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Abstract 

The constrained shortest distance (CSD) query is used to determine the shortest distance between two 
vertices of a graph while ensuring that the total cost remains lower than a given threshold. The virtually 
unlimited storage and processing capabilities of cloud computing have enabled the graph owners to 
outsource their graph data to cloud servers. However, it may introduce privacy challenges that are 
difficult to address. In recent years, some relevant schemes that support the shortest distance query on 
the encrypted graph have been proposed. Unfortunately, some of them have unacceptable query 
accuracy, and some of them leak sensitive information that jeopardizes the graph privacy. In this work, 
we propose Privacy-preserving Graph encryption for Accurate constrained Shortest distance queries, 
called PGAS. This solution is capable of providing accurate CSD queries and ensures the privacy of the 
graph data. Besides, we also propose a secure integer comparison protocol and a secure minimum value 
protocol that realize two kinds of operations on encrypted integers. We provide theoretical security 
analysis to prove that PGAS achieves CQA-2 Security with less privacy leakage. In addition, the 
performance analysis and experimental evaluation based on real-world dataset show that PGAS 
achieves 100% accuracy with acceptable efficiency. 

Keywords: Cloud computing, Constrained shortest distance query, Graph encryption, Outsourced 
computing 

 

1. Introduction 

Graphs and graph data have been used in many fields of sciences and engineering for a long time. With 
the advancements in information technology, it has not only found its use in computer sciences but has 
enabled digitization of graph data for other domains. These domains include large scale Internet 
topologies, online social networks, biometric networks, communication systems, road networks, and so 
on. Similarly, with its widespread usage, a handful of tools have also been proposed in order to analyze 
and process massive graphs (e.g., GraphLab [23], TurboGraph++ [16] and GraphBase). 

The shortest distance query has been considered as one of the most fundamental operations of graphs 
and has a wide range of applications. In online social networks, assume that Alice wants to meet a 
stranger Bob, the shortest distance query can return the minimum number of intermediate nodes 
between Alice and Bob. Compared to the shortest distance 
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query, constrained shortest distance (CSD) query is a specialized kind that considers both the shortest distance as well as 

cost conditions. For example, in road networks, CSD queries can be used if a user intends to find the shortest distance from 

the source s to the destination t while maintaining the total time cost below the threshold θ . 

The graph owners can benefit from cloud storage systems by outsourcing the massive graph data to third-party servers. 

This will reduce the maintenance and management costs for such organizations. However, this increases the risk of potential 

leakage of data, which may compromise the user’s privacy. To tackle this privacy challenge, graph owners can encrypt their 

graph data before outsourcing it to the cloud server, however, simply encrypting the graph data results in loss of querying 

abilities of graphs. Taking the CSD query as an example, some methods have been proposed to solve the approximate or 

exact (accurate) CSD query problems on plain graphs [11,32,33,35] . Unfortunately, these schemes cannot be directly used on 

encrypted graphs. 

In order to alleviate the privacy concerns, some methods have been presented in the literature to protect access privacy 

[38,44] , query privacy [39] , identity privacy [13] , data privacy [42,43] , and location privacy [14] in cloud computing environ- 

ments. Chase et al. [5] first proposed the concept of graph encryption to protect graph data privacy and query privacy. Using 

such encryption methods, graph owners can outsource the encrypted graph data to a semi-honest cloud server without los- 

ing the querying abilities. A series of graph encryption schemes that support the shortest distance query have also been 

proposed in [24,30] . These schemes make use of cryptographic primitives (e.g., Homomorphic Encryption, Pseudo-Random 

Function, and Order Revealing Encryption) to encrypt the graph itself or the corresponding pre-generated index. Unfortu- 

nately, some of the existing schemes do not support constraint filtering during the shortest distance query processes, which 

means that they do not support the CSD query. Moreover, some of them only return an approximate query result, and some 

of them even have unacceptable leakage that jeopardizes the graph privacy. 

In light of these shortcomings in existing schemes, we propose a privacy-preserving graph encryption scheme that 

supports accurate constrained shortest distance (ACSD) queries. Our scheme makes use of the Paillier Cryptosystem with 

Threshold Decryption to encrypt the distance and cost values in a graph’s Two-Hop Cover Label. Our scheme also separates 

the storage and computation of outsourced data which achieves advanced privacy protection. We also propose a privacy- 

preserving security integer comparison protocol and a secure minimum value protocol. Hence, the scheme can return ACSD 

query results with acceptable leakage. 

To the best of our knowledge, this is the first graph encryption scheme that supports ACSD queries (i.e., it returns accu- 

rate CSD query results) with privacy protection. 

Following are the major contributions of this work: 

• We propose the complete system architecture of the graph encryption scheme that supports ACSD queries. Our architec- 

ture separates the storage and computation of outsourced data, which realizes advanced privacy protection. 

• We present PGAS, the first graph encryption scheme that supports ACSD queries on encrypted graph data. PGAS uses the 

Constraint Filtering algorithm to filter the cost values. Besides, PGAS can return accurate query results to the user. 

• We propose two novel protocols: The Secure Integer Comparison ( SIC ) protocol compares two encrypted integers, and 

the Secure Minimum value ( SMin ) protocol finds the minimum value of some encrypted integers. Both protocols directly 

operate the ciphertexts, so they do not reveal any information about plaintexts. In addition, these protocols can be used 

not only in our proposed scheme but also in other relevant application scenarios. 

• We also present a strict security analysis of PGAS to prove that it can achieve CQA2-Security . We also make a through- 

out the theoretical analysis and comprehensive experimental evaluation based on real-world datasets to show that our 

proposed scheme has acceptable efficiency and achieves 100% accuracy. 

The rest of this paper is organized as follows. In Section 2 , we describe related works. In Section 3 , we make a brief 

introduction of the Two-Hop Cover Label and the Paillier Cryptosystem with Threshold Decryption and define the graph en- 

cryption scheme that supports ACSD queries. The formalized scenario and security model are defined in Section 4 . Detailed 

descriptions of PGAS are presented in Section 5 , and in Section 6 we present two kinds of secure outsourced integer com- 

putation protocols SIC and SMin . Security analysis is given in Section 7 . Performance analysis and experimental evaluation 

are presented in Section 8 . Finally, Section 9 concludes this paper. 

2. Related works 

2.1. Constrained shortest distance query 

CSD query is a special kind of shortest distance query on graphs. It has received much attention to its cost condition 

capabilities. Hansen [11] proposed a scheme to find the exact constrained shortest path based on enhanced Dijkstra’s algo- 

rithm. Tsaggouris et al. [33] provided an optimized method to find the approximate constrained shortest path with improved 

efficiency. Both of these schemes are not practical for processing large graphs due to the high computation costs. In order 

to improve the efficiency, some schemes use a pre-generated index to speed up the query process. Storandt [32] proposed 

a method to find the exact constrained shortest path with an index, but it still requires significant query processing. 

In recent years, a series of efficient schemes have been proposed to solve constrained shortest path problems. Wang et al. 

[35] presented a practical solution for index-based approximate constrained shortest path querying for large road networks. 

Bode et al. [2] provided a labeling algorithm to solve the shortest path problem under resource constraints with (k,2)-loop 
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elimination. Yang et al. [40] proposed an approximate heuristic algorithm to find the shortest path over large-scale graphs, 

and experiments on real-world datasets show that the proposed algorithm outperforms the existing methods. 

However, all of the above schemes are based on unencrypted graphs. Hence, if users want to outsource their unencrypted 

graph data to the cloud, sensitive information may be compromised. More specifically, the topology structure, the identity 

of all graph vertices, the distance and cost values between any two vertices, will be revealed to adversaries, which results 

in the risk of graph privacy leakage. 

2.2. Graph privacy protection 

In recent years, some privacy-preserving methods have been presented in the literature to alleviate privacy concerns. 

Song et al. [31] first proposed Searchable Encryption which is widely used in Internet of Things [45] , cloud computing 

[18,25,41] and data sharing scenarios [19,22] . The Searchable Encryption enables searching on encrypted data stored in 

untrusted servers. 

Graph encryption is a generalization of Searchable Encryption. Chase et al. [5] first introduced a simple graph encryption 

scheme which supports adjacency and neighboring queries. Cao et al. [4] utilized the principle of “filtering-and-verification”

and developed privacy-preserving queries over encrypted graph data. 

Mouratidis et al. [26] used Private Information Retrieval to obtain the shortest paths without information leakage. Differ- 

ential Privacy is also utilized to protect graph data [28] . However, in our scenario, the graph data is outsourced to the cloud, 

and the graph itself contains sensitive information. Hence, the above scheme is not applicable. 

Oblivious RAM and Secure Multi-Party Computation are also utilized to tackle the privacy-preserving shortest path prob- 

lems in [15,37] . However, these methods are not suitable for large-scale graphs. 

Wang et al. [36] presented GraphProtector, a visual interface that helps users protect their identity privacy. GraphProtec- 

tor supports hybrid privacy protection where different privacy-preserving schemes can be activated simultaneously. Sharma 

et al. [29] designed two data masking schemes, and utilized Additive Homomorphic Encryption (AHE) and Somewhat Homo- 

morphic Encryption (SWHE) to realize privacy-preserving Lanczos algorithms and Nystrom algorithms. Experimental results 

show that SWHE-based approaches are computational efficient, while AHE-based approaches are communicational efficient. 

Unfortunately, both of the two schemes mentioned above do not support CSD queries. 

Meng et al. [24] proposed three graph encryption schemes that support approximate shortest distance queries. In their 

proposed scheme GraphEnc 3 , the authors make use of SWHE to encrypt a graph-based structure called Distance Oracle. 

GraphEnc 3 is semantically secure against a semi-honest cloud server, and it achieves O(1) communication cost between the 

user and the cloud server. However, it does not support the CSD query, and the query result is an approximate shortest 

distance. 

Shen et al. [30] proposed a graph encryption scheme Connor which enables CSD queries. This scheme uses SWHE to 

encrypt the distances and uses Order-Revealing Encryption (ORE) [17] to encrypt the costs. The authors prove that there 

proposed scheme achieves CQA-2 Security . However, this scheme leaks the order information about costs, and the query 

result is also an approximate shortest distance. Hence, the provided privacy protection is deficient, and the query accuracy 

is unacceptable in practical scenarios. 

To the best of our knowledge, none of the schemes discussed above support both ACSD queries and advanced privacy 

protection. This forms the basic motivation of our work. 

2.3. Secure outsourced computation 

With the proliferation of cloud services, more and more users try to outsource their data to third-party cloud servers. 

However, the privacy of outsourced data needs to be protected. 

Homomorphic Encryption (HE) has mostly been utilized to solve this problem. Some cryptosystems only support one 

kind of homomorphic operation, such as additive homomorphic cryptosystem (e.g., Paillier) and multiplicative homomor- 

phic cryptosystem (e.g., RSA). Some cryptosystems allow limited homomorphic operations, known as SWHE. For instance, 

the BGN cryptosystem proposed by Boneh et al. [3] is a typical example that can support a limited number of additive 

homomorphic operations and only one multiplicative homomorphic operation. 

Gentry [8] used ideal lattices to construct the first Fully Homomorphic Encryption (FHE) scheme, followed by a series of 

FHE schemes [9,34] . Unfortunately, it is not practical to use FHE schemes to solve real-world problems because of their high 

complexity. 

Liu et al. [21] proposed a toolkit for efficient and privacy-preserving outsourced calculation under multiple encrypted 

keys by utilizing a distributed two-trapdoor public-key cryptosystem. Liu et al. [20] proposed POCR, which can perform 

several kinds of calculations on rational numbers without compromising the privacy of outsourced data. These schemes use 

the Paillier-based cryptosystem which can be perceived as an additive homomorphic encryption cryptosystem. 

From the analysis presented, we conclude that none of these schemes can be directly used to solve the ACSD query 

problem on encrypted graphs. 
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Fig. 1. An example of 2HCL. 

3. Preliminaries 

In this section, we present the basic information related to Two-Hop Cover Label, graph encryption schemes which sup- 

port ACSD queries, and paillier cryptosystem with threshold decryption. 

3.1. Two-Hop cover label 

Two-Hop Cover Label (2HCL) [1] is a kind of label L which can be pre-generated as an index to accelerate the process 

of finding shortest distance in a graph G = (V, E) . Note that we refer G as a directed graph in this paper unless otherwise 

specified. 

For each vertex v ∈ V , L (v ) = { L out (v ) , L in (v ) } represents a subset of label L associated with v . Each entry ( u, d uv ) ∈ L in ( v ) 

corresponds to the shortest distance d uv from u to v , and ( w, d vw ) ∈ L out ( v ) corresponds to the shortest distance d vw from v 

to w . When querying the shortest distance from s to t , the following equation can be used to calculate the shortest distance 

from s to t : 

Query (s, t, L ) = min { d s v + d v t } (1) 

where ( v, d sv ) ∈ L out ( s ), ( v, d vt ) ∈ L in ( t ). If L out ( s ) and L in ( t ) do not share the same vertex, we define Query (s, t, L ) = ∞ . 2HCL 

can be formally defined as: 

Definition 1 (Two-Hop Cover Label) . Let L be a label of a directed graph G , and d ( s, t ) represents the shortest distance 

between s and t . If for any s, t ∈ V , d(s, t) = Query (s, t, L ) holds, it can be concluded that L is a Two-Hop Cover Label of G . 

Fig. 1 gives an example of a 2HCL L , where L out (s ) = { (s, 0) , (a, 1) , (b, 3) } and L in (t) = { (a, 2) , (b, 2) , (t, 0) } . It can be 

observed that a and b are vertices that appear both in L out ( s ) and L in ( t ). According to Eq. (1) , we can calculate Query (s, t, L ) = 

min { 1 + 2 , 3 + 2 } = 3 . Because L is a 2HCL, d(s, t) = Query (s, t, L ) = 3 , the shortest distance between s and t is 3. 

Note that the term label is used to represent 2HCL in the following sections. 

3.2. Graph encryption supporting ACSD queries 

ACSD query is a special kind of CSD query which returns an accurate shortest distance instead of an approximate value. 

First we introduce the concept of CSD query. Let G = (V, E) be a graph, where each edge e ∈ E has a distance d e and the cost 

c e which satisfy d e ≥ 0 and c e ≥ 0. Assume that a path P = { e 1 , ���, e n }, with the total distance and cost of this path to be 

d P = 
∑ n 

i =1 d e 1 and c P = 
∑ n 

i =1 c e 1 , respectively. 

As shown in [12] , the CSD query problem is NP-hard, hence, literature aims at solving an approximate CSD query which 

can be defined as α-CSD Query . Given two vertices s, t ∈ V as the source and distance, and a cost threshold θ , assume that 

the exact shortest distance is d st , an α-CSD query is used to find the approximate shortest distance d P between s and t 

which satisfies d st ≤ d P ≤α · d st , while the total cost of the corresponding path must not exceed the threshold θ . In fact, if 

we set α = 1 , then the α-CSD query can be ACSD query. Hence, we formalize the definition of ACSD queries as follows. 

Definition 2 (ACSD Query) . Given a source s , a destination t , and a cost threshold θ , an ACSD query returns the distance d P 
and the cost c P which satisfy d P = d st and c P = c st , where d st represents the shortest distance, for which the total cost c st 

does not exceed θ . 

Fig. 2 shows an example of ACSD query over a 2HCL, for which the entries include both distance and cost values. There 

are two entries associated with b in L out ( s ) due to the influence of costs. Assuming that we set the cost threshold θ = 5 , we 

can find that only two paths P 1 = (e 2 , e 5 ) and P 2 = (e 3 , e 7 ) , for which the total cost does not exceed θ . The shorter distance 

among paths P 1 and P 2 is that of 5 (given by P 2 ), hence the constrained shortest distance between s and t is 5. 

Note that in this work, the key research focus is not on generating of 2HCL that supports ACSD queries. Hence, we 

assume that the 2HCL method in [35] can support ACSD queries on plain graphs. The assumption is valid because if we set 

α = 1 , the CSD query result will be an ACSD result. 

Below we provide the formal definition of graph encryption scheme supporting ACSD queries. The reason to use the term 

graph encryption scheme is for simplicity. 
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Fig. 2. An example of ACSD query over a 2HCL. 

Definition 3 (Graph Encryption) . A graph encryption scheme � = (KeyGen, GraphEnc, TokenGen, DistQuery ) consists of four 

polynomial-time algorithms that work as given below: 

• ( K, pk, sk ) ← KeyGen ( λ) is a probabilistic algorithm that takes the security parameter λ as input, and it outputs a secret 

key K , and a key-pair ( pk, sk ). 

• EL ← GraphEnc ( G, K, pk ) is a probabilistic algorithm that takes a graph G = (V, E) , a secret key K and a public key pk as 

input, and it outputs an encrypted label EL . 

• T st ← TokenGen ( q, K, pk ) is a probabilistic algorithm that takes an ACSD query q = (s, t, θ ) , a secret key K and a public 

key pk as input, and it outputs a query token T st . 

• D st ← DistQuery ( EL, pk, T st ) is a deterministic algorithm that takes an encrypted label EL , a public key pk and a query 

token T st as input, and it outputs an encrypted shortest distance D st as the query result. The user can decrypt D st by 

using sk and get the plain shortest distance d st as the user’s ACSD query result. 

Note that if a graph encryption scheme does not support CSD queries (e.g., GRECS [24] ), it does not need the cost thresh- 

old θ in the TokenGen algorithm. If a graph encryption scheme which supports only approximate CSD queries (e.g., Connor 

[30] ), the output D st of DistQuery algorithm is only an encrypted approximate shortest distance. In section 8, we use both 

theoretical and experimental analysis to prove that our proposed scheme PGAS can achieve 100% accuracy compared with 

GRECS and Connor. 

3.3. Paillier cryptosystem with threshold decryption 

When encrypting and computing outsourced data under the naive Paillier-based cryptosystem, the cloud server must get 

access to the user’s private key to decrypt data, which means that the cloud server can collect all the plaintexts and the 

corresponding encrypted result. 

To avoid such security risks, some cryptosystems have been proposed to achieve ( t, n ) threshold decryption by splitting 

the private key into different parts. The Paillier-based Cryptosystem with Threshold Decryption (PCTD) is a typical kind of 

threshold decryption [20] , which includes following six algorithms: 

KeyPairGen( λ) : This probabilistic algorithm generates a key pair ( pk, sk ) which will be used to encrypt the outsourced 

integers. Let λ be the security parameter, first the algorithm finds four distinct prime numbers p, q, p ′ , q ′ which satisfy 

p = 2 p ′ + 1 , q = 2 q ′ + 1 and | p| = | q | = λ. p and q are two strong prime numbers [6] . Then it computes N = pq, α = lcm (p −
1 , q − 1) , and chooses a generator g of order (p − 1)(q − 1) / 2 . In order to generate such a g easily, it randomly chooses 

a ∈ Z ∗
N 2 

and compute g = −a 2 N [6] . The tuple ( N, α) can be represented as the key pair ( pk, sk ) of PCTD. 

Enc(m,pk) : This probabilistic algorithm uses pk (noted as N ) to encrypt an integer m and outputs an encrypted result c . 

Given an integer m ∈ Z N , the algorithm first randomly chooses r ∈ Z N and encrypts m by computing 

c = g m · r N mod N 2 = (1 + mN ) · r N mod N 2 . (2) 

Dec(c,sk) : This deterministic algorithm uses sk (noted as α) to decrypt the ciphertext c and obtain the decrypted integer m . 

The algorithm computes 

m = c α = r α(1 + mN α) mod N 2 = 1 + mNα. (3) 

Since gcd (α, N) = 1 , m can be decrypted by computing 

m = L (c α mod N 2 ) α−1 mod N 2 , (4) 

where L (x ) = x −1 
N . 

KeySplit(sk) : This probabilistic algorithm splits the private key sk and generates a partial private key set { sk 1 , ���, sk n }. The 

algorithm first randomly chooses δ which satisfies both δ ≡ 0 mod α, and δ ≡ 1 mod N 2 . Since gcd (α, N 2 ) = 1 , according to 

Chinese remainder theorem, δ = α · (α−1 mod N 2 ) mod αN 2 . Then it defines a polynomial q (x ) = δ + 
∑ k −1 

i =1 r i x i , where r 1 , ���, 

r k −1 are k − 1 numbers chosen randomly from Z ∗
αN 2 

. Let α1 , ���, αn ∈ Z ∗
αN 2 

be n distinct nonzero elements which are chosen 

randomly and known to all the parties who participate in the computation. Then it computes sk i = q (a i ) as the partial key. 

PDec(c,sk i ) : This deterministic algorithm uses the partial private key sk i to decrypt c and outputs the partially decrypted 

result c i which can be computed as 

c i = c sk i mod N 2 . (5) 



330 C. Zhang, L. Zhu and C. Xu et al. / Information Sciences 506 (2020) 325–345 

CSSUser CCSs

3. Query Token

6. Encrypted Result

2. Encrypted 2HCL

1. Key Distribu�on

TA

4. Outsourced Data Calcula�on

5. Encrypted Result

Fig. 3. System model. 

TDec(c 1 , ���, c d ) : This deterministic algorithm combines the partial decrypted results to get the complete decrypted result. 

When partially decrypted results { c 1 , ���, c d } are received (where k ≤ d ≤ n ), this algorithm randomly chooses k distinct 

numbers between 1 and d to generate a set S = { s 1 , · · · , s k } . Then it first computes 

T = 

k ∏ 

i =1 

(c s i ) 
�(s i , 0) mod N 2 , (6) 

where �(s i , x ) = 
∏ 

j ∈ S, j 
 = s i 
x −α j 

αs i −α j 
, and then it computes the decrypted result m by calculating m = L (T ) . 

Moreover, given any m ∈ Z n , it satisfies 

[ m ] N−1 = (1 + (N − 1) m · N) · r N−1 ·N mod N 2 = [ −m ] , (7) 

where [ m ] represents the encrypted result of m , so we can compute [ m ] N−1 to get [ −m ] . 

Suppose that m 1 , m 2 are two plaintexts and c 1 , c 2 are the corresponding ciphertexts which are encrypted by the same 

public key pk . If a cryptosystem is additive homomorphic, it satisfies the following equation: 

Ad d (c 1 , c 2 ) = Enc(m 1 + m 2 ) , (8) 

where Add represents the operation of homomorphic addition. Note that PCTD is additive homomorphic which is based on 

the additive homomorphism of Paillier cryptosystem. 

4. Problem formalization 

This section presents the system, threat, and security model, along with the design goals of the proposed scheme. 

4.1. System model 

This section presents the system model which formalizes the process of ACSD queries in our proposed scheme PGAS. As 

can be seen from Fig. 3 , the system comprises of four entities: Trust Authority (TA), User, Cloud Storage Server (CSS) and 

Cloud Computation Servers (CCSs). 

The TA is tasked with key generation and distribution. By using the KeyGen algorithm, it first generates the user ’s secret 

key K and keypair ( pk, sk ), and provides them to the user . Then it sends pk to the CSS . Finally, it generates a partial private 

key set P SK = { sk 1 , ���, sk n } and sends sk i to each CCS i . 

The user in this model is the owner of graph data. It first executes the GraphEnc algorithm to encrypt a graph G by 

using K and pk . Then it outsources the encrypted graph to the CSS . When it wants to obtain ACSD query results, it creates a 

token-based ACSD query request by executing the TokenGen algorithm. Following this, it sends the token to the CSS to query 

the accurate constrained shortest distance between any two vertices in encrypted graph data. When receiving the encrypted 

ACSD query result D st sent by the CSS , it decrypts D st and gets the query result d st . 

We assume that the CSS has enough storage capacity to store outsourced graph data owned by the user . When the CSS 

receives an ACSD query request created by the user , it executes the DistQuery algorithm. First, it parses the query token and 

finds corresponding indices. Then, it performs a series of protocols with CCSs to find the minimum distance under the cost 

threshold. At last, it receives an encrypted minimum distance D st from CCSs and forwards it to the user . 

The CCSs consists of several cloud computation servers and they can provide online computation services. In our sys- 

tem, the CCSs mainly performs two kinds of encrypted integer computation: comparing the relationship of two encrypted 

integers, and finding the minimum value of some encrypted integers. 
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4.2. Threat model 

In this work, the threat model assumes that the TA is trustworthy . This means the TA cannot leak any keys that have 

been generated, and the TA can resist any kind of attacks. We also assume that the TA uses secure channels to distribute 

these keys. Hence, the adversary cannot eavesdrop on distributed keys passively or modify them actively. 

We assume that both the CCSs and CSS are honest-but-curious . This means that they will strictly execute the algorithms 

and follow the protocols, however, they will try to get some sensitive information that they should not know (e.g., the 

topology structure, the vertex identity, distance and cost values between two vertices). 

We also assume that both the CCSs and the CSS are vulnerable , which means the adversary can compromise the CSS or 

part of CCSs in order to steal stored data and intermediate data when executing our algorithms and protocols. 

Note that in our threat model, collusion between the CSS and CCSs is not allowed, in other words, they cannot collaborate 

to get sensitive information of the user ’s outsourced graph data. Moreover, the adversaries cannot compromise both the CSS 

and the CCSs at the same time. These limitations of collusion and the adversary’s ability are reasonable because in real 

life, cloud storage service and computation service are provided by two different providers and they cannot collude in 

order to get the user ’s sensitive information. The adversary cannot control both cloud storage service providers and cloud 

computation service providers to perform effective attacks in real life either. 

4.3. Security definition 

Graph encryption can be considered as a special kind of Structured Encryption (SE), which generalizes previous work 

on Symmetric Searchable Encryption (SSE). In that case, the security definitions of SE and SSE are also suitable for graph 

encryption. We modify the security definition proposed in [5] and [7] , which is called CQA2-Security (chosen-query attack 

security) and formalize it for our proposed graph encryption scheme PGAS. 

Definition 4 (CQA2-Security) . Let scheme � = (KeyGen, GraphEnc, TokenGen, DistQuery ) be a graph encryption scheme, and 

L = (L Enc , L Query ) be the (stateful) leakage function in this scheme. Given a security parameter λ, a challenger C, an (semi- 

honest) adversary A , and a simulator S, we can conduct the following two probabilistic experiments: 

(1). Real C, A (λ) : 

• A chooses a graph G and forwards it to C. 

• C first runs KeyGen ( λ) to generate a secret key K and a keypair ( pk, sk ). Then it runs GraphEnc ( K, pk, G ) to generate 

encrypted label EL and returns it to A . 

• A adaptively generates a polynomial number of ACSD queries Q = { (s 1 , t 1 , θ1 ), ���, ( s n , t n , θn )} and sends Q to C. 

• For each ACSD query q i = (s i , t i , θi ) ∈ Q, C runs TokenGen ( q i , K, pk ) to generate the corresponding query token T i . 

Then C sends T = { T 1 , ���, T n } to A . 

• A outputs a bit b ∈ {0, 1} as the final output of this experiment. 

(2). Ideal C, A , S (λ) : 

• A chooses a graph G and forwards it to C. 

• C forwards the output of leakage function L Enc (G ) to S . After that, S simulates an encrypted label EL ∗ and forwards 

it to A . 

• A adaptively generates a polynomial number of ACSD queries Q = { (s 1 , t 1 , θ1 ), ���, ( s n , t n , θn )} and sends Q to C. 

• For each ACSD query q i = (s i , t i , θi ) ∈ Q, C sends the output of leakage function L Query (q ) to S, where q represents 

a series of queries that have been sent, S simulates the corresponding query token T ∗
i . Then C sends T ∗ = { T ∗

1 , ���, 

T ∗n } to A . 

• A outputs a bit b ∈ {0, 1} as the final output of this experiment. 

If for all Probabilistic Polynomial Time (PPT) adversaries A , there exists a PPT simulator S and a negligible function 

negl ( λ), which satisfies the in-equation 

| Pr [ Real C, A (λ) = 1] − Pr [ Ideal C, A , S (λ) = 1] | ≤ negl(λ) , (9) 

then, in such a case, it is established that � is (L Enc , L Query ) -secure against the CQA2 attack, i.e., this scheme can resist 

adaptive chosen-query attacks. 

4.4. Design goals 

Based on the earlier discussed models, here we define the following design goals of our graph encryption scheme PGAS. 

4.4.1. Privacy protection 

The system should protect both graph privacy and query privacy. In other words, the CSS and the CCSs should not be able 

to determine any kind of sensitive information (e.g., topology structure, vertex identity, distance and cost values between 

two vertices) of original graph by analyzing encrypted outsourced data, the user ’s historical queries, or the intermediate data 

during the querying processes. 
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Table 1 
List of notations. 

Notation Description 

G = (V, E) Input graph, with a collection of V ertex and E dges 
| V |, | E | Cardinality of vertices and edges in graph G 
n The number of CCSs 
λ Security parameter 
K Secret key 
( pk, sk ) Public key and private key 
sk i CCS i ’s partial private key 
L, EL Plain and encrypted graph label 
L in ( u ), L out ( u ) Plain in- and out-label set associated with vertex u 
g, h Secure hash function 
I in,u , K in,u Master encryption keys of in-label associated with set L in ( u ) 
I out,u , K out,u Master encryption keys of out-label associated with set L out ( u ) 
H v Vertex v ’s hash value 
EL out [ I out, uv ] EL out ’s encrypted label element under the index I out, uv 
T st Query token of q = (s, t, θ ) , where s, t ∈ V 
d st , c st Plain distance and cost value from s to t 
D st , C st Encrypted distance and cost value from s to t 
θ , � Plain and encrypted cost threshold of ACSD queries 
k Output length of PCTD’s ciphertexts 

4.4.2. Acceptable efficiency 

The system should be efficient during both encryption and query processes. This means: 

• The encryption time and storage space should be acceptable. 

• The user should receive the query result sent by the CSS in time. 

• The communication cost (i.e., the number of bits exchanged by the user and the CSS ) should be as minimal as possible. 

If the efficiency is unacceptable, communication and storage resources will be wasted, and it will become a significant 

bottleneck of this scheme especially in the case of multiple and concurrent ACSD queries. 

4.4.3. High accuracy 

The system should return the ACSD query result instead of an approximate result to the user . Hence, the system should 

achieve 100% accuracy for each ACSD queries. 

5. PGAS scheme 

In this section, we present the pseudo-code and process description of all algorithms used in the Privacy-Preserving 

Graph Encryption for Accurate Constrained Shortest Distance Query scheme. 

5.1. Notations 

The notations used in this work are shown in Table 1 . The algorithms and protocols also use the same symbols, unless 

otherwise explicitly mentioned. 

In order to achieve advanced privacy protection, we use two hash functions g and h which are modeled as random 

oracles, as is illustrated in Eq. (10) : 

h : { 0 , 1 } λ × { 0 , 1 } ∗ → { 0 , 1 } λ
g : { 0 , 1 } λ × { 0 , 1 } ∗ → { 0 , 1 } λ+2 k (10) 

where λ is the security parameter and k is the output length of PCTD’s ciphertexts. 

5.2. Construction of PGAS 

We construct our graph encryption scheme P GAS = (KeyGen, GraphEnc, TokenGen, DistQuery ) in order to achieve advanced 

privacy protection and 100% accuracy. 

The KeyGen shown in Algorithm 1 works as follows. Given a security parameter λ, the TA first randomly generates a 

λ-bit string as the user ’s secret key K . Then the TA generates a keypair ( pk, sk ) for the user and a partial private key set 

P SK = { sk 1 , ���, sk n } for n CCSs . It then sends ( K, pk, sk ) to the user , sends pk to the CSS and sends sk i to corresponding CCS i . 

The GraphEnc in Algorithm 2 works as follows. The user first generates a plain label L = { L out , L in } of graph G . Then for 

each vertex u ∈ V , it encrypts the plain label L ( u ) as given in lines 3–23, and finally gets an encrypted label EL = { EL out , EL in } 
which is the output of this algorithm. 
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Algorithm 1: KeyGen. 

Input : A security parameter λ. 

Output : A secret key K, a keypair (pk, sk ) , and a partial private key set P SK. 

1 begin 

2 generate K 
$ ← − { 0 , 1 } λ. 

3 generate (pk, sk ) = KeyPairGen (λ) . 

4 generate P SK = KeySplit (sk ) . 

5 return K, (pk, sk ) and P SK. 

6 end 

Algorithm 2: GraphEnc. 

Input : A graph G = (V, E) , a secret key K, and a public key pk . 

Output : An encrypted label EL . 

1 begin 

2 generate 2-Hop Cover Label L = { L in , L out } of graph G . 

3 foreach u ∈ V do 

4 calculate I out,u = h (K, u || 0) . 

5 calculate K out,u = h (K, u || 1) . 

6 set counter ctr = 0 . 

7 foreach (v , d u v , c u v ) ∈ L out (u ) do 

8 calculate H v = h (K, v ) . 
9 calculate I out,u v = h (I out,u , ctr) . 

10 calculate K out,u v = g(K out,u , ctr) . 

11 compute D u v = Enc (pk, d u v ) . 

12 compute C u v = Enc (pk, c u v ) . 

13 set 	u v = H v || D u v || C u v . 
14 set EL out [ I out,u v ] = K out,u v � 	u v . 

15 set ctr = ctr + 1 . 

16 end 

17 calculate I in,u = h (K, u || 2) . 

18 calculate K in,u = h (K, u || 3) . 

19 set counter ctr = 0 . 

20 foreach (v , d v u , c v u ) ∈ L in (u ) do 

21 repeat above procedure but replace subscript out with in . 

22 end 

23 end 

24 return EL = { EL in , EL out } . 
25 end 

Note that both the plain and encrypted label consist of its in-label and out-label. The process of out-label L out ’s encryp- 

tion is shown in lines 4–16. For each vertex u ∈ V , the user first calculates I out,u and K out,u which will be used to generate the 

keys for index obfuscation and re-encryption. Then for each entry ( v, d uv , c uv ) ∈ L out ( u ), the user calculates a hash value H v 

as the pseudo-identity of v to hide its real identity, and uses a counter ctr to generate I out, uv and K out, uv . It is obvious that 

I out, uv and K out, uv are unique because both tuples ( I out,u , ctr ) and ( K out,u , ctr ) are unique. 

After generating these keys, the user encrypts the distance d uv and cost c uv from u to v and gets the encrypted result D uv 

and C uv . Then it performs re-encryption of ( H v || D uv || C uv ) to generate the pseudo-identity, the encrypted distance, and the 

encrypted cost indistinguishable by executing an XOR operation with a unique key K out, uv . The encrypted result is stored in 

EL out with the obfuscated index I out.uv that makes the location of each entry’s storage indistinguishable, which is an added 

benefit. Because I out, uv is also unique, hence there is no conflict when constructing EL out . Based on index obfuscation and 

re-encryption, the CSS cannot infer the storage location or plaintext of each encrypted entry ( v, d uv , c uv ) in EL out without 

knowing the secret key K and the private key sk . 

Similar to the user process for L out , next it encrypts the in-label L in . First it calculates I in,u and K in,u which will be used 

on encrypting L in ( u ). The following procedure is similar to the process given in lines 7–16 but replaces subscript out with 

in . Finally, an encrypted label EL = { EL out , EL in } for graph G will be constructed, and the user can outsource it to the CSS 

without risking privacy leakage. 
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The TokenGen in Algorithm 3 assumes the following scenario: the user wants to get the ACSD query result between s and 

t under the cost threshold θ . First the user calculates s ’s master keys I out,s , K out,s of out-label and t ’s master keys I in,t , K in,t 
of in-label. Then it uses the public key pk to encrypt the cost threshold θ in order to obtain encrypted result �. Finally, it 

constructs a query token T st which consists of four master keys and the encrypted threshold. We use T st as the query token 

instead of using ( s, t, θ ) because T st can both reduce the CSS ’s computation costs and also obfuscate vertices’ identity and 

cost threshold, so that CSS cannot get the vertices’ identity of original graph G and cost threshold by analyzing the user ’s 

query token. 

Algorithm 3: TokenGen. 

Input : An ACSD query q = (s, t, θ ) , a secret key K and a public key pk . 

Output : A query token T st . 

1 begin 

2 calculate I out,s = h (K, s || 0) , K out,s = h (K, s || 1) . 

3 calculate I in,t = h (K, t|| 2) , K in,t = h (K, t|| 3) . 

4 compute � = Enc (pk, θ ) . 

5 set T st = (I out,s , K out,s , I in,t , K in,t , �) . 

6 return T st . 

7 end 

The DistQuery in Algorithm 4 works as follows. Upon receiving the user ’s query token T st , the CSS first parses T st as ( I out,s , 

K out,s , I in,t , K in,t , �) to get the master keys of both s ’s out-label and t ’s in-label, and encrypted cost threshold. Then the CSS 

uses the parsed token to search the entries of EL out associated with s and EL in associated with t as described in line 4–23. 

Algorithm 4: DistQuery. 

Input : An encrypted label EL , a public key pk , and a query token T st . 

Output : An encrypted ACSD query result D st . 

1 begin 

2 parse T st as (I out,s , K out,s , I in,t , K in,t , �) . 

3 init L s , L t , Dist . 

4 set counter ctr = 0 . 

5 calculate I out,su = h (I out,s , ctr) . 

6 while EL out [ I out,su ] 
 = ⊥ do 

7 calculate K out,su = h (K out,s , ctr) . 

8 set 	su = EL out [ I out,su ] � K out,su . 

9 parse 	su as H u || D su || C su . 

10 set L s [ H u ] = (D su , C su ) . 

11 set ctr = ctr + 1 . 

12 calculate I out,su = h (I out,s , ctr) . 

13 end 

14 set counter ctr = 0 . 

15 calculate I in, v t = h (I in,t , ctr) . 

16 while EL in [ I in, v t ] 
 = ⊥ do 

17 calculate K in, v t = h (K in,t , ctr) . 

18 set 	v t = EL in [ I in, v t ] � K in, v t . 

19 parse 	v t as H in, v t || D v t || C v t . 
20 set L t [ H v ] = (D v t , C v t ) . 

21 set ctr = ctr + 1 . 

22 calculate I in, v t = h (I in,t , ctr) . 

23 end 

24 compute Dist = CFA (L s , L t , �) . 

25 find min { Dist} by performing SMin protocol. 

26 set D st = min { Dist} . 
27 return D st . 

28 end 

Let us describe a concrete procedure of searching EL out (in line 4–13) as an example. The searching on EL in is the same 

as what the CSS does on EL out . First the CSS initializes a counter ctr and calculates I out,su by calculating h ( I out,s , ctr ). Then it 

searches the entries in EL out whose index is I out,su . If the search result is not null , the CSS calculates K out,su and executes an 
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XOR operation to restore the re-encrypted result. Once the result is restored, the CSS inserts the parsed entry ( D su , C su ) to L s 
with the pre-generated index H u . Note that when parsing these encrypted entries, the CSS only knows the pseudo-identity 

of each vertex (e.g., H u ) instead of its real identity. After inserting the parsed result of this entry, the CSS increases the 

counter, calculates the index of next entry and repeats the procedure above until the search result is empty, which means 

that there are no unparsed entry associated with u in the encrypted label EL out . 

When parsing of EL out and EL in is finished, the CSS will get the parsed result L s and L t . Then it executes Constraint Filter 

Algorithm (CFA) shown in Algorithm 5 to get the filtered distance set Dist . Finally, both the CSS and the CCSs execute the 

Secure Minimal Value ( SMin ) protocol to find the encrypted minimum distance value D st as the output. When receiving D st , 

the user uses the private key sk to decrypt D st and finally get the plain ACSD query result d st . 

Algorithm 5: Constraint filter algorithm (CFA). 

Input : Encrypted parsed label L s , L t , and an encrypted cost threshold �. 

Output : An encrypted distance set Dist . 

1 begin 

2 init tmp, Dist . 

3 foreach L s [ H i ] ∈ L s , L t [ H j ] ∈ L t do 

4 if H i == H j then 

5 compute C i = Add (C si + C jt ) . 

6 compute D i = Add (D si + D jt ) . 

7 set t mp = t mp ∪ { (C i , D i ) } . 
8 end 

9 end 

10 foreach (C i , D i ) ∈ tmp do 

11 compare C i and � by performing SIC protocol. 

12 if C i ≤ � then 

13 set Dist = Dist ∪ { D i } . 
14 end 

15 end 

16 return Dist . 

17 end 

In order to get the filtered results which satisfy the cost constraint, we propose an algorithm to filter the parsed label. 

The CFA in Algorithm 5 works as follows. First the CSS traverses each entry in parsed labels L s and L t . If there exists two 

indices H i in L s and H j in L t which satisfy H i == H j (i.e., two vertices are the same), the CSS computes D i = Ad d (D si , D jt ) and 

C i = Ad d (C si , C jt ) . Because we use additive homomorphic cryptosystem PCTD to encrypt distance and cost values, the CSS can 

execute the addition operation without CCSs ’ help. After homomorphic addition, the tuple ( C i , D i ) is joined to tmp . 

For each ( C i , D i ) ∈ tmp , both the CSS and CCSs execute the Secure Integer Comparison ( SIC ) protocol to compare the en- 

crypted cost C i and its threshold �. If C i is greater than �, which means that this result does not satisfy the cost constraint, 

the tuple ( D i , C i ) will be filtered. Otherwise, it will be joined to Dist . Finally, the algorithm outputs Dist as the filtered result 

set. 

6. Secure minimum value protocol for outsourced integers 

We propose a secure integer comparison protocol SIC to compare two encrypted integers and a secure minimum value 

protocol SMin to find the minimum value among some encrypted integers. In PGAS, these two protocols are used to filter 

the cost constraint and find the shortest distance, and they can also be used in other relevant application scenarios. We 

introduce these two protocols in this section. 

6.1. Background 

Assume that a set of encrypted integers is outsourced to a cloud server. For any subset S = { s 1 , ���, s m }, the user wants 

to query the minimum value s min . Then the server follows some process and returns the encrypted query result to the user. 

During such a process of finding the minimum value, the server cannot get the plaintexts of these integers. A simple and 

straightforward way to tackle this problem (which is usually the case in real scenarios) is to download the whole subset S . 

However, if S is a large set, the communication cost between the user and the server is not practical. 

Finding the minimum value has to make comparisons between integers, hence a secure integer comparison method 

should be used to compare two encrypted integers and reveals nothing except their relationship (i.e., greater-than, less- 

than or equality), which can be seen as acceptable disclosures. A naive method is to use Order-Preserving Encryption (OPE) 

or Order-Revealing Encryption (ORE) to encrypt these integers and outsource them to the server. By utilizing these kinds of 



336 C. Zhang, L. Zhu and C. Xu et al. / Information Sciences 506 (2020) 325–345 

encryption algorithms, the server can directly compare the encrypted results just as what it does on plaintexts. Nevertheless, 

both OPE and ORE leak the information about plaintexts which causes some security issues. Naveed et al. [27] described 

several inference attacks which can recover nearly all the plaintexts encrypted by deterministic OPE schemes. Grubbs et al. 

[10] introduced leakage-abuse attacks which can recover 99% of first names of customer records from OPE/ORE-encrypted 

databases. 

Hence, it is valuable to solve the problems of encrypted integer comparison and finding the minimum value from several 

encrypted integers without leaking any information about plaintexts. 

6.2. Main idea 

To find the minimum value of an encrypted integer set S , we use the naive algorithm as follows: First, the algorithm 

initializes a temporary variable tmp = s 1 . Then, for each s i ∈ S �{ s 1 }, it sets t mp = min { t mp, s i } . Finally, it sets the minimum 

value s min = tmp. 

The algorithm above needs to compare two encrypted integers. In Section 5 , we utilize the additive homomorphism of 

PCTD to get the encrypted sum of two encrypted cost values. However, PCTD’s encryption is probabilistic, hence we cannot 

judge the relationship without decrypting the two ciphertexts. To the best of our knowledge, none of these existing cryp- 

tosystems support both homomorphism and OPE/ORE properties. In addition, based on the security and privacy concerns 

mentioned above, both OPE and ORE cannot guarantee the security of outsourced data. Thus, we mainly focus on separat- 

ing the storage and computation of outsourced data to achieve advanced privacy protection instead of using ORE or OPE 

schemes directly. 

To separate data storage and computation, we use a cloud storage server and n cloud computation servers as discussed 

in the system model. The CSS stores the encrypted integers that are outsourced. Both the CSS and the CCSs participate in 

comparing two encrypted integers and finding the minimum value of several encrypted integers. During the whole process, 

if the CSS and the CCSs do not collude, they only know the relationship of two integers. Unlike OPE/ORE, separating data 

storage and computation does not leak the information about plaintexts, which ensures advanced privacy protection. 

Let [ x ] be the encrypted integer of value x . In order to obtain the relationship between two encrypted integers [ x ] and [ y ] 

(the corresponding plaintexts are x and y ), we can calculate [ x − y ] and judge whether x − y is positive or not. [ x − y ] can be 

computed as [ x ] · [ −y ] because of PCTD’s additive homomorphism. If x − y > 0 , it means x > y and vice versa. Our proposed 

SIC protocol is based on this idea, and we enhance its privacy protection by choosing a random bit b to decide whether the 

CSS computes x − y or y − x, and add some random numbers to perturb the computation results. Hence, the CSS can get the 

comparison result without knowing the value of x, y and x − y, and the CCSs cannot know which two integers are compared. 

This ensures that the result is not leaked and real values are protected. 

In the following sub-sections, detailed information about our proposed SIC and SMin protocol and prove the correctness 

of them. Here, we use k to represent the decryption threshold and n to represent the number of CCSs . We also use | m | to 

represent m ’s bit length. 

6.3. Secure integer comparison protocol 

The SIC shown in Protocol 1 works as follows. Given two encrypted integers [ x ] and [ y ], the SIC protocol will compute 

an indicator u ∗ which indicates the relationship between x and y (i.e., x ≥ y or x < y ). If u ∗ = 0 , it indicates x ≥ y , otherwise, 

it indicates x < y . 

Protocol 1: SIC protocol. 

Step 1 : The CSS first computes [ x ′ ] = [ x ] 2 · [1] and [ y ′ ] = [ y ] 2 . Then it randomly chooses a bit b ∈ { 0 , 1 } and two 

random numbers r 1 , r 2 which satisfy | r 1 | < | N| / 4 and | r 2 | < | N| / 8 . If b = 1 , the CSS computes [ l] = ([ x ′ ] · [ y ′ ] N−1 ) r 1 · [ r 2 ] , 

otherwise, it computes [ l] = ([ x ′ ] N−1 · [ y ′ ]) r 1 · [ r 2 ] . 

Step 2 : For each CCS i , it executes PDec to compute partially decrypted result c i , and sends c i to CCS γ which is 

randomly designated by all CCSs . 

Step 3 : The CCS γ executes TDec to decrypt received { c 1 , · · · , c n } and gets decrypted result l. If l satisfies | l| > | N| / 2 , 
then the CCS γ sets u ′ = 1 , otherwise, it sets u ′ = 0 . Then the CCS γ sends u ′ to the CSS . 

Step 4 : The CSS computes u ∗ as the indicator. If b = 1 , it sets u ∗ = u ′ , otherwise, it sets u ∗ = 1 − u ′ . Finally, the CSS 

returns u ∗ as the result. 

Note that CCS γ can use one of symmetric encryption algorithms (e.g., AES) to encrypt u ′ by K γ agreed by both CCS γ and 

the CSS before sending it to achieve confidentiality. Then, the CSS decrypts the encrypted u ′ to get the result. We omit the 

detailed description of this for simplicity. 

In Step 1 , the ciphertext [ x ′ ] and [ y ′ ] can be represented as [2 x + 1] and [2 y ] respectively, and [ l ] can also be represented 

as [ r 1 (x ′ − y ′ ) + r 2 ] (when b = 1 ) or [ r 1 (y ′ − x ′ ) + r 2 ] (when b = 0 ). We use [ x ′ ] and [ y ′ ] instead of using [ x ] and [ y ] in order 

to hide the equivalence relationship between x and y . We also use two random numbers r 1 , r 2 to perturb [ x ′ − y ′ ] . If x = y, 
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the CCS γ can get l = 0 by decrypting [ l ] which means that x = y . If x and y are both integers, it is easy to prove that 

2 x + 1 = x ′ 
 = y ′ = 2 y . Based on this, the following two equations are established: 

x ′ < y ′ ⇔ 2 x + 1 < 2 y ⇔ x < y 

x ′ > y ′ ⇔ 2 x + 1 > 2 y ⇔ x ≥ y (11) 

Choosing a bit b is an added method to hide the real relationship between x and y because the CCS γ cannot infer which is 

larger by decrypting [ l ] without knowing the bit b . 

In Step 3 , if | l | > | N |/2, it means that x ′ < y ′ when b = 1 , and x ′ > y ′ when b = 0 , then the CCS γ sets u ′ = 1 . In Step 4 , the 

CSS computes u ∗. If b = 1 , u ∗ = 1 , which indicates that x < y , and if b = 0 , u ∗ = 0 , which indicates that x ≥ y . 

On the other hand, if | l | ≤ | N |/2 in Step 3 , it means that x ′ > y ′ when b = 1 , and x ′ < y ′ when b = 0 , then the CCS γ sets 

u ′ = 0 . In Step 4 , the CSS computes u ∗. If b = 1 , u ∗ = 0 , which indicates that x ≥ y , and if b = 0 , u ∗ = 1 , which indicates that 

x < y . 

The result shows that the SIC protocol is correct. 

6.4. Secure minimal value protocol 

The SMin shown in Protocol 2 works as follows. Given a set S = { s 1 , ���, s m } which consists of m encrypted integers, 

the SMin protocol will find the minimal value of them. Our proposed SMin protocol makes use of the aforementioned SIC 

protocol to compare two encrypted integers. 

Protocol 2: SMin protocol. 

Step 1 : The CSS initializes s min = s 1 . 

Step 2 : For each s i in S \ { s 1 } , both the CSS and the CCSs perform SIC (s i , s min ) and the CSS gets the result u ∗. If u ∗ = 1 

(i.e., s i < s min ), then CSS sets s min = s i . 

Step 3 : The CSS returns s min as the result. 

The SMin protocol is based on the naive minimum value algorithm which finds the minimum value by comparing against 

all of the integers in a candidate set. If the comparison result is correct, it can find the accurate minimum value success- 

fully. Hence, the correctness of the SMin protocol is based on that of the SIC protocol. In the previous discussion, we have 

established that SIC protocol is correct, hence the SMin protocol is also correct. 

7. Security analysis 

In order to establish the security and privacy of PGAS, we present a detailed analysis in this section. First, we present 

formal definitions of leakage function, then we prove that PGAS is secure under the CQA2-Security model. We also show that 

our scheme can achieve advanced privacy protection compared with [30] . 

7.1. Leakage function 

Here, we give precise definitions of two leakage functions: encryption leakage function L Enc and query leakage function 

L Query . We also present leakage analysis to prove that PGAS leaks less information compared with Connor [30] and achieves 

advanced privacy protection. 

7.1.1. Encryption leakage L Enc 
The encryption leakage function L Enc of PGAS reveals the information that can be inferred by encrypted label EL stored 

on the CSS . This information includes the number of vertices in graph G (noted as n ), the number of entries in G ’s label 

L = { L out , L in } (noted as | L out | and | L in |, respectively). Thus the leakage function L Enc = (n, | L out | , | L in | ) . 

7.1.2. Query leakage L Query 
This function consists of two types of leakages: the query pattern leakage reveals whether a query has appeared before, 

and the label pattern leakage reveals some information of label L ( v ) which associates with a queried vertex v and the 

common vertices between different labels. 

Definition 5 (Query Pattern Leakage) . Let Q = { q 1 , ���, q m } be a non-empty sequence of queries, and for each q i ∈ Q , the 

corresponding tuple is noted as ( s i , t i , θ i ). For any two queries q i , q j ∈ Q , define Sim (q i , q j ) = (s i = s j , t i = t j , θi = θ j ) , i.e., 

whether each of the nodes q i = (s i , t i , θi ) matches each of the nodes of q j = (s j , t j , θ j ) . The query pattern leakage function 

L QP (Q ) = S where S is an m × m symmetric matrix, in which each entry a ij satisfies a i j = Sim (q i , q j ) . Note that we use 

pseudo-identities to hide the real identities of all vertices in G , thus L QP (Q ) cannot leak the real identity of the queried 

vertices. 
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Definition 6 (Label Pattern Leakage) . Let EL be an encrypted label of graph G , q = (s, t, θ ) be a query on EL . The label pat- 

tern leakage function L LP (EL, q ) = (�, �) . � is a pair ( X, Y ) where X = { h (w ) : (w, d, c) ∈ L out (s ) } and Y = { h (w ) : (w, d, c) ∈ 

L in (t) } are multi-sets and h : {0, 1} λ × {0, 1} ∗ → {0, 1} λ is a secure pseudo-random function. � is a list of encrypted labels 

associated with queried vertices, i.e., let { v ∗
1 , ���, v ∗

k } be a set of vertices which has appeared in historical queries, � can 

be defined as � = { E L (v ∗1 ) , ���, E L (v ∗
k ) } , where E L (v ∗

i ) = { E L in (v ∗i ) , E L out (v ∗i ) } is the encrypted label associated with v ∗
i . Note 

that w represents a pseudo-identity so adversaries cannot get real identity of the corresponding vertex. 

Based on the above definitions, the query leakage function can be defined as L Query = (L QP (Q ) , L LP (EL, q )) . 

7.1.3. Leakage analysis 

Compared with Connor [30] , our proposed scheme PGAS leaks less information. Connor’s leakage also consists of encryp- 

tion leakage (in Connor it is called setup leakage ) and query leakage . Apart from this, Connor’s setup leakage includes the 

maximum distance D , which appears in all the labels of graph G , i.e., D = max u ∈ V max { (v ,d u v ,c u v ) ∈ L out , (v ,d u v ,c u v ) ∈ L in } d uv . 

Note that D is a plain distance instead of an encrypted distance. In PGAS, D cannot be leaked, as we directly encrypt 

distance d instead of encrypting 2 N−d (as in Connor), where N = 2 ∗ D + 1 . 

Because Connor uses ORE to encrypt the cost values, the order information is also revealed. Thus, Connor’s query leakage 

consists of query pattern leakage, label pattern leakage ( sketch pattern leakage ) and cost pattern leakage . Connor’s cost pattern 

leakage leaks the order relationship: 1) for every two costs, and 2) between costs and the cost constraint during the query 

procedure. Note that for a non-empty sequence of queries Q = { q 1 , ���, q m }, if for each query q i ∈ Q , there exists a unique 

cost threshold θ i , all the interval information of { θ1 , ���, θm } will be revealed during the constant filtering process. In that 

case, adversaries can infer the range of cost values and thresholds, and if m gets larger, the range will be smaller. 

In PGAS, the query leakage does not include cost pattern leakage because we use PCTD to encrypt cost values which does 

not leak any order information. 

According to the above leakage analysis, we can conclude that compared to Connor, PGAS leaks less information about 

the original plain graph G , which means that PGAS achieves better privacy protection. 

7.2. Security of PGAS 

In this section, we show that our proposed scheme PGAS achieves CQA2-Security by proving the following theorem: 

Theorem 1. If the cryptographic primitives g, h and PCTD are secure, then the proposed graph encryption scheme �= (KeyGen, 

GraphEnc, TokenGen, DistQuery) is ( L Enc , L Query )-Secure against the adaptive chosen-query attack. 

Proof. The basis of this proof is to construct a simulator S . Given the leakage functions L Enc and L Query , S simulates a 

dummy encrypted label E L ∗ = { E L ∗out , E L 
∗
in } and a dummy list of token T ∗. For all Probabilistic Polynomial Time (PPT) ad- 

versaries A , if they cannot distinguish between the two experiments Real and Ideal , we can say that the graph encryption 

scheme PGAS is ( L Enc , L Query )-Secure against the adaptive chosen-query attack. 

Simulating EL ∗: Given L Enc , S generates a dummy EL ∗
in based on graph G ’s out-label L out . First S generates a dummy secret 

key K ∗ ← {0, 1} λ. Assume the vertex set V = { v 1 , ���, v n }, for each v i , S randomly chooses w i which satisfies 
∑ n 

1 w i = | L out | . It 
then uniformly samples unique ηi ← {0, 1} λ and ρ i ← {0, 1} λ, where λ is a security parameter. For all 0 ≤ j ≤ w i , S performs 

the following steps to simulate each dummy encrypted entries in EL ∗out (v i ) : 
1) S calculates ηi j = h (ηi , j) and ρi j = g(ρi , j) , where h and g are two hash functions given in Eq. (10) . 2) Assuming that 

the j th vertex which appeared in L out ( v i ) is u , S calculates H ∗u = h (K ∗, u ) . 3) S randomly generates two non-negative integers 

d ∗
i j and c ∗

i j as dummy distance and cost values, then uses PCTD to encrypt them, and get the corresponding ciphertexts D ∗
i j 

and C ∗
i j . 4) S sets 	∗

i j = H ∗u || D ∗
i j || C ∗i j and then sets EL ∗out [ ηi j ] = ρi j � 	∗

i j . Similarly, S generates dummy EL ∗
in and finally gets 

the dummy encrypted label E L ∗ = { E L ∗out , E L 
∗
in } . 

Simulating T ∗: Assume the query sequence made by adversary A is Q = { q 1 , ���, q n }, then the corresponding query token 

lists can be noted as T = { T 1 , ���, T n }. For each q i = (s i , t i , θi ) ∈ Q, given L Query , S simulates the dummy query token T ∗
i as 

follows: S first find whether s i or t i has appeared in the previous queries. For vertex s i , if s i has appeared, S sets I out,s i and 

K out,s i as the previous value. Otherwise, S sets I out,s i = ηi and K out,s i = ρi where ηi and ρ i have never been used before, and 

stores the relationship between s i , ηi and ρ i . For vertex t i , the operations is similar to what S does for s i . Following this, 

when generating dummy encrypted cost threshold �∗
i for q i , S uses PCTD to encrypt a positive integer θ ∗

i which is chosen 

randomly. Finally, T ∗
i is simulated as an element of T ∗, in the end, T can be simulated by T ∗ in polynomial time because 

the query sequence is polynomial. 

If the cryptographic primitives g, h and PCTD are secure, the dummy encrypted label EL ∗ and the query token list T ∗ are 

indistinguishable from the real ones. Therefore, the distinction between Real and Ideal experiments is not possible for all 

PPT adverseries A . Thus, we have 

| Pr [ Real C, A (λ) = 1] − Pr [ Ideal C, A , S (λ) = 1] | ≤ negl(λ) (12) 

where negl ( λ) is a negligible function. �
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Table 2 
Properties of different graph encryption schemes. 

GRECS Connor PGAS 

Graph Type undirected directed directed 
CSD Queries unsupported supported supported 
Accuracy approximate approximate accurate 

Table 3 
Time, space and communication complexity. 

Complexity Type Algorithm GRECS Connor PGAS 

Time Complexity GraphEnc O(m ) O(m ) O(m ) 
TokenGen O(1) O(2 d θ ) O(1) 
DistQuery O(n ) O(nd θ ) O(n ) 

Space Complexity GraphEnc O(m ) O(m ) O(m ) 
TokenGen O(1) O(2 d θ ) O(1) 

Communication Complexity TokenGen O(1) O(2 d θ ) O(1) 
DistQuery O(1) O(1) O(1) 

8. Performance analysis and experimental evaluation 

The complete evaluation of PGAS has been done in two parts. We first make a theoretical analysis, followed by quantita- 

tive evaluation. We make the comparisons between PGAS and two previously proposed graph encryption scheme: GraphEnc 3 
in GRECS [24] (we use the term GRECS in the following parts for simplicity) and Connor [30] . Note that we use 2HCL-based 

GRECS instead of original GRECS in order to eliminate the influence of different labels in the same graphs. A brief compari- 

son of these schemes given in Table 2 . 

As is shown in Table 2 , GRECS can only encrypt undirected graphs and does not support CSD queries. Both Connor and 

PGAS support encryption and CSD queries on direct graphs. In addition, PGAS can return accurate query results to the user 

instead of approximate query results as in GRECS and Connor. 

The following analysis and experimental evaluations show that our scheme achieves 100% accuracy with acceptable effi- 

ciency. We also make numerous experiments on real-world datasets to prove the practical efficiency and accuracy of PGAS. 

8.1. Complexity analysis 

The important factors which affect the efficiency of a graph encryption scheme are the time and space complexity of 

algorithm GraphEnc, TokenGen and DistQuery . Hence, we first present their concrete analysis, followed by analyzing the com- 

munication complexity between the user and the CSS . 

In all the three schemes, the GraphEnc algorithm encrypts all the entries in a graph G ’s label. If m represents the number 

of entries in label L , it is easy to calculate both time and space complexity of all three schemes to be O(m ) . 

In the TokenGen algorithm, GRECS uses two pseudo-identities generated by Pseudo-Random Function (PRF) as a query 

token, and PGAS’s query token consists of four hash values and an encrypted cost threshold, so both their time and space 

complexity is O(1) . However, in Connor, the query token consists of four hash values and a ciphertext-based binary tree 

whose depth is d θ . Hence, the number of nodes in this tree is 2 d θ − 1 and the time and space complexity is O(2 d θ ) . 

In the DistQuery algorithm, there are four steps (three in GRECS) to return the encrypted query result. The first two 

steps are searching & parsing the encrypted label and get the parsed result sets (i.e., L s and L t associated with s and t ). 

The third step is filtering the results which satisfy the cost constraint. This step is not included in GRECS because it cannot 

support CSD queries. The last step is calculating approximate shortest distance or finding the accurate shortest distance. Let 

n represents the maximum size of label L ( v ) for each v ∈ V , where L (v ) = L in (v ) ∪ L out (v ) in GRECS and L (v ) = { L in (v ) , L out (v ) } 
in Connor and PGAS. In each step, for both GRECS and PGAS, the time complexity is O(n ) . In Connor, the third step needs 

to execute the Tree-based Ciphertexts Comparison Algorithm ( TCCA ) at most n times, and each execution needs to compare d θ
ciphertexts, so the time complexity of Connor is O(nd θ ) . The time complexity of other steps in Connor is all O(n ) . Therefore, 

the total time complexity of GRECS, Connor and PGAS are O(n ) , O(nd θ ) and O(n ) , respectively. 

Next we discuss the communication complexity. In a query process, the user sends a query token to the CSS , and the CSS 

returns the encrypted result. So the total communication complexity is the combination of TokenGen ’s space complexity and 

the returned result’s space complexity. Because all the three schemes return single encrypted distance, as a result, hence the 

space complexity for them is O(1) . Therefore, the communication complexity of GRECS, Connor and PGAS are O(1) , O(2 d θ ) 

and O(1) , respectively. 

Table 3 lists the time, space and communication complexity of all three schemes. It is evident that PGAS achieves the 

same complexity of GRECS, and the overall complexity is lower than that of Connor. 
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8.2. Accuracy analysis 

In 2HCL-based shortest distance query (e.g., [1] ), the calculation of shortest distance d st uses the following equation: 

d(s, t) = min { d s v + d v t | (v , d s v ) ∈ L (s ) , (v , d v t ) ∈ L (t) } (13) 

This is used to make a shortest distance query in a undirected graph. In directed graph, L ( s ) is replaced by L out ( s ) and L ( t ) is 

replaced by L in ( t ). 

8.2.1. Accuracy of GRECS 

In GRECS, it is impossible to find the minimum value of encrypted distances because it uses the BGN cryptosystem 

[3] which supports limited additive and only one multiplicative homomorphic operations. Unfortunately it does not support 

comparison operation between two ciphertexts. So authors used an alternative method to calculate the approximate shortest 

distance by performing some add operations and one multiply operation [24] . 

We assume the following scenario: a user wants to query the shortest distance between s and t . Let I be the set of 

nodes common between L ( s ) and L ( t ), and let d(s, t) = min { d s v + d v t | (v , d s v ) ∈ L (s ) , (v , d v t ) ∈ L (t) } . The larger scale of a graph 

means larger I . The calculated result d st satisfies the following in-equation: 

d(s, t) − log | I| ≤ d st ≤ α · d(s, t) (14) 

where α( α ≥ 1) is the approximation factor. In- Eq. (14) gives the upper and lower bounds of the calculated approximate 

distance. The complete proof of the error bound is in [24] . 

In this in-equation, we can easily find three conclusions that indicate the defect of GRECS: 1) If | I | > 1, the relative error 

between approximate value d st and accurate value d ( s, t ) must exist. 2) If | I | is too large or d ( s, t ) is too small, the relative 

error can be very large. 3) If | I | � d ( s, t ), the lower bound d(s, t) − log | I| could be negative which means that the approximate 

result d st might be negative. 

According to the analysis mentioned above, the accuracy of GRECS is low especially in large-scale graphs. Our experi- 

ments have proven this conclusion which will be described later. 

8.2.2. Accuracy of connor 

Connor uses the same method to calculate approximate shortest distances, so the upper and lower bounds of absolute 

error are the same as that in GRECS. Connor uses TCCA to filter the results, the cost of which does not exceed the cost 

threshold. However, TCCA returns uncertainty which means that it cannot determine the relationship between the cost and 

the cost threshold. Let d θ be the depth of ciphertext cost tree, the probability of uncertainty is ( 1 2 ) 
d θ [30] . In Connor, if 

TCCA returns uncertainty , the pair ( D sv , D vt ) is also added as one of the filtered results even if it does not satisfy the cost 

constraint actually, which decreases the accuracy of CSD query results. 

8.2.3. Accuracy of PGAS 

If the 2HCL L of a graph G supports plain ACSD queries, our proposed scheme PGAS can achieve 100% accuracy. PGAS uses 

the Constraint Filter Algorithm (CFA) to filter the result. In CFA , the filtering method is to compare the cost and its threshold 

which are both encrypted integers. The accurate comparison result can be obtained by performing the SIC protocol which 

makes the constraint filter accurate. According to Eq. (13) , the ACSD query result can be obtained by performing the SMin 

protocol which finds the encrypted minimum value from filtered distance set Dist . In general, the 100% accuracy of the 

query results of PGAS is guaranteed by the correctness of SIC and SMin protocol. 

8.3. Experimental evaluation 

The quantitative evaluation uses real-world datasets to measure the efficiency and accuracy of GRECS, Connor, and PGAS. 

These evaluation results prove the analysis presented earlier. 

8.3.1. Dataset 

We use public real-world graph datasets available on Stanford SNAP website. 1 We choose four different kinds of datasets: 

as-skitter , a large Internet topology graph; ego-facebook , a social circles from Facebook; slashdot , a Slashdot social network 

from February 2009; and email-enron , an email communication network from Enron. Table 4 shows different properties of 

these datasets. 

Note that some graphs contain thousands of or even millions of vertices and edges. Due to the limited computational 

resources, we randomly choose subgraphs of these graphs. For each graph, we choose nine subgraphs whose number of 

vertices range from 100 to 900. Since these graphs are unweighted, we randomly add the cost for each edge which follows 

a uniform distribution between 1 and 10. Because GRECS does not support the directed graph, we convert some directed 

graphs to undirected graphs by adding edge ( v, u ) if there exists an edge ( u, v ) in the original graphs. The converted graphs 

are only used in the evaluation of GRECS, and in Connor and PGAS, we use the original directed graph. 

1 http://snap.stanford.edu/data/ . 

http://snap.stanford.edu/data/
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Table 4 
Characteristics of graph datasets used for evaluation. 

Dataset Vertices Edges Storage 

as-skitter 1,696,415 11,095,298 142.20MB 
ego-facebook 4039 88,234 0.81MB 
slashdot 82,168 438,643 4.93MB 
email-enron 36,692 367,662 1.84MB 

Table 5 
Encryption and token generation time. 

GRECS Connor PGAS 

Encryption time for each entry 0.62 ms 4.49 ms 1.42 ms 
Token generation time 0.04 ms 63.74 ms 0.72 ms 

8.3.2. Experimental setup 

We implement the 2HCL generation algorithm in [35] and [1] to generate the label of each graph. We also implement 

GRECS, Connor, and PGAS to compare their efficiency and accuracy. All programs are written in Java and compiled with JDK 

1.8 x64 environment. 

We use the JPBC library 2 to implement the BGN cryptosystem [3] used in GRECS and Connor. We also use the ORE 

scheme 3 proposed by Lewi et al. [17] to encrypt the costs and generate ciphertext cost tree in Connor. In PGAS, we use Big- 

Integer class in Java to implement the PCTD cryptosystem and both SIC and SMin protocol. We deploy two CCSs to undertake 

the outsourced computation tasks, set the security parameter λ = 256 , the depth of ciphertext cost tree d θ = 4 , and use 

HMAC-SHA256 to instantiate all hash functions. 

For each scheme, we randomly choose 500 query requests per graph and calculate the average of each result. We also 

compare the query results between the plain query and the query based on the encrypted graph, which indicates the accu- 

racy for each scheme. 

All experiments are run on a system with 8 GB RAM and Intel i7-4790 CPU running 64-bit Windows 10 operating system. 

8.3.3. Performance of graphenc 

We evaluate the GraphEnc algorithm for all the three graph encryption schemes: GRECS, Connor, and PGAS. Because the 

time complexity of GraphEnc is O(m ) , the total encryption time for a graph is determined by the encryption time for each 

entry in graph G ’s label L . 

As is shown in Table 5 , the encryption time per entry in GRECS is less than 1 ms , and the encryption time of PGAS is 

about 1.4 ms . Because PGAS encrypts both distance and cost values, and GRECS only encrypts the distance, the encryption 

time in PGAS is about two times that of GRECS. In Connor, the encryption time is significantly higher than that of other 

schemes because it uses ORE to encrypt the cost, where encryption time is higher than that of BGN and PCTD cryptosystem. 

Note that the GraphEnc algorithm in PGAS is highly-parallelizable, hence the encryption time can be further improved 

by using a cluster. Assume that the encryption time is t hours if we use one computer to encrypt a graph G , in a clustered 

environment that consists of n computers, the encryption time will be decreased to t / n hours. 

Based on the analysis above, we can deduce that the efficiency of the GraphEnc algorithm is acceptable in practical 

scenarios. 

8.3.4. Performance of TokenGen 

We evaluate the TokenGen algorithm of three aforementioned schemes. Table 5 shows the average token generation time 

for these three schemes. In Connor, the query token includes a ciphertext cost tree whose depth is d θ , so 2 d θ vertices are 

encrypted to build such a tree, which brings significant computational costs when generating tokens. Hence, Connor’s token 

generation time is significantly higher than that of other schemes. 

As for GRECS and PGAS, the latter uses asymmetric encryption, so its token generation time is higher than that of the 

former which only calculates two HMACs. However, PGAS supports ACSD queries that GRECS cannot provide, and its token 

generation time is not high. Therefore, we can say that the efficiency of the TokenGen algorithm is acceptable. 

8.3.5. Performance of DistQuery 

We evaluate the DistQuery algorithm of three aforementioned schemes. As can be seen in Fig. 4 , larger scale graphs lead 

to longer query times. The result proves the complexity analysis given earlier. 

In as-skitter, ego-facebook and slashdot , the average query time of GRECS and Connor is similar to or smaller than that of 

PGAS. This is reasonable because PGAS performs the SIC and SMin protocol between the CSS and CCSs to find the accurate 

2 http://gas.dia.unisa.it/projects/jpbc/ . 
3 https://crypto.stanford.edu/ore/ . 

http://gas.dia.unisa.it/projects/jpbc/
https://crypto.stanford.edu/ore/
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Fig. 4. Query time. 

result, whereas, in GRECS and Connor, only the cloud server participates in the process of computing the approximate 

result. In PGAS, we slightly sacrifice the query efficiency in order to guarantee the security and accuracy, this scarification is 

tolerable because we achieve 100% accuracy and the efficiency loss is not significant in practical scenarios. 

However, in email-enron , PGAS’s average query time is significantly lower than the other two schemes. GRECS and Connor 

use BGN cryptosystem to encrypt 2 N−d st , where d st is an entry which appears in s ’s label and N = 2 ∗ d max + 1 is related to 

the maximum distances d max which appears in the label L . In BGN’s decryption operation, it needs to calculate the discrete 

logarithm to get the decrypted result. In this scenario, if we use brute-force to calculate the discrete logarithm, the time 

complexity can reach O(2 2 N ) . Even if we use the Pollard method, the time complexity of decryption can only decrease to 

O(2 N ) . In general, the time cost of BGN’s decryption is so large that it has been the bottleneck of the DistQuery algorithm 

in GRECS and Connor. 

In PGAS, it uses PCTD to encrypt and decrypt distances in L instead of an exponent of these distances, so the message 

space is relatively small. In addition, PCTD does not need to calculate a discrete logarithm when decrypting the ciphertexts. 

Therefore, in some of the graphs (e.g., email-enron ), the efficiency of GRECS and Connor is significantly lower than that of 

PGAS. Note that, the high efficiency of PGAS in email-enron mainly based on the bottleneck of BGN when decrypting large 

plaintexts. If N is small or a more efficient homomorphic encryption scheme is developed, it is uncertain that PGAS can still 

be more efficient than GRECS and Connor. 

In this evaluation, we can say that the query efficiency of PGAS is acceptable. However, in some kinds of graphs, the 

efficiency is higher than the other two schemes which proves that our scheme can be more effective when querying on 

such graphs. 

8.3.6. Query accuracy 

It can be observed from Fig. 5 , that the query accuracy of GRECS and Connor is similar because they use the same method 

to calculate the approximate shortest distance. We can also conclude that as the scale of the graph grows, the accuracy of 

them becomes lower. If the graph scale is large, this accuracy is intolerable because most of these query results become 

incorrect. Even if the scale of graphs is the same, the query accuracy can be significantly different, i.e., when querying on 

as-skitter , the accuracy can be 95%–100%, however, in email-enron , the accuracy is below 25% even if the vertex number of 

its subgraph is 900. Hence, we can conclude that the topology structure can also influence the query accuracy in GRECS and 

Connor. 
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Fig. 5. Query accuracy. 

In PGAS, the query accuracy is always 100%, which means that PGAS can return accurate query results, independent of 

type & size of the graph. In general, PGAS has significant advantages on query accuracy when comparing with GRECS and 

Connor. 

9. Conclusion 

In this work, we proposed PGAS, an advanced privacy-preserving graph encryption scheme that supports ACSD queries. 

Based on a novel system architecture that separates the data storage and computation, both the CSS and CCS s cannot get any 

sensitive information. PGAS also leverages 2HCL and secure cryptographic primitives to hide the structural information of 

graph data, and guarantee acceptable query efficiency simultaneously. In addition, we proposed a secure integer comparison 

protocol SIC to compare two encrypted integers and a secure minimum value protocol SMin to find the minimal value of 

several encrypted integers. Security analysis shows that PGAS achieves CQA-2 Security with less leakage compared with 

the existing schemes, which provides advanced privacy protection. The evaluation results show that PGAS has acceptable 

efficiency and achieves 100% accuracy. 

Compared with existing schemes, to achieve 100% accuracy, PGAS needs to execute more cyphertext-based comparison 

operations between the CSS and the CCSs. Besides, dynamic index update and multiple clouds are not considered to en- 

hance the scalability of PGAS. Hence, future work may focus on constructing more efficient graph encryption schemes that 

support dynamic index update and multiple data sources. For instance, multiple clouds can be introduced to alleviate both 

computational and storage burden on the centralized cloud server, while storage of a single large-scale graph on multiple 

clouds without sacrificing the querying accuracy can be considered as an interesting research direction. 
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