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The Truncated Euler–Maruyama Method

for Stochastic Differential Equations

Xuerong Mao∗

Department of Mathematics and Statistics,
University of Strathclyde, Glasgow G1 1XH, U.K.

Abstract

Influenced by Higham, Mao and Stuart [10], several numerical methods have
been developed to study the strong convergence of the numerical solutions to stochas-
tic differential equations (SDEs) under the local Lipschitz condition. These numeri-
cal methods include the tamed Euler–Maruyama (EM) method, the tamed Milstein
method, the stopped EM, the backward EM, the backward forward EM, etc. In
this paper we will develop a new explicit method, called the truncated EM method,
for the nonlinear SDE dx(t) = f(x(t))dt + g(x(t))dB(t) and establish the strong
convergence theory under the local Lipschitz condition plus the Khasminskii-type
condition xT f(x) + p−1

2 |g(x)|2 ≤ K(1 + |x|2). The type of convergence specifically
addressed in this paper is strong-Lq convergence for 2 ≤ q < p, and p is a parameter
in the Khasminskii-type condition.

Key words: Stochastic differential equation, local Lipschitz condition, Khasminskii-
type condition, truncated Euler-Maruyama method, strong convergence.

1 Introduction

Up to 2002, most of the existing strong convergence theory for numerical methods requires
the coefficients of the SDEs to be globally Lipschitz continuous (see, e.g., [18, 21, 26]).
However, most SDE models in real life do not obey the global Lipschitz condition. It was
in this spirit that Higham, Mao and Stuart in 2002 published a very influential paper [10]
(Google citation 286) which opened a new chapter in the study of numerical solutions
of SDEs—to study the strong convergence question for numerical approximations under
the local Lipschitz condition. Of course, the local Lipschitz condition is not enough to
guarantee the existence of the global solution. The additional known condition for the
global solution is the linear growth condition, or more generally, the Khasminskii-type
conditions (see, e.g., [15, 21, 31]). Instead of imposing these known conditions, Higham,
Mao and Stuart [10] proposed the bounded condition on the pth moments of both exact
solution and numerical solution to the underlying SDE and proved the strong convergence
theory. Their theory turns the problem of the strong convergence into the verification of
the boundedness of the pth moments of the exact and numerical solutions under the local
Lipschitz condition. They showed that under the linear growth condition, both exact and
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numerical solutions by either the Euler-Maruyama (EM) or the stochastic theta method
satisfy the moment bounded condition, and hence they proved that the numerical solutions
converge to the exact solution in the strong sense under the Local Lipschitz condition and
the linear growth condition.

However, the linear growth condition is still too restrictive. The authors in [10]
pointed out that in general, it is not clear when such moment bounds can be expected to
hold for the EM method even when both drift coefficient and the diffusion coefficient are
C1 (unbounded derivatives of course). More recently, the authors in [13] answered the
question negatively by proving that the moment of the explicit EM method will diverge
in finite time for those SDEs with either the drift coefficient or the diffusion coefficient
being superlinear. Implicit methods have therefore naturally been used to study the
numerical solutions to SDEs without the linear growth condition recently, for example,
in [23, 33, 34]. For the background on the implicit methods, we refer the reader to
the papers [2, 4, 10, 11, 17, 25, 30] and the book [18]. Methods with variable stepsize
also attract a lot of attention [5, 28, 35, 37]. Other weak forms of convergence, say
weak convergence, convergence in probability and pathwise convergence, are discussed in
[1, 7, 16, 18, 22, 24, 27, 36], just to mention a few.

Since the classical explicit EM method has its simple algebraic structure, cheap com-
putational cost and acceptable convergence rate under the global Lipschitz condition, it
has been attracting lots of attention [8]. Although the authors in [13] showed the strong
and weak divergence in finite time of the EM method for SDEs with non-globally Lipschitz
continuous coefficients, some modified EM methods have recently been developed for the
nonlinear SDEs without the linear growth condition. For example, the tamed EM method
was developed in [14] to approximate SDEs with one-sided Lipschitz drift coefficient and
the linear growth diffusion coefficient. This method was further developed in [32] while
the tamed Milstein method was developed in [6]. Moreover, the stopped EM method was
developed in [20] for nonlinear SDEs as well. These new explicit EM methods have shown
their abilities to approximate the solutions of nonlinear SDEs.

In this paper, we will develop another new explicit method for nonlinear SDEs. We
will call it the truncated EM method. A different method referred to as the “Drift-
truncated Euler scheme” was introduced in Hutzenthaler & Jentzen [12] and we hope
very much that our chosen scheme name “truncated EM method” will not cause a confu-
sion.

To motivate our new method, we consider a d-dimensional SDE

dx(t) = f(x(t))dt+ g(x(t))dB(t) (1.1)

with the local Lipschitz condition but without the linear growth condition. To guarantee
the global solution, we impose a Khasminskii-type condition (see, e.g., [15])

2xTf(x) + |g(x)|2 ≤ K(1 + |x|2). (1.2)

The classical method to prove the existence of the global solution under this condition is
the truncated method (see, e.g., [15, 21, 29]). That is, for each integer n ≥ 1, define the
truncated functions

fn(x) = f
(

(|x| ∧ n)
x

|x|
)

and gn(x) = g
(

(|x| ∧ n)
x

|x|
)

. (1.3)

Then both fn and gn are globally Lipschiz so the following SDE

dxn(t) = fn(xn(t))dt+ gn(xn(t))dB(t) (1.4)
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has a unique global solution xn(t) on t ≥ 0. By the Khasminskii-type condition (1.2), we
can then show that xn(t) will converge to a stochastic process x(t) in probability and this
x(t) is the solution to the SDE (1.1). Let us now apply the EM method with stepsize ∆
to the SDE (1.4) to obtain the EM approximate solution x∆,n(t). It is well known that
x∆,n(t) will converge to xn(t) in the strong sense, say L2 (actually in Lp for any p > 0)
as ∆ → 0. But xn(t) will converge to x(t) in probability as n → ∞. It is therefore not
difficult to show that for each n, one can choose a stepsize ∆n such that x∆n,n(t) will
converge to x(t) in probability as n → ∞. We can also do so in the other way, that is,
for each ∆, choose n = n∆ to show that x∆,n∆

(t) will converge to x(t) in probability as
∆ → 0. Surprisingly, we will see in this paper that choosing n = n∆ cleverly (namely
n = µ−1(h(∆)) in our definition of the truncated EM method below), we can show that
x∆,n∆

(t) will converge to x(t) in the strong sense as ∆ → 0. The type of convergence
specifically addressed in this paper is strong-Lq convergence for 2 ≤ q < p, and p is a
parameter in the Khasminskii-type condition. Let us begin to develop this new truncated
EM method.

2 The Truncated EM Method

Throughout this paper, unless otherwise specified, let (Ω,F ,P) be a complete probability
space with a filtration {Ft}t≥0 satisfying the usual conditions (that is, it is right continuous
and increasing while F0 contains all P-null sets), and let E denote the expectation corre-
sponding to P. Let B(t) be an m-dimensional Brownian motion defined on the space. If A
is a vector or matrix, its transpose is denoted by AT . If x ∈ Rd, then |x| is the Euclidean
norm. If A is a matrix, we let |A| =

√

trace(ATA) be its trace norm. If A is a symmetric
matrix, denote by λmax(A) and λmin(A) its largest and smallest eigenvalue, respectively.
Moreover, for two real numbers a and b, we use a ∨ b = max(a, b) and a ∧ b = min(a, b).
If G is a set, its indicator function is denoted by IG, namely IG(x) = 1 if x ∈ G and 0
otherwise.

Consider a d-dimensional SDE

dx(t) = f(x(t))dt+ g(x(t))dB(t) (2.1)

on t ≥ 0 with the initial value x(0) = x0 ∈ R
d, where

f : Rd → R
d and g : Rd → R

d×m.

We impose two standing hypotheses in this paper.

Assumption 2.1 Assume that the coefficients f and g satisfy the local Lipschitz condi-
tion: For any R > 0, there is a KR > 0 such that

|f(x)− f(y)| ∨ |g(x)− g(y)| ≤ KR|x− y| (2.2)

for all x, y ∈ R
d with |x| ∨ |y| ≤ R.

Assumption 2.2 We also assume that the coefficients satisfy the Khasminskii-type con-
dition: There is a pair of constants p > 2 and K > 0 such that

xTf(x) +
p− 1

2
|g(x)|2 ≤ K(1 + |x|2) (2.3)

for all x ∈ R
d.
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We state a known result (see, e.g., [21, 22, 31]) as a lemma for the use of this paper.

Lemma 2.3 Under Assumptions 2.1 and 2.2, the SDE (2.1) has a unique global solution
x(t) and, moreover,

sup
0≤t≤T

E|x(t)|p < ∞, ∀T > 0. (2.4)

Assumptions 2.1 and 2.2 cover many nonlinear SDEs, for example, the scalar SDE in
financial mathematics (see, e.g., [19])

dx(t) = (µ− αxβ(t))dt+ σxθ(t)dB(t), β, θ > 1, µ, α, σ > 0, (2.5)

and the stochastic population system (see, e.g., [3])

dx(t) = diag(x1(t), x2(t), ..., xd(t))[(b+ Ax2(t))dt+ Cx(t)dB(t)], (2.6)

where B(t) is a scalar Brownian motion, b = (b1, · · · , bd)T , x2 = (x2
1, · · · , x2

d)
T , C =

(Cij)d×d ∈ R
d×d and A = (Aij)d×d ∈ R

d×d is such that λmax(A + AT ) < 0. (See Section
5 below for a further detailed discussion.) It has been shown (see, e.g., [22]) that under
Assumptions 2.1 and 2.2, the EM numerical solutions will converge to the true solution
in probability but, in general, not in L2. In this paper, we will develop a new numerical
method, called the truncated EM method, and show that the numerical solutions will
converge to the true solution in Lp.

To define the truncated EM numerical solutions, we first choose a strictly increasing
continuous function µ : R+ → R+ such that µ(r) → ∞ as r → ∞ and

sup
|x|≤r

(

|f(x)| ∨ |g(x)|
)

≤ µ(r), ∀r ≥ 0. (2.7)

Denote by µ−1 the inverse function of µ and we see that µ−1 is a strictly increasing
continuous function from [µ(0),∞) to R+. We also choose a number ∆∗ ∈ (0, 1] and a
strictly decreasing function h : (0,∆∗] → (0,∞) such that

h(∆∗) ≥ µ(2), lim
∆→0

h(∆) = ∞ and ∆1/4h(∆) ≤ 1, ∀∆ ∈ (0, 1). (2.8)

For a given stepsize ∆ ∈ (0, 1), let us define the truncated functions

f∆(x) = f
(

(|x| ∧ µ−1(h(∆)))
x

|x|
)

and g∆(x) = g
(

(|x| ∧ µ−1(h(∆)))
x

|x|
)

(2.9)

for x ∈ R
d, where we set x/|x| = 0 when x = 0. It is easy to see that

|f∆(x)| ∨ |g∆(x)| ≤ µ(µ−1(h(∆))) = h(∆) ∀x ∈ R
d. (2.10)

That is, both truncated functions f∆ and g∆ are bounded although both f and g may
not. Moreover, these truncated functions preserve the Khasminskii-type condition for all
∆ ∈ (0,∆∗] as described in the following lemma.

Lemma 2.4 Let Assumption 2.2 hold. Then, for all ∆ ∈ (0,∆∗], we have

xTf∆(x) +
p− 1

2
|g∆(x)|2 ≤ 2K(1 + |x|2), ∀x ∈ R

d. (2.11)
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Proof. We first observe from (2.8) that

µ−1(h(∆)) ≥ µ−1(h(∆∗)) ≥ 2, ∀∆ ∈ (0,∆∗].

Fix any ∆ ∈ (0,∆∗]. For x ∈ R
d with |x| ≤ µ−1(h(∆)), we have, by (2.3),

xTf∆(x) +
p− 1

2
|g∆(x)|2 = xTf(x) +

p− 1

2
|g(x)|2 ≤ K(1 + |x|2)

so the required assertion (2.11) holds. For x ∈ R
d with |x| > µ−1(h(∆)), we have

xTf∆(x) +
p− 1

2
|g∆(x)|2

= xTf
(

µ−1(h(∆))
x

|x|
)

+
p− 1

2

∣

∣

∣
g
(

µ−1(h(∆))
x

|x|
)∣

∣

∣

2

= µ−1(h(∆))
xT

|x|f
(

µ−1(h(∆))
x

|x|
)

+
p− 1

2

∣

∣

∣
g
(

µ−1(h(∆))
x

|x|
)∣

∣

∣

2

+
( |x|
µ−1(h(∆))

− 1
)

µ−1(h(∆))
xT

|x|f
(

µ−1(h(∆))
x

|x|
)

≤ K(1 + [µ−1(h(∆))]2) +
( |x|
µ−1(h(∆))

− 1
)

µ−1(h(∆))
xT

|x|f
(

µ−1(h(∆))
x

|x|
)

,

where (2.3) has been used. But once again we see from (2.3) that xTf(x) ≤ K(1 + |x|2)
for any x ∈ R

d. We therefore have

xTf∆(x) +
p− 1

2
|g∆(x)|2

≤ K(1 + [µ−1(h(∆))]2) +
( |x|
µ−1(h(∆))

− 1
)

K(1 + [µ−1(h(∆))]2)

=
|x|

µ−1(h(∆))
K(1 + [µ−1(h(∆))]2)

≤ K|x|(0.5 + µ−1(h(∆))) ≤ K|x|(0.5 + |x|)
≤ K(1 + |x|)2 ≤ 2K(1 + |x|2)

as required. The proof is complete. 2

We can now form the discrete-time truncated EM numerical solutions X∆(tk) ≈ x(tk)
for tk = k∆ by setting X∆(0) = x0 and computing

X∆(tk+1) = X∆(tk) + f∆(X∆(tk))∆ + g∆(X∆(tk))∆Bk, (2.12)

for k = 0, 1, · · · , where ∆Bk = B(tk+1) − B(tk). Let us now form two versions of the
continuous-time truncated EM solutions. The first one is defined by

x̄∆(t) =
∞
∑

k=0

X∆(tk)I[tk,tk+1)(t), t ≥ 0. (2.13)

This is a simple step process so its sample paths are not continuous. We will refer this as
the continuous-time step-process truncated EM solution. The other one is defined by

x∆(t) = x0 +

∫ t

0

f∆(x̄∆(s))ds+

∫ t

0

g∆(x̄∆(s))dB(s) (2.14)

for t ≥ 0. We will refer this as the continuous-time continuous-sample truncated EM
solution. We observe that x∆(tk) = x̄∆(tk) = X∆(tk) for all k ≥ 0. Moreover, x∆(t) is an
Itô process with its Itô differential

dx∆(t) = f∆(x̄∆(t))dt+ g∆(x̄∆(t))dB(t). (2.15)
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3 Convergence of the Truncated EM Solutions

3.1 Moment bound of the truncated EM solutions

By (2.10), it is obvious that

sup
0≤t≤T

E|x∆(t)|p < ∞, ∀T > 0.

However, it is not so obvious to see that

sup
0<∆≤∆∗

sup
0≤t≤T

E|x∆(t)|p < ∞, ∀T > 0

and this is what we are going to establish in this subsection. Let us first present a lemma
which shows that x∆(t) and x̄∆(t) are close to each other in the sense of Lp.

Lemma 3.1 For any ∆ ∈ (0,∆∗], we have

E|x∆(t)− x̄∆(t)|p ≤ cp∆
p/2(h(∆))p, ∀t ≥ 0, (3.1)

where cp is a positive constant dependent only on p. Consequently

lim
∆→0

E|x∆(t)− x̄∆(t)|p = 0, ∀t ≥ 0. (3.2)

Proof. In what follows, we will use cp to stand for generic positive real constants dependent
only on p and its values may change between occurrences. Fix any ∆ ∈ (0,∆∗] and t ≥ 0.
There is a unique integer k ≥ 0 such that tk ≤ t ≤ tk+1. By (2.10) and the properties of
the Itô integral (see, e.g., [21]), we then derive from (2.14) that

E|x∆(t)− x̄∆(t)|p = E|x∆(t)− x∆(tk)|p

≤ cp

(

E

∣

∣

∣

∫ t

tk

f∆(x̄∆(s))ds
∣

∣

∣

p

+ E

∣

∣

∣

∫ t

tk

g∆(x̄∆(s))dB(s)
∣

∣

∣

p)

≤ cp

(

∆p−1
E

∫ t

tk

|f∆(x̄∆(s))|pds+∆(p−2)/2
E

∫ t

tk

|g∆(x̄∆(s))|pds
)

≤ cp∆
p/2(h(∆))p,

which is (3.1). Noting from (2.8) that ∆p/2(h(∆))p ≤ ∆p/4, we obtain (3.2) from (3.1)
immediately. 2

Lemma 3.2 Let Assumptions 2.1 and 2.2 hold. Then

sup
0<∆≤∆∗

sup
0≤t≤T

E|x∆(t)|p ≤ C, ∀T > 0, (3.3)

where, and from now on, C stands for generic positive real constants dependent on
T, p,K, x0 (and K̄ as well in the next section) but independent of ∆ and its values may
change between occurrences.
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Proof. Fix any ∆ ∈ (0,∆∗] and T ≥ 0. By the Itô formula, we derive from (2.14) that,
for 0 ≤ t ≤ T ,

E|x∆(t)|p ≤ |x0|p + E

∫ t

0

p|x∆(s)|p−2
(

xT
∆(s)f∆(x̄∆(s)) +

p− 1

2
|g∆(x̄∆(s))|2

)

ds

= |x0|p + E

∫ t

0

p|x∆(s)|p−2
(

x̄T
∆(s)f∆(x̄∆(s)) +

p− 1

2
|g∆(x̄∆(s))|2

)

ds

+ E

∫ t

0

p|x∆(s)|p−2(x∆(s)− x̄∆(s))
Tf∆(x̄∆(s))ds.

By Lemma 2.4 and the Young inequality

ap−2b ≤ p− 2

p
ap +

2

p
bp/2, ∀a, b ≥ 0,

we then have

E|x∆(t)|p ≤ |x0|p + E

∫ t

0

Kp|x∆(s)|p−2(1 + |x̄∆(s)|2)ds

+ (p− 2)E

∫ t

0

|x∆(s)|pds+ 2E

∫ t

0

|x∆(s)− x̄∆(s))|p/2|f∆(x̄∆(s))|p/2ds

≤ C1 + C2

∫ t

0

(

E|x∆(s)|p + E|x̄∆(s)|p
)

ds

+ 2E

∫ T

0

|x∆(s)− x̄∆(s))|p/2|f∆(x̄∆(s))|p/2ds.

where C1 and C2 are generic and may change throughout this proof (we do not want to
use a single C in a single inequality but use C1 and C2 to indicate these two constants
differ). By Lemma 3.1 and inequalities (2.10) and (2.8), we have

E

∫ T

0

|x∆(s)− x̄∆(s))|p/2|f∆(x̄∆(s))|p/2ds

≤ (h(∆))p/2
∫ T

0

E(|x∆(s)− x̄∆(s))|p/2)ds

≤ (h(∆))p/2
∫ T

0

(E|x∆(s)− x̄∆(s))|p)1/2ds

≤ cpT (h(∆))p∆p/4 ≤ cpT. (3.4)

We therefore have

E|x∆(t)|p ≤ C1 + C2

∫ t

0

(

E|x∆(s)|p + E|x̄∆(s)|p
)

ds

≤ C1 + C2

∫ t

0

(

sup
0≤u≤s

E|x∆(u)|p
)

ds.

As this holds for any t ∈ [0, T ] while the right-hand side is non-decreasing in t, we then
see

sup
0≤u≤t

E|x∆(u)|p ≤ C1 + C2

∫ t

0

(

sup
0≤u≤s

E|x∆(u)|p
)

ds.
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The well-known Gronwall inequality yields that

sup
0≤u≤T

E|x∆(u)|p ≤ C.

As this holds for any ∆ ∈ (0,∆∗] while C is independent of ∆, we see the required
assertion (3.3). 2

3.2 Strong convergence

In this subsection we will show that

lim
∆→0

E|x∆(T )− x(T )|q = 0 and lim
∆→0

E|x̄∆(T )− x(T )|q = 0

for any T > 0 and 2 ≤ q < p. In the remaining of this subsection, we fix T > 0 arbitrarily.

Lemma 3.3 Let Assumptions 2.1 and 2.2 hold. For any real number R > |x0|, define
the stopping time

τR = inf{t ≥ 0 : |x(t)| ≥ R},
where throughout this paper we set inf ∅ = ∞ (and as usual ∅ denotes the empty set).
Then

P(τR ≤ T ) ≤ C

R2
. (3.5)

(Recall that C stands for generic positive real constants dependent on T, p,K, x0 so C here
is independent of R.)

Proof. By the Itô formula and Assumption 2.2, we derive that

E|x(t ∧ τR)|2 ≤ |x0|2 + E

∫ t∧τR

0

2K(1 + |x(s)|2)ds

≤ |x0|2 + 2KT + 2K

∫ t

0

E|x(s ∧ τR)|pds

for any 0 ≤ t ≤ T . The Gronwall inequality shows

E|x(T ∧ τR)|2 ≤ C.

This implies
R2

P(τR ≤ T ) ≤ C

and the assertion follows. 2

Lemma 3.4 Let Assumptions 2.1 and 2.2 hold. For any real number R > |x0| and
∆ ∈ (0,∆∗), define the stopping time

ρ∆,R = inf{t ≥ 0 : |x∆(t)| ≥ R}.

Then

P(ρ∆,R ≤ T ) ≤ C

R2
. (3.6)

(Please recall that C is independent of ∆ and R.)
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Proof. We simply write ρ∆,R = ρ. By the Itô formula, we have that for 0 ≤ t ≤ T ,

E|x∆(t ∧ ρ)|2 = |x0|2 + E

∫ t∧ρ

0

(

2xT
∆(s)f∆(x̄∆(s)) + |g∆(x̄∆(s))|2

)

ds

= |x0|2 + E

∫ t∧ρ

0

(

2x̄T
∆(s)f∆(x̄∆(s)) + |g∆(x̄∆(s))|2

)

ds

+ E

∫ t∧ρ

0

2(x∆(s)− x̄∆(s))
Tf∆(x̄∆(s))ds.

By Lemma 2.4, we then derive that,

E|x∆(t ∧ ρ)|2 ≤ |x0|2 + E

∫ t∧ρ

0

2K(1 + |x̄∆(s)|2)ds

+ E

∫ t∧ρ

0

2|x∆(s)− x̄∆(s)||f∆(x̄∆(s))|ds

≤ |x0|2 + 2KT + 4K

∫ t

0

E|x∆(s ∧ ρ)|2ds

+ 4K

∫ T

0

E|x∆(s)− x̄∆(s)|2ds

+ 2E

∫ T

0

|x∆(s)− x̄∆(s)||f∆(x̄∆(s))|ds.

But, by Lemma 3.1, we have

∫ T

0

E|x∆(s)− x̄∆(s)|2ds ≤ C,

while by Lemma 3.1 and inequalities (2.10) and (2.8), we derive

E

∫ T

0

|x∆(s)− x̄∆(s)||f∆(x̄∆(s))|ds ≤ h(∆)E

∫ T

0

(

E|x∆(s)− x̄∆(s)|p
)1/p

ds

≤ Th(∆)
(

cp∆
p/2(h(∆))p

)1/p

≤ C(h(∆)∆1/4)2 ≤ C.

We hence have

E|x∆(t ∧ ρ)|2 ≤ C + 4K

∫ t

0

E|x∆(s ∧ ρ)|2ds.

The Gronwall inequality shows

E|x∆(T ∧ ρ)|2 ≤ C.

This implies the required assertion (3.6) easily. 2

Theorem 3.5 Let Assumptions 2.1 and 2.2 hold. Then, for any q ∈ [2, p),

lim
∆→0

E|x∆(T )− x(T )|q = 0 and lim
∆→0

E|x̄∆(T )− x(T )|q = 0. (3.7)

Proof. Let τR and ρ∆,R be the same as before. Set

θ∆,R = τR ∧ ρ∆,R and e∆(T ) = x∆(T )− x(T ).

9



Using the Young inequality, we derive that for any δ > 0,

E|e∆(T )|q = E

(

|e∆(T )|qI{θ∆,R>T}

)

+ E

(

|e∆(T )|qI{θ∆,R≤T}

)

≤ E

(

|e∆(T )|qI{θ∆,R>T}

)

+
qδ

p
E|e∆(T )|p +

p− q

pδq/(p−q)
P(θ∆,R ≤ T ). (3.8)

By Lemmas 2.3 and 3.2, we have

E|e∆(T )|p ≤ C

while by Lemmas 3.3 and 3.4,

P(θ∆,R ≤ T ) ≤ P(τR ≤ T ) + P(ρ∆,R ≤ T ) ≤ C

R2
.

We hence have

E|e∆(T )|q ≤ E

(

|e∆(T )|qI{θ∆,R>T}

)

+
Cqδ

p
+

C(p− q)

pR2δq/(p−q)
. (3.9)

Now, let ε > 0 be arbitrary. Choose δ sufficiently small for Cqδ/p ≤ ε/3 and then choose
R sufficiently large for

C(p− q)

pR2δq/(p−q)
≤ ε

3
.

We then see from (3.9) that for this particularly chosen R,

E|e∆(T )|q ≤ E

(

|e∆(T )|qI{θ∆,R>T}

)

+
2ε

3
. (3.10)

If we can show that for all sufficiently small ∆,

E

(

|e∆(T )|qI{θ∆,R>T}

)

≤ ε

3
, (3.11)

we then have
lim
∆→0

E|e∆(T )|q = 0

and then by Lemma 3.1, we also have

lim
∆→0

E|x(T )− x̄∆(T )|q = 0.

In other words, to complete our proof, all we need is to show (3.11). For this purpose, we
define the truncated functions

FR(x) = f
(

(|x| ∧R)
x

|x|
)

and GR(x) = g
(

(|x| ∧R)
x

|x|
)

, x ∈ R
d.

Without loss of any generality, we may assume that ∆∗ is already sufficiently small for
µ−1(h(∆∗)) ≥ R. Hence, for all ∆ ∈ (0,∆∗], we have that

f∆(x) = FR(x) and g∆(x) = GR(x)

for all x ∈ R
d with |x| ≤ R. Consider the SDE

dy(t) = FR(y(t))dt+GR(y(t))dB(t) (3.12)
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on t ≥ 0 with the initial value y(0) = x0. By Assumption 2.1, we see that both FR(x)
and GR(x) are globally Lipschitz continuous with the Lipschitz constant KR. So the SDE
(3.12) has a unique global solution y(t) on t ≥ 0. It is straightforward to see that

x(t ∧ τR) = y(t ∧ τR) a.s. for all t ≥ 0. (3.13)

On the other hand, for each stepsize ∆ ∈ (0,∆∗], we can apply the EM method to the
SDE (3.12) and we denote by y∆(t) the continuous-time continuous-sample EM solution.
It is again straightforward to see that

x∆(t ∧ ρ∆,R) = y∆(t ∧ ρ∆,R) a.s. for all t ≥ 0. (3.14)

However, it is well known (see, e.g., [18, 21]) that

E

(

sup
0≤t≤T

|y(t)− y∆(t)|q
)

≤ H∆q/2, (3.15)

where H is a positive constant dependent on KR, T, x0, q. Consequently,

E

(

sup
0≤t≤T

|y(t ∧ θ∆,R)− y∆(t ∧ θ∆,R)|q
)

≤ H∆q/2.

Using (3.13) and (3.14), we then have

E

(

sup
0≤t≤T

|x(t ∧ θ∆,R)− x∆(t ∧ θ∆,R)|q
)

≤ H∆q/2, (3.16)

which implies

E

(

|x(T ∧ θ∆,R)− x∆(T ∧ θ∆,R)|q
)

≤ H∆q/2.

Finally

E

(

|e∆(T )|qI{θ∆,R>T}

)

= E

(

|e∆(T ∧ θ∆,R)|qI{θ∆,R>T}

)

≤ E

(

|x(T ∧ θ∆,R)− x∆(T ∧ θ∆,R)|q
)

≤ H∆q/2.

This implies (3.11) as desired. The proof is therefore complete. 2

4 Stronger Results with an Additional Condition

In the previous section, we showed that both truncated EM solutions x∆(T ) and x̄∆(T )
will converge to the true solution x(T ) in Lq for any T > 0. This is sufficient for some
applications e.g. when we need to approximate the European put or call option value
(see, e.g., [9]). However, we sometimes need to approximate quantities that are path-
dependent, for example, the European barrier option value. In these situations, we will
need a stronger convergence result like

lim
∆→0

E

(

sup
0≤t≤T

|x∆(t)− x(t)|q
)

= 0. (4.1)

For this purpose, let us impose an additional condition.
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Assumption 4.1 Assume that there is a pair of constants r ≥ 2 and K̄ > 0 such that

|g(x)|2 ≤ K̄(1 + |x|r), ∀x ∈ R
d. (4.2)

Of course, when r = 2, this is the linear growth condition on g. However, our
assumption allows r > 2. That is, we allow the diffusion coefficient g to grow faster than
linearly. With this additional condition, we will be able to show that (4.1) holds for all
q < 2 + p− r when p > r. To show this, let us present a number of lemmas. Once again,
we fix T > 0 arbitrarily in this section.

Lemma 4.2 Let Assumptions 2.1, 2.2 and 4.1 hold and assume that p > r. Set p̄ =
2 + p− r. Then

E

(

sup
0≤t≤T

|x(t)|p̄
)

≤ C. (4.3)

Proof. By the Itô formula and Assumption 2.2, we can show that

|x(t)|p̄ ≤ |x0|p̄ +
∫ t

0

pK|x(s)|p̄−2(1 + x(s)|2)ds+
∫ t

0

p|x(s)|p̄−2xT (s)g(x(s))dB(s)

for all t ∈ [0, T ]. Hence, by Lemma 2.3,

E

(

sup
0≤t≤T

|x(t)|p̄
)

≤ C + E

(

sup
0≤t≤T

∣

∣

∣

∫ t

0

p|x(s)|p̄−2xT (s)g(x(s))dB(s)
∣

∣

∣

)

.

By the Burkholder–Davis–Gundy inequality (see, e.g., [21]) and Assumption 4.1 as well
as Lemma 2.3, we then derive that

E

(

sup
0≤t≤T

|x(t)|p̄
)

≤ C + 4
√
2pE

([

∫ T

0

|x(t)|2p̄−2|g(x(t))|2dt
]1/2)

≤ C + 4
√
2pE

([(

sup
0≤t≤T

|x(t)|p̄
)

∫ T

0

|x(t)|p̄−2|g(x(t))|2dt
]1/2)

≤ C +
1

2
E

(

sup
0≤t≤T

|x(t)|p̄
)

+ 16p2K̄E

∫ T

0

|x(t)|p̄−2(1 + |x(t)|r)dt.

This implies

E

(

sup
0≤t≤T

|x(t)|p̄
)

≤ C + 32p2K̄E

∫ T

0

|x(t)|p̄−2(1 + |x(t)|r)dt.

Noting that p̄− 2+ r = p, we can apply the Young inequality and then Lemma 2.3 to get

E

∫ T

0

|x(t)|p̄−2(1 + |x(t)|r)dt ≤ C,

and hence the required assertion (4.3) follows. 2

Lemma 4.3 Let Assumptions 2.1, 2.2 and 4.1 hold and assume that p > r. Set p̄ =
2 + p− r. Then

sup
0<∆≤∆∗

E

(

sup
0≤t≤T

|x∆(t)|p
)

≤ C. (4.4)
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Proof. Fix any ∆ ∈ (0,∆∗]. Using the Itô formula and Assumption 2.2, we can show in
the same way as Lemma 3.2 was proved that

E

(

sup
0≤t≤T

|x∆(t)|p̄
)

≤ C + E

(

sup
0≤t≤T

∣

∣

∣

∫ t

0

p|x∆(s)|p̄−2xT
∆(s)g(x̄∆(s))dB(s)

∣

∣

∣

)

.

In the same way as Lemma 4.2 was proved, we can then show that

E

(

sup
0≤t≤T

|x∆(t)|p̄
)

≤ C + 32p2E

∫ T

0

|x∆(t)|p̄−2|g∆(x̄∆(t))|2dt.

But, the truncated function g∆ preserves the growth condition (4.2), namely,

|g∆(x)|2 ≤ K̄(1 + |x|r), ∀x ∈ R
d.

We then have

E

∫ T

0

|x∆(t)|p̄−2|g∆(x̄∆(t))|2dt ≤ K̄E

∫ T

0

|x∆(t)|p̄−2(1 + |x̄∆(t)|r)dt.

By Lemma 3.2, it is straightforward to show

E

∫ T

0

|x∆(t)|p̄−2(1 + |x̄∆(t)|r)dt ≤ C.

We hence have

E

(

sup
0≤t≤T

|x∆(t)|p̄
)

≤ C

as required. 2

Theorem 4.4 Let Assumptions 2.1, 2.2 and 4.1 hold and assume that p > r. Set p̄ =
2 + p− r. Then, for any q ∈ [2, p̄),

lim
∆→0

E

(

sup
0≤t≤T

|x∆(t)− x(t)|q
)

= 0. (4.5)

Proof. We use the same notation as in the proof of Theorem 3.5. Using the Young
inequality, we can show that for any δ > 0,

E

(

sup
0≤t≤T

|e∆(t)|q
)

≤ E

(

I{θ∆,R>T} sup
0≤t≤T

|e∆(t)|q
)

+
qδ

p
E

(

sup
0≤t≤T

|e∆(t)|q
)

+
p− q

pδq/(p−q)
P(θ∆,R ≤ T ). (4.6)

By Lemmas 4.2, 4.3, 3.3 and 3.4, we can then have

E

(

sup
0≤t≤T

|e∆(t)|q
)

≤ E

(

I{θ∆,R>T} sup
0≤t≤T

|e∆(t)|q
)

+
Cqδ

p
+

C(p− q)

pR2δq/(p−q)
. (4.7)

But, by (3.16),

E

(

I{θ∆,R>T} sup
0≤t≤T

|e∆(t)|q
)

≤ E

(

sup
0≤t≤T

|x(t ∧ θ∆,R)− x∆(t ∧ θ∆,R)|q
)

≤ H∆q/2.
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We therefore have

E

(

sup
0≤t≤T

|e∆(t)|q
)

≤ H∆q/2 +
Cqδ

p
+

C(p− q)

pR2δq/(p−q)
. (4.8)

Now, for any ε > 0, we first choose δ sufficiently small for Cqδ/p ≤ ε/3 and then choose
R sufficiently large for

C(p− q)

pR2δq/(p−q)
≤ ε

3
,

and further then choose ∆ sufficiently small for H∆q/2 ≤ ε/3 to get that

E

(

sup
0≤t≤T

|e∆(t)|q
)

≤ ε

for all sufficiently small ∆. That is, we have proved the required assertion (4.5). 2

We observe that it is much easier to compute x̄∆(t) than x∆(t) in practice. It is
therefore more desirable to have

lim
∆→0

E

(

sup
0≤t≤T

|x̄∆(t)− x(t)|q
)

= 0.

For this purpose, let us present another lemma.

Lemma 4.5 Let q ≥ 2 and ∆ ∈ (0,∆∗]. Let n be a sufficiently large integer for which

( 2n

2n− 1

)q

(T + 1)q/2n ≤ 2 and
n− 1

2n
>

1

3
. (4.9)

We then have

E

(

sup
0≤t≤T

|x∆(t)− x̄∆(t)|q
)

≤ 2q+1nq/2(h(∆))q∆q(n−1)/2n. (4.10)

Consequently

lim
∆→0

E

(

sup
0≤t≤T

|x∆(t)− x̄∆(t)|q
)

= 0. (4.11)

Proof. Let N be the integer part of T/∆. Then

E

(

sup
0≤t≤T

|x∆(t)− x̄∆(t)|q
)

≤ E

(

max
0≤k≤N

sup
tk≤t≤tk+1

|f∆(x̄∆(tk))(t− tk) + g∆(x̄∆(tk))(B(t)− B(tk))|q
)

≤ 2q−1
E

(

max
0≤k≤N

sup
tk≤t≤tk+1

|f∆(x̄∆(tk))|q(t− tk)
q + |g∆(x̄∆(tk))|q|B(t)− B(tk)|q

)

≤ 2q−1(h(∆))q
[

∆q + E

(

max
0≤k≤N

sup
tk≤t≤tk+1

|B(t)− B(tk)|q
)]

. (4.12)
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By the Hölder inquality and the Doob martingale inequality, we then derive that

E

(

max
0≤k≤N

sup
tk≤t≤tk+1

|B(t)− B(tk)|q
)

≤
[

E

(

max
0≤k≤N

sup
tk≤t≤tk+1

|B(t)− B(tk)|2n
)]q/2n

≤
[

N
∑

k=0

E

(

sup
tk≤t≤tk+1

|B(t)− B(tk)|2n
)]q/2n

≤
[

N
∑

k=0

( 2n

2n− 1

)2n

E|B(tk+1)− B(tk)|2n
]q/2n

≤
[

N
∑

k=0

( 2n

2n− 1

)2n

(2n− 1)!!∆n
]q/2n

≤
[( 2n

2n− 1

)2n

(T + 1)(2n− 1)!!∆n−1
]q/2n

, (4.13)

where (2n− 1)!! = (2n− 1)× (2n− 3)× · · · × 3× 1. But

[(2n− 1)!!]1/n ≤ 1

n

n
∑

i=1

(2i− 1) = n.

Using (4.9), we then derive from (4.13) that

E

(

max
0≤k≤N

sup
tk≤t≤tk+1

|B(t)− B(tk)|q
)

≤ nq/2
( 2n

2n− 1

)q

(T + 1)q/2n∆q(n−1)/2n

≤ 2nq/2∆q(n−1)/2n. (4.14)

Substituting this into (4.12) yields the required assertion (4.10). Finally, by (4.9) and
(2.8),

(h(∆))q∆q(n−1)/2n ≤ (h(∆))q∆q/3 = ∆q/12(∆1/4h(∆))q ≤ ∆q/12.

We hence obtain the other assertion (4.11) from (4.10). The proof is complete. 2

The following theorem now follows from Theorem 4.4 and Lemma 4.5 immediately.

Theorem 4.6 Let Assumptions 2.1, 2.2 and 4.1 hold and assume that p > r. Set p̄ =
2 + p− r. Then, for any q ∈ [2, p̄),

lim
∆→0

E

(

sup
0≤t≤T

|x̄∆(t)− x(t)|q
)

= 0. (4.15)

5 Corollaries and Examples

In this section we will demonstrate that Assumptions 2.2 and 4.1 cover many SDEs in
various branches of science and industry and hence our new truncated EM method is
applicable in many areas. Let us first recall the conditions that are frequently used in the
study of numerical solutions of SDEs. They are the one-sided linear growth condition on
the drift coefficient f and the linear growth condition on the diffusion coefficient g (see,
e.g., [10, 13]). To be precise, let us state them as an assumption.
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Assumption 5.1 Assume that there are two positive constants K1 and K2 such that

xTf(x) ≤ K1(1 + |x|2) and |g(x)|2 ≤ K2(1 + |x|2) (5.1)

for all x ∈ R
d.

Under this assumption, for any p > 2, we have

xTf(x) +
p− 1

2
|g(x)|2 ≤ (K1 + 0.5(p− 1)K2)(1 + |x|2)

for all x ∈ R
d. We therefore see that Assumptions 2.2 and 4.1 are satisfied with K =

K1 + 0.5(p − 1)K2, K̄ = K2 and r = 2. The following corollary follows from Theorems
4.4 and 4.6 immediately.

Corollary 5.2 Let Assumptions 2.1 and 5.1 hold. Then, for any q ≥ 2,

lim
∆→0

E

(

sup
0≤t≤T

|x∆(t)− x(t)|q
)

= 0 and lim
∆→0

E

(

sup
0≤t≤T

|x̄∆(t)− x(t)|q
)

= 0. (5.2)

We next introduce a condition which covers the SDEs like the scalar equations

dx(t) = (x(t) + x2(t)− x5(t))dt+ x2(t)dB(t), (5.3)

or
dx(t) = (x(t) + x2(t)− 2x3(t))dt+ x2(t)dB(t). (5.4)

Assumption 5.3 Assume that there are three constants ρ > 2 and K1, K2 > 0 such that

xTf(x) ≤ K1(1 + |x|2)−K2|x|ρ, ∀x ∈ R
d. (5.5)

Under Assumptions 4.1 and 5.3, let us consider two cases:

Case (i) when ρ > r. In this case, for any p > 2, we have

xTf(x) +
p− 1

2
|g(x)|2 ≤ K1(1 + |x|2)−K2|x|ρ +

p− 1

2
K̄(1 + |x|r).

But −K2|x|ρ + p−1
2

K̄(1 + |x|r) is bounded above by a positive constant, say K3. So

xTf(x) +
p− 1

2
|g(x)|2 ≤ (K1 +K3)(1 + |x|2).

This shows that Assumption 2.2 is satisfied for any p > 2.

Case (ii) when ρ = r. In this case, we need to assume that 2K2/K̄ > r−1 additionally.
Let p = 1 + 2K2/K̄. Then p > r and, moreover, we have

xTf(x) +
p− 1

2
|g(x)|2 ≤ K1(1 + |x|2) +K2 ≤ (K1 +K2)(1 + |x|2).

This shows that Assumption 2.2 is satisfied for p = 1 + 2K2/K̄. The following corollary
hence follows from Theorems 4.4 and 4.6 again.

Corollary 5.4 Let Assumptions 2.1, 4.1 and 5.3 hold.
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(i) If ρ > r, then the assertions in (5.2) hold for any q ≥ 2.

(ii) If ρ = r and 2K2/K̄ > r − 1, then the assertions in (5.2) hold for any 2 ≤ q <
3 + 2K2/K̄ − r.

Recalling the SDEs (2.5) and (2.6), we see that they are in a similar fashion as the
SDEs (5.3) and (5.4). However, the SDEs (2.5) and (2.6) are those that model either the
financial quantities or population sizes so their states take nonnegative numbers, that is,
these SDEs are in the nonnegative cone R

n
+ = {(x1, · · · , xd)

T ∈ R
d : xi ≥ 0, 1 ≤ i ≤ d}.

On the other hand, both SDEs (5.3) and (5.4) are in the whole real space R. In fact, our
theory so far works for SDEs in the whole Rd. We now explain our theory can be applied
to the SDEs in R

d
+ as well. We use the SDEs (2.5) and (2.6) as the examples. In the

following examples, B(t) will be a scalar Brownian motion.

Example 5.5 We first consider the SDE (2.5) under the condition β+1 ≥ 2θ. We claim
that for any initial value x(0) > 0, there is a unique global solution x(t) to the SDE
(2.5) and the solution will remain to be positive with probability one. In fact, define a
C2-function V : (0,∞) → R+ by

V (x) = x− 1− log(x).

It is easy to show that, for x ∈ (0,∞),

V ′(x)(µ− αxβ) + 0.5V ′′(x)σ2x2θ

= µ− µx−1 − αxβ + αxβ−1 + 0.5σ2x2θ−2,

which is bounded above by a constant. From here it is almost standard to show what we
have just claimed (see the proof of [21, Theorem 2.1] on pages 381–384).

We may therefore write the SDE (2.5) as equation

dx(t) = f(x(t))dt+ g(x(t))dB(t) (5.6)

in R by extending the definitions of the coefficients f and g from R+ to R as follows

f(x) =

{

µ− αxβ if x ≥ 0,

µ if x < 0,
and g(x) =

{

σxθ if x ≥ 0,

0 if x < 0.

Obviously, both f and g are locally Lipschitz continuous in R. Moreover, Assumption 4.1
is satisfied with K̄ = σ2 and r = 2θ. To verify Assmmption 2.2, we consider two cases:

Case (i) when β + 1 > 2θ. In this case, for any p > 2, we have that, for x ≥ 0,

xf(x) +
p− 1

2
|g(x)|2 = µx− βxβ+1 +

(p− 1)σ2

2
x2θ,

which is bounded above by a positive constant, say K. In other words,

xf(x) +
p− 1

2
|g(x)|2 ≤ K for x ≥ 0.

On the other hand, xf(x) + p−1
2
|g(x)|2 = µx ≤ 0 for x < 0. So we always have

xf(x) +
p− 1

2
|g(x)|2 ≤ K, ∀x ∈ R.
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This shows that Assumption 2.2 is satisfied for any p > 2. By Theorems 4.4 and 4.6, we
can therefore conclude that the assertions in (5.2) hold for any q ≥ 2, where x(t) in (5.2)
now means the solution of equation (2.5) and x∆(t) and x̄∆(t) stand for the truncated
EM solutions of equation (5.6).

Case (ii) when β + 1 = 2θ. In this case, we need to assume that 2β > σ2(2θ − 1)
additionally. Let p = 1 + 2β/σ2. Then p > 2θ > 2. Moreover, we can show easily that

xTf(x) +
p− 1

2
|g(x)|2 ≤ µ(1 + |x|2).

In other words, Assumption 2.2 is satisfied for p = 1 + 2β/σ2. By Theorems 4.4 and 4.6,
we can therefore conclude that the assertions in (5.2) hold for any 2 ≤ q < 3+2β/σ2−2θ.

Example 5.6 Let us now consider the SDE (2.6), namely the SDE

dx(t) = F (x(t))dt+G(x(t))dB(t) (5.7)

in R
d
+, where F,G : Rd

+ → R
d are defined by

F (x) = diag(x1, x2, ..., xd)(b+ Ax2) and G(x) = diag(x1, x2, ..., xd)Cx

for x ∈ R
d. It is known (see, e.g., [3]) that for any initial value x(0) ∈ R

d
+, the solution

x(t) of the SDE (5.7) will remain to be in R
d
+ with probability one. We may therefore

write the SDE (5.7) as the following equation

dx(t) = f(x(t))dt+ g(x(t))dB(t) (5.8)

in R
d by extending the definitions of the coefficients from R

d
+ to R

d as follows

f(x) =

{

F (x) if x ∈ R
d
+,

F (x̂) if x 6∈ R
d
+,

and g(x) =

{

G(x) if x ∈ R
d
+,

G(x̂) if x 6∈ R
d
+,

where x̂ = (x1 ∨ 0, x2 ∨ 0, · · · , xd ∨ 0) for x 6∈ R
d
+. Obviously, both f and g are locally

Lipschitz continuous in R
d. Note that for x ∈ R

d
+,

|g(x)|2 = |G(x)|2 = xTCTdiag(x2
1, x

2
2, ..., x

2
d)Cx ≤ |x|2xTCTCx ≤ λmax(C

TC)|x|4,

while for x 6∈ R
d
+,

|g(x)|2 = |G(x̂)|2 ≤ λmax(C
TC)|x̂|4 ≤ λmax(C

TC)|x|4.

We hence always have that

|g(x)|2 ≤ λmax(C
TC)|x|4, ∀x ∈ R

d. (5.9)

This means that Assumption 4.1 is satisfied with K̄ = λmax(C
TC) and r = 4. To fulfil

Assumption 2.2, we assume that

−λmax(A+ AT ) > 3dλmax(C
TC). (5.10)

Letting

p = 1− λmax(A+ AT )

dλmax(CTC)
, (5.11)
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we have p > 4. Recalling the notation x2 = (x2
1, · · · , x2

d)
T and setting b̄ = max1≤i≤d |bi|,

we derive that for x ∈ R
d
+,

xTf(x) = xTF (x) = (x2)T (b+ A)x2 ≤ b̄|x|2 + 1

2
λmax(A+ AT )|x2|2,

while for x 6∈ R
d
+,

xTf(x) = xTF (x̂) = (x̂2)T (b+ A)x̂2 ≤ b̄|x̂|2 + 1

2
λmax(A+ AT )|x̂2|2.

Observing that |x̂|2 ≤ |x|2 and |x̂2|2 ≤ |x2|2, we therefore see that

xTf(x) ≤ b̄|x|2 + 1

2
λmax(A+ AT )|x2|2, ∀x ∈ R

d.

But it is easy to show that |x|4 ≤ d|x2|2. Conseqnently

xTf(x) ≤ b̄|x|2 + 1

2d
λmax(A+ AT )|x|4, ∀x ∈ R

d. (5.12)

Combining (5.9) and (5.12), we get that

xTf(x) +
p− 1

2
|g(x)|2 ≤ b̄|x|2 + 1

2d
λmax(A+ AT )|x|4 + p− 1

2
λmax(C

TC)|x|4 = b̄|x|2

for all x ∈ R
d. That is, Assumption 2.2 is satisfied. By Theorems 4.4 and 4.6, we can

therefore conclude that the assertions in (5.2) hold for any 2 ≤ q < p − 2 if condition
(5.10) holds.

6 Conclusions

In this paper we have developed a new explicit method, called the truncated EM method,
for the nonlinear SDE dx(t) = f(x(t))dt + g(x(t))dB(t). For a given stepsize ∆, we
define the discrete-time truncated EM numerical solution and then form two versions
of the continuous-time truncated EM solutions, namely the continuous-time step-process
truncated EM solution x̄∆(t) and the continuous-time continuous-sample truncated EM
solution x∆(t) . Under the local Lipschitz condition plus the Khasminskii-type condition
xTf(x) + p−1

2
|g(x)|2 ≤ K(1 + |x|2) for some p > 2, we have successfully shown the strong

convergence of both continuous-time truncated EM solutions to the true solution in the
sense that

lim
∆→0

E|x∆(T )− x(T )|q = 0 and lim
∆→0

E|x̄∆(T )− x(T )|q = 0

for any T > 0 and 2 ≤ q < p. Moreover, with another additional condition on the diffusion
coefficient, namely |g(x)|2 ≤ K̄(1 + |x|r) for some r ∈ [2, p), we have shown the stronger
convergence results in the sense that

lim
∆→0

E

(

sup
0≤t≤T

|x∆(t)− x(t)|q
)

= 0 and lim
∆→0

E

(

sup
0≤t≤T

|x̄∆(t)− x(t)|q
)

= 0

for any T > 0 and 2 ≤ q < 2 + p− r.

It is interesting to show an order of strong-Lq convergence for the truncated EM
method under these conditions. However, we will report the results on the convergence
rate in another paper due to the page limit here.
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