease, Au is actually very small (being of order D
−5/2
max

with Dmax ≫ 1).

5 Conclusions

We have presented numerical and analytical results, us-
ing the pressure-driven growth model, for a case with a
sudden increase in the driving pressure during the pro-
cess of foam improved oil recovery. The rise in pressure
causes the formation of concavities in the curves repre-
senting the foam front displacement. To obtain the cor-
rect foam front shape and avoid spurious numerical be-
haviour, these concavities need to be handled specially in
our numerical schemes, which were adapted successfully
from schemes we have implemented previously [5]. At suf-
ficiently long times the concavities migrate right to the
bottom of the solution domain, and a convex front shape
is recovered everywhere else. A long-time asymptotic so-
lution has been developed, from which it was possible to
calculate the area left unswept by the foam front. The
higher the driving pressure, the lower the unswept area,
implying a more uniform foam front displacement.

Acknowledgements

EMH acknowledges scholarship funding from the EPS-
CONACyT programme. PG acknowledges funding from
CONICYT Chile (folio 80140040).

References

1. L. L. Schramm and J. J. Novosad. Micro-visualization of
foam interactions with a crude oil. Colloids and Surf.,
46:21–43, 1990.

2. D. Shan and W. R. Rossen. Optimal injection strategies
for foam IOR. SPE J., 9:132–150, 2004.

3. E. Ashoori, T. L. M. van der Heijden, and W. R. Rossen.
Fractional-flow theory of foam displacements with oil. SPE
J., 15:260–273, 2010.

4. A. Afsharpoor, G. S. Lee, and S.I. Kam. Mechanistic simu-
lation of continuous gas injection period during surfactant-
alternating-gas (SAG) processes using foam catastrophe
theory. Chem. Engng Sci., 65:3615–3631, 2010.

5. P. Grassia, E. Mas-Hernández, N. Shokri, S. J. Cox,
G. Mishuris, and W. R. Rossen. Analysis of a model for
foam improved oil recovery. J. Fluid Mech., 751:346–405,
2014.

6. R. M. de Velde Harsenhorst, A. S. Dharma, A. Andrianov,
and W. R. Rossen. Extension and verification of a simple
model for vertical sweep in foam surfactant-alternating-gas
displacements. SPE Reservoir Evaluation & Engg, 17:373–
383, 2014.

7. W. R. Rossen, S. C. Zeilinger, J. X. Shi, and M. T.
Lim. Simplified mechanistic simulation of foam processes
in porous media. SPE J., 4:279–287, 1999.

8. E. Mas-Hernández, P. Grassia, and N. Shokri. Foam im-
proved oil recovery: Foam front displacement in the pres-
ence of slumping. Colloids and Surf. A: Physicochem. and

Engg Aspects, 473:123–132, 2015. A collection of papers
presented at the 10th EUFOAM conference, Thessaloniki,
Greece, 7–10 July 2014, edited by T. Karapantsios and M.
Adler.

9. N. Kern, D. Weaire, A. Martin, S. Hutzler, and S. J. Cox.
Two-dimensional viscous froth model for foam dynamics.
Phys. Rev. E, 70:041411, 2004.

10. T. E. Green, A. Bramley, L. Lue, and P. Grassia. Viscous
froth lens. Phys. Rev. E, 74:051403, 2006.


