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ABSTRACT The paper considers the use of artificial regression in calculating
different types of score test when the log−likelihood is based on probabili-
ties rather than densities. The calculation of the information matrix test is
also considered. Results are specialised to deal with binary choice (logit and
probit) models.

keywords score test information matrix artificial regression

1 Introduction

Wilde (2008) has recently pointed out that the Bera−Jarque−Lee (BJL) test
of normality in the probit model can be straightforwardly calculated, as the
explained sum of squares from an artificial regression. This is useful because
the BJL test is a Lagrange multiplier (or score) test based on expected second
derivatives of the log−likelihood (LMESD) and in general, and certainly in
testing for normality in the probit model, see for example Holden (2004), an
LMESD has superior finite sample behaviour to first derivative based ‘outer
product of the gradient’ (LMOPG) alternatives. Thus the frequent trade−off,
that LMESD delivers superior performance to LMOPG at the cost of compu-
tational inconvenience, does not apply in testing for normality in the probit
model, as noted by Wilde, who also stresses the importance of testing the
normality assumption. In fact the same conclusion might be taken to hold
more generally since there will be an artificial regression giving LMESD as
an explained sum of squares whenever the likelihood function is based on
probabilities rather than densities. The required argument, presented in sec-
tion 2, mirrors that of Murphy (1994, 1996), although our presentation does
not use the information matrix equality connecting expected first and second
derivatives of the log−likelihood. That equality is the basis of the information
matrix test, the calculation of which is discussed in section 3. The argument
in section 3 is more straightforward, and more general, than that in Orme
(1998).
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2 Different score tests

Let yij indicate which of J+1 alternatives, j = 0, . . . , J , applies to individual
i, i = 1, . . . , n, so that for each i one and only one of the yij equals one,
with the remainder equalling zero. Assuming independence across i the log
likelihood is given by ℓ(θ) =

∑

i

∑

jyij ln(pij(θ)), where pij(θ) is Pr(yij = 1).
Differentiation gives

∂ℓ

∂θ
=

∑

i

∑

j

yij
pij

∂pij
∂θ

, (1)

and

∂2ℓ

∂θ∂θ′
=

∑

i

∑

j

[

yij
pij

∂2pij
∂θ∂θ′

− yij
p2ij

∂pij
∂θ

[

∂pij
∂θ

]

′
]

. (2)

Then, as E(yij) = pij, we have

E

[

∂2ℓ

∂θ∂θ′

]

=
∑

i

∑

j

[

∂2pij
∂θ∂θ′

− 1

pij

∂pij
∂θ

[

∂pij
∂θ

]

′
]

.

But
∑

jpij = 1 holds for all i so that

∑

j

∂2pij
∂θ∂θ′

= 0,

implying

E

[

∂2ℓ

∂θ∂θ′

]

= −
∑

i

∑

j

1

pij

∂pij
∂θ

[

∂pij
∂θ

]

′

= −
∑

i

∑

jV ijV
′

ij (3)

given the definition

V ij =
1

√
pij

∂pij
∂θ

.

We also have

∂ℓ

∂θ
=

∑

i

∑

jV ijvij (4)

with

vij =
yij√
pij

(5)
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or

vij =
yij − pij√

pij
. (6)

The second definition of vij will be appropriate in view of
∑

j∂pij/∂θ = 0
holding for all i. It follows from (3) and (4) that the score test based on
expected second derivatives,

LMESD =

(

∂ℓ

∂θ

∣

∣

∣

∣

R

)

′
[

−E

[

∂2ℓ

∂θ∂θ′

]
∣

∣

∣

∣

R

]

−1 (

∂ℓ

∂θ

∣

∣

∣

∣

R

)

,

can be presented as

LMESD =
(

∑

i

∑

jV ijvij

∣

∣

∣

R

)

′
[

∑

i

∑

jV ijV
′

ij

∣

∣

∣

R

]

−1 (
∑

i

∑

jV ijvij

∣

∣

∣

R

)

, (7)

where |R indicates evaluation at the restricted estimated θ. LMESD is the
uncentred explained sum of squares from the regression of vij|R on V ij|R.
This regression involves ‘observations’ across i and across j and, with vij as
in (6) rather than (5), is called the ‘discrete choice artificial regression’ by
Davidson and MacKinnon (2004, page 472). The alternative statistic

LMOPG =
(
∑

iP i|R
)

′
[
∑

iP iP
′

i|R
]

−1 (∑

iP i|R
)

, (8)

where

P i =
1

pij∗

∂pij∗

∂θ

if j∗ denotes the j which applies to i, requires ‘observations’ across i only.
It can be obtained as the uncentred explained sum of squares from the re-
gression of one on P i. The accumulated evidence suggests the computational
advantage of (8) over (7), to the extent that it exists, is obtained at the
cost of finite sample behaviour under the null. The choice of (5) or (6) for
vij will matter if asymptotically equivalent alternatives to (7), based on the
uncentered R2 from the regression of vij|R on V ij|R, are explored.

2.1 Binary choice (logit and probit)

When J = 1, as in the logit and probit models, it is natural to adopt a slightly
different notation, letting pi = pi(θ) be Pr(yi = 1), with Pr(yi = 0) = 1− pi
therefore. The calculation of (7) then requires

V i0 =
−1√
1− pi

∂pi
∂θ

, V i1 =
1√
pi

∂pi
∂θ

, vi0 =
1− yi√
1− pi

, and vi1 =
yi√
pi
. (9)

3



But it is natural to obtain
∑

j

V ijV
′

ij =
1

pi(1− pi)

∂pi
∂θ

[

∂pi
∂θ

]

′

= V iV
′

i (10)

and
∑

j

V ijvij =
yi − pi

pi(1− pi)

∂pi
∂θ

= V ivi,

where

V i =
1

√

pi(1− pi)

∂pi
∂θ

, and vi =
yi − pi

√

pi(1− pi)
, (11)

to obtain

LMESD =
(
∑

iV ivi|R
)

′
[
∑

iV iV
′

i|R
]

−1 (∑

iV ivi|R
)

.

Now the required quantity is the uncentred explained sum of squares from the
regression of vi|R on V i|R. This is the regression termed the ‘binary response
model regression’ by Davidson and MacKinnon (2004, page 461), who note
the application to testing for the significance of variables and to testing for
heteroscedasticity. The BJL normality test, as considered by Wilde (2008),
is based on

pi = 1− F (−X ′

iβ : c1, c2)

where F (a : c1, c2) is the cdf of the Pearson family of distributions and c1 and
c2 are parameters of the family with H0 : c1 = c2 = 0 leading to the standard
normal distribution and the probit model via F (a) =H0

Φ(a). The V i and vi
of (11), where θ =

(

β′ c1 c2
)

′

, and therefore the artificial regression giving
LMESD, as in Wilde, follow straightforwardly from

∂F (a)

∂a
=H0

ϕ(a),

∂F (a)

∂c1
=H0

ϕ(a)(a2 − 1)

3
,

and

∂F (a)

∂c2
=H0

−aϕ(a)(a2 + 3)

4
.

Nothing further is required when the ordered probit is considered, as in Weiss
(1997), Glewwe (1997), and Johnson (1996). None of these papers make the
existence of an artificial regression leading to LMESD explicit although only
Glewwe might be described as suggesting a requirement for difficult compu-
tations.
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2.2 Other applications

The normality test presented by Lahiri and Song (1999) is an LMOPG statis-
tic. But they present sufficient detail to make obtaining LMESD straight-
forward. The model has J = 3 with the yij corresponding to their I1I2I3,
I1I2(1−I3), I1(1−I2), and 1−I1. Then, for example, their ∂ lnL/∂βj means
we can immediately write, in their notation,

∂pi0
∂βs

=H0
ϕ1(zs)Φ2(z

s
s′ , z

s
s′′ ; ρs′s′′.s)Xs

∂pi1
∂βs

=H0
(H12

s ϕ1(zs)Φ1(z
s
s′)− ϕ1(zs)Φ2(z

s
s′ , z

s
s′′ ; ρs′s′′.s))Xs

∂pi2
∂βs

=H0
(H1

sϕ1(zs)−H12

s ϕ1(zs)Φ1(z
s
s′))Xs

∂pi3
∂βs

=H0
−H1

sϕ1(zs)Xs,

for s = 1, 2, 3, with the other derivatives being equally straightforward.
Murphy (2007) notes that his proposed LMESD statistic can be obtained via
an artificial regression, and the displayed equation following his Table 2 is
enough to enable the various ∂pij/∂θ to be identified. However the T1, T2,
and T3 of his Table 1 uses ϕ for three different purposes and would be better
presented as

T1 = s1ϕ(x
′

1
β1)Φ

[

s2(x
′

2
β2 − ρx′

1
β1)

√

1− ρ2

]

, T2 = s2ϕ(x
′

2
β2)Φ

[

s1(x
′

1
β1 − ρx′

2
β2)

√

1− ρ2

]

,

and T3 = s1s2ϕ2(x
′

1
β1,x

′

2
β2, ρ)

where ϕ and Φ have their usual meaning and ϕ2 is the density for a bivariate
standard normal with correlation ρ.

3 The information matrix test (TIM)

From (1) and (2) we have

∑

i

[

∂ℓi
∂θ

[

∂ℓi
∂θ

]

′

+
∂2ℓ

∂θ∂θ′

]

=
∑

i

∑

j

yij
pij

∂2pij
∂θ∂θ′

implying that the IM test is based on
∑

i di where

di =
∑

j

yij
pij

W ij

5



with

W ij = vech

[

∂2pij
∂θ∂θ′

]

,

as noted in Weiss (1997) for the ordered logit and probit models. We have

TIM =
1

n
(
∑

idi|U)′ (Λ|U)−1 (
∑

idi|U) ,

where |U indicates evaluation at the unrestricted estimated θ, Λ = A −
BC−1B′,

A = E

[

1

n

∑

idid
′

i

]

, B = E

[

1

n

∑

idi

[

∂ℓi
∂θ

]

′
]

, and C = E

[

1

n

∑

i

∂ℓi
∂θ

[

∂ℓi
∂θ

]

′
]

.

(12)

Different estimates of Λ lead to different versions of TIM. The OPG version,
TIMOPG, is the uncentred explained sum of squares from the regression of
one on P i|U and Qi|U , where

Qi =
1

pij∗
W ij∗

and P i and j∗ are as previously defined. TIMOPG does not require evaluation
of the expectations in (12). When the expectations, and therefore Λ, are
obtained we have what Orme (1990) calls the ‘efficient form’ of TIM, TIMEF.
Orme suggests TIMEF is likely to have superior performance compared to
other versions of TIM. To obtain it requires

E(did
′

i) =
∑

j

1

pij
W ijW

′

ij =
∑

jZijZ
′

ij, (13)

where

Zij =
1

√
pij

W ij,

E

[

di

[

∂ℓi
∂θ

]

′
]

=
∑

j

1

pij
W ij

[

∂pij
∂θ

]

′

=
∑

jZijV
′

ij, (14)

and

E

[

∂ℓi
∂θ

[

∂ℓi
∂θ

]

′
]

=
∑

j

1

pij

∂pij
∂θ

[

∂pij
∂θ

]

′

=
∑

jV ijV
′

ij, (15)

in accordance with (3). It follows from (13), (14), (15), di =
∑

j Zijvij, and
∑

i

∑

j V ijvij|U = 0, given (4), that TIMEF can be obtained as the uncentred
explained sum of squares from the artificial regression of vij|U on V ij|U and
Zij|U with ‘observations’ across i and j.
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3.1 Binary choice (logit and probit)

In the framework of section 2.1 the calculation of TIMEF outlined above
requires adding

Zi0 =
−1√
1− pi

vech

[

∂2pi
∂θ∂θ′

]

, and Zi1 =
1√
pi
vech

[

∂2pi
∂θ∂θ′

]

to (9) but it is natural to add

∑

j

ZijZ
′

ij =
1

pi(1− pi)
vech

[

∂2pi
∂θ∂θ′

]

vech

[[

∂2pi
∂θ∂θ′

]]

′

= ZiZ
′

i,

where

Zi =
1

√

pi(1− pi)
vech

[

∂2pi
∂θ∂θ′

]

,

and

∑

j

ZijV
′

ij = ZiV
′

i, and
∑

j

Zijvij =
yi − pi

pi(1− pi)
vech

[

∂2pi
∂θ∂θ′

]

= Zivi

to (10). We discover that TIMEF can be obtained as the uncentered explained
sum of squares from the regression of vi|U on V i|U and Zi|U . This is the
regression identified by Orme (1988) as required in the logit and probit cases.

4 Conclusions

The computational convenience recently discovered by Wilde (2008) follows
from existing results regarding the calculation of Lagrange multiplier tests
in models where the likelihood function is based on probabilities rather than
densities, as in Murphy (1994, 1996), Holden (1993), and elsewhere. Given
this, section 2 might be viewed as a reminder, and illustration, of important
results in the literature which merit wider dissemination. Section 3 considers
the calculation of ‘the efficient form’ of the information matrix test via an
artificial regression, and is both more general and more straightforward than
the existing discussion of this topic.
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