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Abstract: 

 

Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used 

approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a 

probabilistic model, whilst SVM is an optimization based non-parametric method in this context. 

Recently, it is found SVM in some cases is equivalent to MLC in probabilistically modeling of the 

learning process. In this paper, MLC and SVM are combined in learning and classification, which helps 

to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are 

used for evaluations, covering sonar, vehicle, breast cancer and DNA sequences. The data samples are 

characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced sampled, which are 

then further used for performance assessment in comparing the SVM and the combined SVM-MLC 

classifier. Interesting results are reported to indicate how the combined classifier may work under various 

conditions. 
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1. Introduction 

Maximum likelihood classification (MLC) is one of the most commonly used approach in signal classification and 

identification, which has been successfully applied in a wide range of engineering applications including classification for 

digital amplitude-phase modulations [1], remote sensing [2], genes selection for tissue classification [3], nonnative speech 

recognition [4], chemical analysis in archaeological applications [5] and speaker recognition [6]. On the other hand, support 

vector machines (SVM) has attracted much increasing attention, which can be found in almost all areas when prediction and 

classification of signal is required, such as scour prediction on grade-control structure [7], fault diagnosis [8], EEG signal 

classification [9], and fire detection [10] as well as road sign detection and recognition [11].  

Based on the principles of Bayesian statistics, MLC provides a parametric approach in decision making where the 

model parameters need to be estimated before they are applied for classification. On the contrary, SVM is a non-parametric 

approach, where the theoretic background is supervised machine learning. Due to the differences of these two classifiers, 

their performance appears to be much different. Taking the application in remote sensing for example, in Pal and Mather [12] 

and Huang et al [13], it is found SVM outperforms MLC and several other classifiers. In Waske and Benedijktsson [14], 

SVM produces better results from SAR images, yet in most cases it generates worse results than MLC from TM images. In 

Szuster et al [15], SVM only yields slightly better results than MLC for land cover analysis. As a result, detailed 

assessments as on what conditions SVM outperforms or appears inferior to MLC are worth further investigation. 

Furthermore, there becomes a trend to combine the principle of MLC, Bayesian theory, with SVM for improved 

classification. In Ren et al [16], Bayesian minimum error classification is applied to the predicted outputs of SVM for 

error-reduced optimal decision-making. Similarly, in Hsu et al [17], Bayesian decision theory is applied in SVM for 

imbalance measurement and feature optimization for improved performance. In Vega et al [18], Bayesian statistics is 

combined with SVM for parameter optimization. In Vong et al [19], Bayesian inference is applied to estimate the 

hyper-parameters used in SVM learning to speed up the training process. In Foody [20], relevance support machine (RVM), 

a Bayesian extension of SVM is proposed which enables an estimate of the posterior probability of class membership where 

conventional SVMs fail to do so. Consequently, in-depth analysis of the two classifiers is desirable to discover their pros 

and cons in machine learning.   

 In this paper, analysis and evaluations of SVM and MLC is emphasized, using data from various applications. Since 

the selected data satisfy certain conditions in terms of specific sample distributions, we aim to find out how the performance 

of the classifiers is connected to the particular data distributions. As a consequence, the work and the results shown in the 

paper are valuable for us to understand how these classifiers work, which can then provide insightful guidance as how to 

select and combine them in real applications. 

The remaining parts of the paper are organized as follows. Section 2 introduces the principles of the two classifiers. 

Section 3 describes data and methods that have been used, where experimental results and evaluations are analyzed and 

discussed in Section 4. Concluding remarks are given in Section 5.  

 

2. MLC and SVM Revisited 

 

In this section, the principles of the two classifiers, SVM and MLC, are discussed. By comparing their theoretic 

background and implementation details, the two classifiers are characterized in terms of their performances during the 

training and testing processes. This in turn has motivated our work in the following sections. 

2.1 The Maximum Likelihood Classifier (MLC) 

Let ],1[,),,...,,( T

,2,1, Mixxx Niiii x  be a group of N-dimensional features, derived from M observed samples, 

],1[ Cyi   denotes the class label associated with ix , i.e. in total we have C classes denoted as c , 2c . The basic 

assumption of MLC is that for each class of data the feature space satisfies specified distributions, usually Gaussian, and 



 

also the samples are independent to each other. To this end, the likelihood (probability) for samples within the kth class, k , 

is given as follows. 
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where cȝ  and cS  respectively denote the mean vector and co-variance of all cN  samples within c , which can be 

determined using maximum likelihood estimation as  
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For a given sample ix , the probability it belongs to class c  can be denoted as )|( icp x . The class c  that ix  

is determined to be within is then decided by  

 )|(maxarg)( ic
c

iMLC pf xx            (4) 

Based on Bayesian theory, we have  
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Since )( ip x  is a constant in Eq. (5) when ix  is given, Eq. (4) can be re-written as 
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c

iMLC ppf  xx           (6) 

Applying logarithm operation to the right side of Eq. (6), also let )(ln)|(ln)( ccc ppg   xx  be the 

discriminating function, Eq. (6) becomes  
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Again we can ignore the constant in Eq. (8) and simplify the discriminating function as 
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where 
1)2(  cc SW , ccc uSw

1  and )(ln||ln22 11T1

cccccc p   
SuSu . 

As can be seen, )(xcg  is now a quadratic function of x  depending on three parameters, i.e. cu , cS  and )( cp  . 

When the class c  is specified, these parameters are determined, hence the quadratic function only depends on the class  

c  and the input sample x . Also it is worth noting that the third item c  is actually a constant.  



 

In a particular case when )( cp   is a constant for all c , i.e. the prior probability that a sample belongs to one of the 

classes is equal, )(ln cp   in Eq. (9) can be ignored hence the discriminating function is re-written as  

||ln)()()( 1T

cccccg SuxSuxx  
         (10) 

where the scalar 1/2 is also ignored as it makes no difference when Eq. (7) is applied for decision-making. However, such 

simplification cannot be made unless we have clear knowledge about the equal distribution of the samples over the C 

classes.  

Based on Eq. (10), the decision function can be further simplified if the total number of classes is reduced to two, 

where the two classes are denoted as -1 and 1 and the sign  function in introduced for simplicity. 
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Moreover, in a special case when SSS   , the quadratic decision function in Eq. (11) becomes a linear one as  
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2.2 The Support Vector Machine (SVM) 

SVM was originally developed for the classification of two-class problem. In Cortes and Vapnik [22], the principles of 

SVM are comprehensively discussed. Let the two classes denoted as 1 and -1, similar to the decision function for MLC in 

Eq. (11), the decision function for linear SVM is given by  
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where iy  denotes the labeled value for the input sample ix ; w and b  are parameters to be determined in the training 

process.  

Note that the decision function in Eq. (13) is actually equivalent to the one in Eq. (11) if we adjust the scalar for b , 

yet Eq. (13) is more feasible as it has increased the decision margin between the two classes from near zero to 
1||2 

w . By 

multiplying iy  to both sides of the discriminating function g , this can be further simplified as 1)( iSVMi gy x , i.e. 

1)( T by ii xw              (14) 

Hence, the optimal hyperplane to separate the training data with a maximal margin is defined by  

0T  oo bxw                (15) 

where ow and ob  are the determined parameters, and the maximal distance becomes 
1||2 

ow .  

To determine this optimal hyperplane, we need maximize 
1||2 

w  , or equivalently to minimize 
21 ||2 w


, subject 

to ix , 1)( T by ii xw . Using the Lagrangian multipliers, this optimization problem can be solved by  
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Eventually, the parameters ow  and ob  are decided as 
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For any non-zero i , the corresponding ix  is denoted as one support vector which naturally satisfies 

1)( T by ii xw . Therefore, ow  is actually the linear combination of all support vectors. Also we have 0 ii y . 

Eventually if we combine Eq. (17) with Eq. (13), the discrimination function for any test sample x  becomes  
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which solely relies on the inner product of the support vector and the test sample.  

For nonlinear problems which are not linearly separable, the discrimination function is extended as 
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where   aims to map the input samples to another space thus makes them linearly separable.  

Another important step is to introduce the kernel trick to calculate the inner product of mapped samples, i.e. 

 )(),( xx  i , which avoids the difficulty in determining the mapping function   and also the cost for calculation of 

the mapped samples and their inter-product. Several typical kernels including linear, polynomial and radial basis function 

(RBF) are summarized below. 
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where optimal values for the associated parameters p  and   are determined automatically during the training process. 

Though SVM is initially developed for two-class problems, it has been extended to deal with multi-class classification 

based on either combination of decision results from multiple two-class classification or optimization on multi-class based 

learning. Some useful further readings can be found in [23], [24] and [25]. 

2.3 Analysis and Comparisons 

MLC and SVM are two useful tools for classification problems, where both of them rely on supervised learning in 

determining the model and parameters. However, they are different in several ways as summarized below. 

Firstly, MLC is a parametric approach which has a basic assumption that the data satisfy Gaussian distribution. On the 

other contrary, SVM is a non-parametric approach and it has no requirement on the prior distribution of the data, yet various 

kernels can be empirically selected to deal with different problems. 

Secondly, for MLC the model parameters, cȝ  and cS , can be directly estimated using the training data before they 



 

are applied for testing and prediction. However, SVM relies on supervised machine learning, in an iterative way, to 

determine a large amount of parameters including ow , ob , all non-zero i  and their corresponding support vectors.  

Thirdly, MLC can be straightforward applied to two-class and multi-class problems, yet additional extension is needed 

for SVM to deal with multi-class problem as it is initially developed for two-class classification. 

Finally, a posterior class probabilistic output for the predicted results can be intuitively generated from MLC, which is 

a valuable indicator for classification to show how likely a sample belongs to a given class. For SVM, however, this is not 

an easy task though some extensions have been introduced to provide such an output based on the predicted value from 

SVM. In Platt [26], a posterior class probability ip  is estimated by a sigmoid function below.  
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The parameters A  and B  are determined by solving a regularized maximum likelihood problem as follows. 
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where 1N  and 1N  denote the number of support vectors labeled in class 1 and -1, respectively.  

In addition, in Lin et al [27] Platt’s approach is further improved to avoid any numerical difficulty, i.e. overflow or 

underflow, in determining ip  in cases BAgE iSVMi  )(x  is either too large or too small.   
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Although there are significant differences between SVM and MLC, the probabilistic model above has uncovered the 

connection between these two classifiers. Actually, in Franc et al [21] MLC and SVM are found to be equivalent to each 

other in linear cases, and this can also be convinced by the similar decision functions in Eq. (11) and Eq. (13).  

 

3. Data and Methods 

 

In this paper, analysis and evaluations of SVM and MLC is emphasized, using data from various applications. Since 

the selected data satisfy certain conditions in terms of specific sample distributions, we aim to find out how the performance 

of the classifiers is connected to the particular data distributions. As a consequence, the work and the results shown in the 

paper are valuable for us to understand how these classifiers work, which can then provide insightful guidance as how to 

select and combine them in real applications. 

3.1 The datasets 

In our experiments, four different datasets, SamplesNew, svmguide3, sonar and splice, are used. Among these four 

datasets, SamplesNew is a dataset of suspicious micro-classification clusters extracted from [16] and svmguide3 is a demo 

dataset of practical svm guide [28], whilst sonar and splice datasets come from the UCI repository of machine learning 

databases [29]. Actually, two principles are applied in selecting these datasets: The first is how balanced the samples are 

distributed over two classes, and the second is whether the feature distributions are Gaussian-alike. As can be seen, the first 

two datasets are severely imbalanced, especially the first one, as there are much more data samples in one class than those 



 

in another class. On the other hand, the last two datasets are quite balanced. Regarding feature distributions, samplesNew 

and svmguide3 are apparently non-Gaussian distributed, yet the other two, sonar and splice, show approximately Gaussian 

characteristics when the variables are separately observed. This is also validated by the determined Pearson’s moment 

coefficient of skewness below [30], where i  and i  are the mean and standard deviation for the 
thi  dimension of the 

dataset, and (.)E  refers to mathematical expectation. When the skewness coefficients are determined for each data 

dimension, the maximum, the minimum and the average skewness coefficients are obtained and shown in Table 1 for 

comparisons.  
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Table1. Four datasets used in our experiments 

Dataset Features 
Balance 

Status 

Distribution of 

feature value 

Number of samples 

(Class 0 /Class 1) 

Skewness coefficients 

max min mean 

samplesNew 39 Unbalanced Not-Gaussian Approx. 748 (115/633) 7.577 -3.063 2.343 

svmguide3 21 Unbalanced Not-Gaussian Approx. 1284 (947/337) 10.074 -4.653 2.181 

sonar 31 Balanced Approx. Gaussian 209 (97/102) 1.123 -1.019 0.214 

splice 60 Balanced Approx. Gaussian 1269 (653/616) 0.672 -0.490 -0.016 

3.2 The approach 

In our approach, a combined classifier using SVM and MLC is applied, which contains the following three stages. In 

Stage 1, SVM is used for initial training and classification. For the correctly classified results in SVM, these are employed 

in Stage 2, where MLC is applied for probability based modeling. The probability-based models are then utilized in Stage 3 

for improved decision making and better classification. Details of these three stages are discussed as follows. 

Stage 1: SVM for initial training and classification 

The open source library libSVM [28] is used for initial training and classification of the aforementioned four datasets, 

and both the linear and the Gaussian radial basis (RBF) kernels are tested. For each group of datasets, all the data are 

normalized to [-1, 1] before SVM is applied. Through 5-fold cross validation, the best group of parameters, including the 

cost and the gamma value, are optimally determined. Eventually, the optimal parameters are used for classification of our 

datasets. 

In our experiments, the training ratios are set at three different levels, i.e. 80%, 65% and 50%. Basically, there is no 

overlap between training data and testing data. At a given training ratio, the training data is randomly selected and repeated 

five times, which leads to 5 groups of test results generated. Finally, the average performance over these five experiments is 

used for comparisons. 

Stage 2: Using MLC for probability-based modeling 

For those correctly classified samples, which lie in two classes, i.e. class 0 and class 1, they are taken to decide two 

probability-based models, in a way as discussed in MLC. In other words, for samples correctly classified in class 0, they are 

used to determine the mean vector and the corresponding co-variance matrix within class 0. On the other hand, samples 

which are correctly classified in class 1 are used to determine the mean vector and the corresponding co-variance matrix 

within class 1. Note that not all samples in class 0 or class 1 are used in calculating the related MLC models, as those which 

cannot be correctly classified by SVM are treated as outliers and ignored in MLC modeling for robustness.  

After MLC modeling, for each sample x , the associated likelihoods that it belongs to the two classes are re-calculated 

and denoted as )(0 xp  and )(1 xp . As a result, the decision for classification is simplified as 
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where   is a threshold to be optimally determined to generate the best classified results. Please note that the likelihoods 

(or probability values) here can also be taken as a probabilistic output of the SVM. 

Stage 3: Improved classification  

With the estimated MLC models and the optimal threshold  , all samples are then re-checked for improved 

classification, using (25) and the determined likelihoods )(0 xp  and )(1 xp , accordingly. Interesting results on these four 

datasets are given and analyzed in detail in the next Section. 

 

4. Results and Evaluations 

For the four datasets discussed in Section 3, the experimental results are reported and analyzed in this section. Firstly, 

we discuss results from a combined classifier of MLC and a linear SVM. Then, results from MLC and RBF based SVM are 

compared. In addition, how different re-balancing strategies affect the performance of unbalanced datasets is also discussed.  

4.1 Results from a linear SVM and the MLC 

In this group of experiments, a combined classifier using a linear SVM and the MLC is employed, and the relevant 

results are presented in Fig. 1. In Fig. 1, we plot the classification rate as the prediction accuracy with the change of training 

ratio, i.e. the percentage of data used for training. Three training ratios, 80%, 65% and 50% are used. Please note that due to 

degradation of the co-variance matrix, the MLC cannot be used to improve the results for the SampleNew dataset. 

Consequently, the results from the SVM are taken as the output of the combined classifier. For the other three datasets, the 

results are summarized and compared as follows.  

Firstly, for the three datasets, Sonar, Splice and svmguide3, apparently we can see that the combined solution yield 

significantly improved results in training, especially for the first two datasets. This demonstrates that the combined classifier 

can indeed achieve more accurate modeling of the datasets. In addition, possibly due to over-fitting, it shows that a larger 

training ratio does not necessarily improve the training performance.  

 

 

 

Figure 1. Comparing training (top) and testing results (bottom) using linear SVM and the combined classifier  

for the four datasets under three different training ratios.  



 

 

However, the testing results are some different. For the Sonar dataset, which is balanced and appears near Gaussian 

distributed, the combined classifier yields much improved results in testing, especially when the training ratios are 80% and 

50%. Such results are not surprising as the MLC is ideal to model Gaussian-alike distributed datasets. For the Splice dataset, 

which is balanced and also nearly Gaussian distributed, slightly improved testing results are also produced by the combined 

classifier at training ratios at 80% and 50%, but the testing results at the training ratio of 65% becomes slightly worse than 

those from the SVM. For the more challenging svmguide3 dataset, which is unbalanced and non-Gaussian distributed, 

although the combined classifier yields improved testing results at the training ratio of 50%, the results at the other two 

training ratios, perhaps due to over-fitting, seem inferior to the results from the SVM. Actually, in nature the MLC has 

difficulty in modeling non-Gaussian distributed datasets, and this explains where the combined classifier makes less 

contribution to these datasets.  

4.2 Results from a RBF-kernelled SVM and the MLC 

In this group of experiments, the RBF kernel is used for the SVM in the combined classifier as it is popularly used in 

various classification problems [16, 23]. For the four datasets we used, again the training results and the testing results 

under three different training ratios are summarized and given in Fig. 2 for comparisons.  

First of all, RBF-kernelled SVM (R-SVM) produces much improved results than those using linear SVM, especially 

for the training results. In fact, the combined classifier generates better results than the SVM only in the SampleNew dataset, 

slightly worse results in sonar and splice datasets, and much degraded results in the svmguide3 dataset.  

Regarding testing results, although the combined classifier generates comparable or slightly worse results in the 

SampleNew dataset and the svmguide3 dataset, R-SVM yields better results in splice dataset and sonar dataset. The reason 

behind is that results from the non-linear kernel in R-SVM cannot be directly refined using MLC. Also, occasionally the 

results from the combined classifier seem more sensitive to the training ratio, especially for the splice dataset, which is 

perhaps due to the threshold to be determined depends more or less on the training data used.   

 

 

 

Figure 2. Comparing training (top) and testing results (bottom) using RBF kernelled SVM  

and the combined classifier for the four datasets under three different training ratios.  

4.3 Testing on Re-balanced Data 

In this group of experiments, using the challenging dataset svmguide3, how various strategies to rebalance the 



 

unbalanced data may affect the classification performance is analyzed. For the unbalanced dataset, samples from one class 

may be over-represented than those in another class. As a result, we can either over-sampling the data of minority or sub 

-sampling the data of majority to balance the number of samples represented in the training set for better modeling of the 

data. On the other hand, the test samples remain to be unbalanced as it is assumed we have no label information for the test 

samples.   

For over-sampling, data samples which are in minority class are randomly duplicated and inserted into the dataset. The 

replication of data items continues until the entire training set becomes balanced. Different from over-sampling, 

sub-sampling randomly discards samples from the majority class until the training set achieves balanced. Since the 

performance may be affected by samples duplicated or discarded, this process is repeated for over 10 times and the average 

performance is then recorded for comparisons. 

Using three different training ratios at 80%, 65% and 50%, results of balanced learning for the svmguide3 dataset are 

summarized in Fig. 3. Under a given training ratio, both training results and testing results are presented in groups, where 

each group contains results from 6 different experimental scenarios. In addition, the results from liner SVM and 

RBF-kernelled SVM are shown for comparisons as well. 

When linear SVM is used, as shown in the first row of Fig. 3, surprisingly, the results from unbalanced data are much 

better than those from balanced data. Also in majority cases, the combined classifier outperforms the SVM classifier in both 

training and testing, even with balanced learning introduced. The testing results from SVM for balanced learning via 

over-sampling seem better than those from sub-sampling, yet it seems that the combined classifier produces better results 

from sub-sampling based balanced learning.  

For RBF-kernelled SVM, apparently, the training results from SVM via over-sampling are among the best, though the 

testing results are inferior to those from un-balanced training. This indicates that the training process has been over-fitting in 

this context. In fact, testing results from the combined classifier are slightly worse than those from the SVM classifier, i.e. 

some degradation. Again, this is caused by the inconsistency of the non-linear SVM and the linear nature of the MLC.  

 

 

 

Fig. 3: Results of balanced learning for the svmguide3 dataset, using linear SVM (top) and R-SVM (bottom).  

 

5. Conclusions 

 

SVM and MLC are two typical classifiers commonly used in many engineering applications. Although there is a trend to 

combine MLC with SVM to provide a probabilistic output for SVM, under what conditions the combined classifier may 



 

work effectively needs to be explored. In this paper, comprehensive results are demonstrated to answer the question above, 

using four different datasets. First of all, it is found that the combined classifier works under certain constraints, such as a 

linear SVM, balanced dataset and near Gaussian-distributed data. When a RBF-kernelled SVM is used, the combined 

classifier may produce degraded results due to the inconsistency between the non-linear kernel in SVM and linear nature of 

MLC. In addition, for a challenging dataset, balanced learning may improve the results of training but not necessaries the 

testing results. The reason behind is that the combined SVM-MLC classifier works on three assumptions, i.e. Gaussian 

distributed, inter-class separable, and model consistency between training data and testing data. Although the third 

assumption is true in most cases, the precondition of separable Gaussian distributed data is rather a strict constraint for data 

and rarely be satisfied. As a result, this introduces a fundamental difficulty in combining these two classifiers. However, 

under certain circumstances, the combined classifier indeed can significantly improve the classification performance. It is 

worth noting that when more groups is introduced in modelling a given dataset the efficacy can be severely degraded due to 

the inconsistency of statistical distribution between groups. Future work will focus on combining other classifiers such as 

neural network for applications in medical imaging [31-33] and recognition and classification tasks [34-35]. 
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