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Abstract: In missing data problems, missing not at random is difficult to handle since the response 
probability or propensity score is confounded with the outcome data model in the likelihood. Existing 
works often assume the propensity score is known up to a finite dimensional parameter. We relax this 
assumption and consider an unspecified single index model for the propensity score. A pseudo-likelihood 
based on the complete data is constructed by profiling out a synthetic distribution function that involves 
the unknown propensity score. The pseudo-likelihood gives asymptotically normal estimates. Simulations 
show the method compares favorably with existing methods. 
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1 Introduction 

The problem of missing data has always been a concern 
for those who work with empirical research. One reason 
why missing data has captured so much attention from 
researchers is because the nature of the problem is 
complex. It is widely acknowledged that missing data 
does not arise from a unitary source under a well-defined 
situation. Rather, the causes and processes leading to 
missing data are varied and often a function of multiple 
factors, such as the population under study, the nature of 
the outcome, or the way the study is designed and 
conducted. A most challenging issue is that information 
about the missing data is usually scant, making it very 
difficult for researchers to determine the nature of 
missingness. In carrying out research with missing data, a 
common approach is to discard observations with missing 
data and to carry out a “complete case” analysis. Such an 

approach is rarely appropriate unless the missingness 
probability, or propensity score, does not vary with any 
observable or unobservable data. More often, the 
complete cases form a subsample with characteristics 
different from a random sample from the target 
population, so analysis based on this subsample will result 
in misleading inference. 

In economics, missing data or nonresponse is endemic in 
many important surveys that are used routinely to 
investigate economic and social issues. The seriousness 
of the missing data issues in these dataset was brought to 
the fore by Lillard, Smith, and Welch (1986). The article 
reported that, for the Current Population Survey (CPS), 
the nonresponse rates among persons 14 years and older 
experienced a 10-fold increase between 1940 and 1982. 
This trend has continued in the years following the 

publication of the article, so that the nonresponse rate in 
parts of the CPS currently stands at 35% or higher (Kline 
and Santos 2013; Bollinger et al. 2019). It has been found 
that missing data and nonresponse in the CPS affects 
measures of important economic metrics, such as earning 
gaps between gender, race, and education groups (e.g., 
Lemieux 2006; Mulligan and Rubinstein 2008; Bollinger 
and Hirsch 2013; Maasoumi and Wang 2017, 2019; 
Bollinger et al. 2019). Unfortunately, the CPS is not alone 
in its nonresponse issues. Similar problems have been 
cited from the National Longitudinal Survey of Youths 
(NLSY), the Panel Study of Income Dynamics (PSID), 
and many other major surveys (e.g., Davey, Shanahan, 
and Schafer 2001; Schräpler 2004; Arpino, De Cao, and 
Peracchi 2014; Breunig 2017; Golsteyn and Hirsch 2019; 
Qin et al. 2019). 

There is a rich body of statistical works for handling 
missing or nonresponse data. Most of these works are 
based on the frameworks defined in Rubin (1976, 1987). 
A common approach to analysis with missing data or 
nonresponse is to assume that data is either “missing 

completely at random” (MCAR) or “missing at random” 

(MAR), in the sense that missingness is either constant 
across all units or constant across all units when 
conditioned on observed values. These conditions allow 
valid inference to be drawn from observations with 
complete data, or “complete cases” but they are made 

based on convenience than plausibility. In practice, the 
probability or “propensity” (Rosenbaum and Rubin 1983) 

for missingness and nonresponse, more likely varies 
across the unobservable data, so that the data is “missing 

not at random” (MNAR) or “nonignorable.” Previous 

works on nonignorable missingness
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include full maximum likelihood models (Greenlees, Reece,
and Zieschang 1982; Stasny 1985) and/or exclusion restrictions
to obtain point identification (Lillard, Smith, and Welch 1986;
Chen, Geng, and Zhou 2009; Kott and Chang 2010; Yang,
Lorch, and Small 2014), or the “worst case” bounds on pop-
ulation moments that result when no assumptions regarding
the missingness process are used (Manski 1989, 1990; Manski
and Pepper 2000). Fully parametric approaches are known to
be very sensitive to model misspecification. For most applied
problems, the worst case bounds are overly conservative in the
sense that they consider missingness processes unlikely to be
found in practice.

Robins and Ritov (1997) showed that a fully nonparamet-
ric approach is not possible for point identification. Hence, to
balance the extremes of a fully parametric model and a worst
case bound approach, a semiparametric approach is taken in
this article. Specifically, we develop a pseudo-likelihood (Besag
1975) approach. We assume a set of data with outcome Y and
covariates X such that the covariates are always observed but the
outcome is observed when R = 1 and is missing when R = 0
and missingness may be nonignorable. We use the notations [·],
[·, ·], and [·|·] to denote marginal, joint, and conditional dis-
tributions, respectively. Previous works on pseudo-likelihood
analysis of MNAR data include Liang and Qin (2000), Tang,
Little, and Raghunathan (2003), and Zhao and Shao (2015).
When missingness is nonignorable, the (Y , X, R) is a nonran-
dom sample of the target population [Y,X] because [Y , X|R] �=
[Y , X] . The basic idea of a pseudo-likelihood approach is that
when conditioned on the outcome and R, (Y , X, R = 1) is
a random samples of [X|Y , R = 1]. Liang and Qin (2000)
assumed missingness can only depend on the outcome but
not covariates (Liang and Qin (2000) also allowed covariates
to be missing but the missingness probability for covariates
is a function of solely the covariates) and formed a pseudo-
likelihood using pairs of observations. Using the assumption
that the nonresponse mechanism only depends on the out-
come, Tang, Little, and Raghunathan (2003) factorized the joint
distribution [Y , X, R = 1] as [R = 1|Y][Y|X][X]. They
then used a parametric model for [Y|X] and a nonparametric
model for [X]. The key to the pseudo-likelihoods of Liang
and Qin (2000) and Tang, Little, and Raghunathan (2003) is
the missingness mechanism is only a function of the outcome.
This condition allows the unknown missingness function to be
factored out of the pseudo-likelihood. This condition is valid
in certain situations. For example, in a survey of willingness
to receive HIV testing, individuals might refuse to participate
due to social stigma (Rueda et al. 2016), in which case, it
can be argued that missingness is only dependent on a per-
son latent HIV status, but independent of demographics or
personal characteristics. The condition may also be plausible
in threshold crossing models (Matzkin 1992) in which case a
person’s willingness to participate depends only on the latent
outcome. This condition requires the missing mechanism to
be identical across all covariates. Therefore, if the number of
covariates is large or some of them are continuous, the con-
dition is a severe restriction. This point was raised by Zhao
and Shao (2015). In Zhao and Shao (2015), it is assumed the
covariates X can be written as (U, Z) such that Z is not of
interest. Furthermore, Z can be used as an instrument for

missingness. They factorized the joint distribution [Y , X, R =
1] as [R = 1|Y , U][Y|X][U|Z][Z] and developed estimation
method based on conditional distribution [Z|Y , U, R = 1].
They used a parametric model for [Y|X] and proposed non-
parametric estimates for [U|Z] and [Z], such that the propensity
score can be factored out. In this article, we also allow the
missingness process to depend on the outcome and possibly
some covariates. In contrast to Zhao and Shao (2015), who
used instrumental variables for identifiability, we use a semi-
parametric single index propensity score model based on some
covariates that are independent of the missing indicator given
the outcome and other covariates. The only restriction is there
exists at least one continuous component covariate in the single
index model. Unlike Zhao and Shao (2015), our method is
founded on [Y , X|R = 1], which extracts more information
in [Y , U|R = 1] than Zhao and Shao (2015). Moreover, we
do not require nonparametric estimate of [U|Z][Z], which can
be problematic if [U, Z] is high dimensional. We show the
likelihood using the complete data is a biased sampling version
of the target likelihood function. We construct a synthetic dis-
tribution using a normalized version of the missingness func-
tion. We then profile this pseudo-likelihood to find estimates of
the synthetic distribution function and related parameters. We
note in passing that the pseudo-likelihoods mentioned here are
associated with works in the areas of choice-based or response-
based sampling (see, e.g., Cosslett 1981; Chen 2001; Ramalho
and Smith 2013). Indeed, Ramalho and Smith (2013) showed
that a missing data problem can be recast as a choice-based
sampling problem. However, in choice-based or response-based
sampling, the outcome Y (choice) is normally assumed to be
discrete. We consider the more general case here where Y can be
discrete or continuous. When Y is continuous, the distribution
[Y , X] must be parametrized or estimated using nonparametric
smoothing.

There are also other semiparametric works on MNAR prob-
lems that appeared in the literature. Kott and Chang (2010)
assumed a parametric model for missingness and nonpara-
metric model for [Y , X] and used calibration weights. Wang,
Shao, and Kim (2014) also allowed a nonparametric model
for [Y , X] but used nonresponse instruments as in Zhao and
Shao (2015) and then used GMM for estimation. Kim and
Yu (2011) assumed the missingness mechanism is known or
can be estimated using external data and they modeled the
missing data distribution as an exponential tilt of the data
distribution of the observed. Also using the exponential tilt
framework, Zhao, Zhao, and Tang (2013) used empirical like-
lihood estimators for drawing inferences and Shao and Wang
(2016) but an instrumental variable. MNAR problems have also
been studied in panel data situations. For longitudinal data
with only two patterns of monotone missingness that depends
only on the outcome, Little (1993, 1994) and Little and Wang
(1996) showed that it is possible to identify the parameters.
However, their methods do not apply to more general missing
patterns.

The rest of this article is organized as follows. In Section 2,
we describe the basic set-up of the nonignorable missing data
problem and we introduce the proposed method. Large sample
properties of the proposed method are examined in Section 3.
Section 4 reports the results of a modest simulation study. In
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Section 5, empirical application of the method is illustrated
using a set of data. Concluding remarks are given in Section 6.
Proofs are relegated to the online supplementary materials.

2. Pseudo-Conditional Likelihood Estimation

We begin with the parametric likelihood approach discussed in
Greenlees, Reece, and Zieschang (1982). Assume an outcome Y
and a p1-dimensional covariate vector X be related by

Y = XTβ + ε, (1)
where β is a p1-dimensional parameter, ε is a random error with
density f (ε, γ ), and γ is a p2-dimensional parameter. Hence, the
conditional distribution of the outcome given the covariates is
given by f (Y − XTβ , γ ) ≡ f (Y|X, �), where � = (βT , γ T)T .
We denote the marginal density of X by g(X). Greenlees, Reece,
and Zieschang (1982) assumed the outcome may be missing in
some observations and the probability of observing a response,
or propensity score, can be written as a logistic model linear in
Y and U, where U is a q-dimensional subvector of X or covari-
ates distinct from X. Under the assumption that ε is normally
distributed, Greenlees, Reece, and Zieschang (1982) developed
maximum likelihood estimators of the underlying parameters.

As noted by Little (1985), a parametric propensity function
is at risk of misspecification. An alternative is a nonparametric
representation for the propensity score. However, it suffers from
the well-known curse of dimensionality problem. A natural
balance between these extremes is a single index model (Powell,
Stock, and Stoker 1989), which we adopt here. Let R be an
indicator for missingness such that R = 1 if Y is observed
and R = 0 otherwise. Then, we model the propensity score as
follows

P(R = 1|Y , X) = P(R = 1|Y , U) = π(Y + UTη), (2)
where π(·) is an unknown function and η is an unknown
parameter vector. It is easy to see that (2) includes the probit
and logit models as special cases. Propensity score model (2)
under the special case when η is known was considered in Little
(1994) and Tang, Little, and Raghunathan (2003), even though
neither carried out analysis of its properties. Here, we assume
the propensity score depends on covariates X only through its
subset U for the reason of identifiability (Wang, Shao, and Kim
2014). The specification of a unit coefficient for Y is not critical
by noting that, for a �= 0,

P(R = 1|Y , X) = π(aY + UTη)

= π{a(Y + UTη/a)}
= π̃(Y + UT η̃),

where π̃(t) = π(at) and η̃ = η/a. Since the form of π is not
specified, we may replace π(·) by π̃(·) and η by η̃ in (2).

Before giving details of the proposed estimators, we first
consider identifiability issues arising from a semiparametric
representation for π(·). From MNAR data, the conditional dis-
tribution of (Y , R) given X is P(R = 1|Y , X)f (Y|X, �), which
is unidentifiable if both P(R = 1|Y , X) and f (Y|X, �) are
left unspecified (Robins and Ritov 1997). In our set-up, we
parametrize f (Y|X, �). The following lemma gives identifia-
bility conditions under the single index model (2) for P(R =
1|Y , X) = π(Y + UTη).

Lemma 1. Without loss of generality, let the first compo-
nent of Z be 1, and Z−1 be the remaining components of Z.
Write f (Y|X, �) = f (Y − (1, Z−1, U)Tβ , γ ), where βT =
(β0, βT

1 , βT
2 )T . Assume 0 < P(R = 1) < 1 and π(·) > 0.

Furthermore, suppose the following identifiability conditions
hold:

(S1) There exist constants c, a1, a2 such that
f (s, γ ) = cf (a1 + a2s, γ̃ )

is true for all s, then γ = γ̃ , a1 = 0, a2 = 1, and c = 1
(S2) At least one of the components of Z−1 is continuous with

infinite support and its coefficient is not 0
(S3) The range of the support of at least one of the continuous

components for U is infinite
(S4) The function f (·, ·) is continuous and differentiable with

respect to �

If (S1)–(S4) hold, then π(·),η and � are identifiable.

Clearly, the identifiability condition (S1) is satisfied for com-
monly used distributions such as the normal, exponential, and
those in the generalized exponential family. Conditions (S2)–
(S4) similar to identify conditions in Ichimura (1988); see also
Ichimura (1993) when the single index function is nonlinear.

For the special case that the propensity score is independent
of U, that is, π(Y+UTη) = π(Y), Tang, Little, and Raghunathan
(2003) proposed a pseudo-likelihood based on the conditional
distribution

[X|Y , R = 1] ∼ π(Y)f (Y|X, �)g(X)

π(Y)
∫

f (Y|X, �)g(X)dX

= f (Y|X, �)g(X)∫
f (Y|X, �)g(X)dX

. (3)

Notice that the unspecified propensity score π(Y) has been
factored out in (3). Replacing g(X)dX by dGn(X) from the
empirical marginal distribution of X, under suitable conditions,
the parameters in the model f (Y|X, �) can be identified if
it is normal density or more generally it is from generalized
exponential family.

In practice, the propensity score may depend on the outcome
as well as some covariates. This situation motivates a propensity
score of the form π(Y + UTη). The conditional distribution
considered in Tang, Little, and Raghunathan (2003) becomes

[X|Y , R = 1] ∼ π(Y + UTη)f (Y|X, �)g(X)∫
π(Y + UTη)f (Y|X, �)g(X)dX

. (4)

If η is known, then the problem can be reparametrized in terms
of Y∗ = Y + UTη and the method of Tang, Little, and Raghu-
nathan (2003) can still be used. However, in the more general
case that η is unknown, π(Y +UTη) cannot be eliminated from
(4). Therefore, Tang, Little, and Raghunathan’s (2003) method
cannot be used in general.

Write X = (ZT , UT)T . To eliminate π(Y + UTη) in the
likelihood, Zhao and Shao (2015) considered an alternative
pseudo-likelihood based on the conditional distribution

[Z|Y , U, R = 1] ∼ π(Y + UTη)f (Y|X, �)h(U|Z)∫
π(Y + UTη)f (Y|X, �)h(U|Z)dZ

= f (Y|X, �)h(U|Z)∫
f (Y|X, �)h(U|Z)dZ

.
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Under suitable regularity conditions, Zhao and Shao (2015)
showed that all parameters in f are identifiable in this pseudo-
likelihood approach. Even though this approach can eliminate
π(Y + UTη), the conditional density h(U|Z) appears in the
pseudo-likelihood. Therefore, either parametric assumptions
are required or a nonparametric method, such as kernel smooth-
ing is needed. When the dimension of Z is high, nonparametric
methods are not feasible due to the notorious curse of dimen-
sionality problem.

In this article, we also consider a pseudo-likelihood approach
but our likelihood is based on the joint distribution of the
complete observations, that is, [Y , X|R = 1]. In the likelihood
contribution, the complete data can be decomposed as

[Y , X|R = 1] = [Y , U|R = 1][Z|Y , U, R = 1]. (5)

This approach is more efficient than the approach of Zhao and
Shao (2015), since the first factor in (5) is ignored in their
work. This conjecture is validated in the simulation study, which
shows that in the situations we studied, the proposed method
is uniformly more efficient than the Zhao and Shao (2015)
method.

We observe that

[Y , X|R = 1] ∼ π(Y + UTη)f (Y|X, �)g(X)∫ ∫
π(Y + UTη)f (Y|X, �)dG(X)dY

,

where G(X) is the corresponding distribution function of g(X).
We study the semiparametric maximum likelihood estima-

tion of � and � = ∫
π(Y∗)dY∗. Based on the best of our

knowledge, in statistical literature all inferences on the propen-
sity score π(·) are based on some parametric assumptions. It is
our goal in this article to explore statistical inference for � by
treating π(·) nonparametrically.

2.1. Inference When η Is Known

Since the covariate Xi, i = 1, 2, . . . , n is available for each
observation, we can replace G(X) by the empirical distribution
Gn(X) = n−1 ∑n

i=1 I(Xi ≤ X). Using the transformation Y∗ =
Y + UTη,

∫ ∫
π(Y + UTη)f (Y|X, �)dGn(X)dY

=
∫ ∫

π(Y∗)f (Y∗ − UTη − XTβ , γ )dGn(X)dY∗

=
∫

π(Y∗)ψn(Y∗, �, η)dY∗,

where ψn(Y∗, �, η) = n−1 ∑n
i=1 f (Y∗ − XT

i β − UT
i η, γ ).

Without loss of generality, we assume the outcome in the first
n1 observations are observed, that is, Ri = 1, i = 1, . . . , n1, Ri =
0, i = n + 1, . . . , n. The pseudo-likelihood is

L =
n1∏

i=1

π(Yi + UT
i η)f (Yi|Xi, �)∫ ∫

π(Y + ZTη)f (Y|X, �)dGn(X)dY∗

=
n1∏

i=1

π(Y∗
i )f (Yi|Xi, �)∫

π(Y∗)ψn(Y∗, �, η)dY∗ .

Note that
∫

π(Y∗)dY∗ is not necessarily 1. Let � =∫
π(Y∗)dY∗, then

r(Y∗) = π(Y∗)
�

is a legitimate density. The pseudo-likelihood is proportional to
n1∏

i=1

r(Y∗
i )f (Yi|Xi, �)∫

r(Y∗)ψn(Y∗, �, η)dY∗ . (6)

We can treat this problem as a biased sampling problem with
underlying density r(Y∗) and weight function f (Yi|Xi, �), i =
1, 2, . . . , n1. However, this problem differs from the conven-
tional biased sampling problem discussed in Qin (2017, chap. 1),
since in the current context, the roles of the underlying density
and the weight function are interchanged.

Let pi = r(Y∗
i )dY∗

i , i = 1, . . . , n1. If η is known, we can
obtain the following semiparametric log pseudo-likelihood

�(�|η) =
n1∑

i=1

[
log pi + log f (Yi|Xi, �)

]
− n1

log
[ n1∑

i=1
piψn(Y∗

i , �, η)

]
,

subject to the constraint
∑n1

i=1 pi = 1, pi ≥ 0. It is easy to show
that

p̂i = r̂(Y∗
i )dY∗

i = 1/ψn(Y∗
i , �, η)

C
, where

C =
n1∑

j=1

1
ψn(Y∗

j , �, η)
, i = 1, 2, . . . , n1 (7)

is the solution. After some algebra, we obtain the following
profile log pseudo-likelihood

�(�|η) =
n1∑

i=1

[
log f (Yi|Xi, �) − log ψn(Y∗

i , �, η)

]
. (8)

Hence, an estimate of � can be obtained by maximizing the
semiparametric log pseudo-likelihood function �(�|η) based
on a given η.

We can also understand the profile log pseudo-likelihood by
an alternative conditional likelihood argument. Note that

[Y , X|R = 1] ∼ π(Y + UTη)f (Y|X, �)g(X)

P(R = 1)
.

Let Y∗ = Y + UTη, then

[Y∗, X|R = 1] ∼ π(Y∗)f (Y∗ − XTβ − UTη, γ )g(X)

P(R = 1)
,

which gives

[Y∗|R = 1] ∼ π(Y∗)
∫

f (Y∗ − XTβ − UTη, γ )g(X)dX
P(R = 1)

.

Consequently,

[X|R = 1, Y∗] ∼ f (Y∗ − XTβ − UTη, γ )g(X)∫
f (Y∗ − XTβ − UTη, γ )g(X)dX

= f (Y|X, �)g(X)∫
f (Y∗ − XTβ − UTη, γ )g(X)dX

,
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where the unknown π(Y∗) has been factored out. Replacing
g(X)dX = dG(X) by the marginal empirical distribution func-
tion dGn(X), we arrive at the profile log pseudo-likelihood (8).
This pseudo-likelihood approach was also pointed out in Tang
et al. (2003) when η is known.

The conditional likelihood argument eliminates the
unknown propensity score π(·) for the case that η is known. In
the next section, we consider the more commonly encountered
situation when η is not known. In that situation, we find a profile
“synthetic” distribution function technique for estimating η

and �.

2.2. Inference When η Is Unknown

In practice η is often unknown, the log pseudo-likelihood
�(�|η) discussed in (8) in the last section does not have infor-
mation on η. Instead we will use the incomplete observations
(Ri = 0, Xi), i = n1 + 1, . . . , n to recover information about
η through the construction of a binomial likelihood, discussed
below. Since (Ri, Xi), i = 1, 2, . . . , n are available for all observa-
tions, we use this fact to extract information from the propensity
score function. For a given covariate X, the propensity score can
be written as

P(R = 1|X) =
∫

π(Y + UTη)f (Y|X, �)dY ≡ π∗(X, �, η).
(9)

Notice as opposed to (2), in propensity score representation
(9), the Yi’s that are unobservable when Ri = 0 have been
eliminated. This fact allows us to extract information about the
unknown parameter η in the propensity score function. Using
(9), the binomial likelihood of η given � is

L(η|�) =
n∏

i=1

[
π∗(Xi, �, η)

]Ri[
1 − π∗(Xi, �, η)

]1−Ri

.(10)

We can make inference on η if π∗(X, �, η) can be estimated. To
do this, we first note that,

P(R = 1) =
∫ ∫

π(Y + UTη)f (Y|X, �)dG(X)dY

=
∫ ∫

π(Y∗)f (Y∗ − XTβ − UTη, γ )dY∗dG(X)

= �

∫ ∫
r(Y∗)f (Y∗ − XTβ − UTη, γ )dY∗dG(X).

Replacing dG(X) by dGn(X) and P(R = 1) by n1/n, we obtain

n1
n

= �

∫
r(Y∗)ψn(Y∗, �, η)dY∗.

Moreover replacing r(Y∗)dY∗ by p̂i = r̂(Y∗
i )dY∗

i , i = 1,
2, . . . , n1, gives

n1
n

= �
n1
C

.

Therefore, we can estimate � by

�̂ = C
n

. (11)

Similarly, we can write

π∗(Xi, �, η) =
∫

π(Y + UT
i η)f (Y|Xi, �)dY

=
∫

π(Y∗)f (Y∗ − XT
i β − UT

i η, γ )dY∗

= �

∫
r(Y∗)f (Y∗ − XT

i β − UT
i η, γ )dY∗.(12)

From (12), we estimate π∗(Xi, �, η) using (7), (11) and a sample
equivalence of (12), as follows

π̂∗(Xi, �, η) = �̂

n1∑
j=1

r̂jf (Y∗
j − XT

i β − UT
i η, γ )

= C
n

n1∑
j=1

1
ψn(Y∗

j , �, η)/C
f (Y∗

j − XT
i β − UT

i η, γ )

= 1
n

n1∑
j=1

f (Y∗
j − XT

i β − UT
i η, γ )

ψn(Y∗
j , �, η)

. (13)

For a fixed �, the following log pseudo-likelihood function can
be maximized with respect to η,

�∗(η|�) =
n∑

i=1
Ri log[π̂∗(Xi, �, η)] + (1 − Ri)

log[1 − π̂∗(Xi, �, η)] (14)

Combining (8) and (14), maximum pseudo-likelihood esti-
mates of � and η can be obtained using the following algorithm.
Let (�(0), η(0)) be initial values of (�, η). For k = 1, 2, . . .,
iterate between

1. for fixed η(k−1), obtain �(k) by maximizing (8), �(�|η(k−1)),
with respect to �;

2. let Y∗(k)
j = Yj + UT

j η(k−1) and, given �(k),

π̂∗(k)(Xi, �(k), η)= 1
n

n1∑
j=1

f (Y∗(k)
j −XT

i β(k)−UT
i η, γ (k))

ψn(Y∗(k)
j , �(k), η)

.

maximize (14)

�∗(η|�(k)) =
n∑

i=1
Ri log π̂∗(k)(Xi, �(k), η) + (1 − Ri)

log{1 − π̂∗(k)(Xi, �(k), η)}

with respect to η to obtain η(k).

At convergence, define the final values of �(k), η(k) as �̂ and η̂.
The method suggested in (13) gives an estimate of the inte-

gral of the propensity score, which offers indirect information
on the form of the propensity score. Existing works either com-
pletely specify the form of the propensity score (e.g., Greenlees,
Reece, and Zieschang 1982) or eliminate it from consideration
(e.g., Tang, Little, and Raghunathan 2003).
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3. Asymptotic Properties

In this section, we give regularity conditions and large sample
results of the proposed maximum pseudo-likelihood estimate.

Let η0 be the true value of η, �(η0) = �0 and �̂(η̂) = �̂.
Define ψ(Y∗, �, η) = ∫

f (Y∗ −XTβ −UTη, γ )dG(X). Let p =
p1 + p2, A be the parameter space of �, D be the parameter
space of η. The following regularity conditions are required:

(C1) A and D are compact subsets of Rp and Rq, respectively.
(C2) ∂f (Y|X, �)/∂�, ∂2f (Y|X, �)/∂�2, ∂3f (Y|X, �)/∂�3

are bounded for � ∈ A and ∂π(Y + UTη)/∂η, ∂2π(Y +
UTη)/∂η2, ∂3π(Y + UTη)/∂η3 are bounded for η ∈ D;
0 < f (Y|X, �) < ∞ is bounded for � ∈ A,
0 < π(Y + UTη) < ∞ is bounded for η ∈ D.

(C3) H1(�|η) and H∗(η|�), defined in the online Supplemen-
tary Materials, are nonsingular for � ∈ A and η ∈ D.

(C4) 	1, 	2, defined in the online Supplementary Materials,
satisfy 	1 < ∞, ‖H1(�0|η0)‖ < ∞ and 	2 <

∞, ‖H∗(�0|η0)‖ < ∞.

Among these conditions, (C1) assumes compact parameter
spaces, which is commonly used in the literature; (C2) specifies
the smoothness of f (Y|X, �) and π(Y + UTη); (C3) ensures
the second-order derivatives of the profile log pseudo-likelihood
�(�|η) and log pseudo-likelihood �∗

n(η|�) are nonsingular;
and (C4) guarantees finiteness of the covariance matrix for the
proposed estimators.

Consistency of the proposed estimators is established in the
following theorem:

Theorem 1. Assume conditions of Lemma 1 and (C1)–(C3) hold,
then �̂

P−→ �0, and η̂
P−→ η0.

Asymptotic normality of the proposed estimators is given in
following theorem:

Theorem 2. Assume conditions of Lemma 1 and (C1)–(C4) hold,
then

√
n(η̂ − η0)

D−→ N(0, H∗−1	1H∗−1), and
√

n(�̂ − �0)
D−→ N(0, H−1

1 	2H−1
1 ),

where H1 = H1(�0|η0), H∗ = H∗(η0|�0).

Write a⊗2 = aaT , for any arbitrary vector a. The variances
of the proposed estimator of η̂ and 
̂ can be estimated
by H∗−1

n (η̂|�̂)O	1H∗−1
n (η̂|�̂) and H−1

1n (�̂|η̂)O	2H−1
1n (�̂|η̂),

respectively, where

	̂1 = 1
n

n∑
i=1

φ⊗2
i (�̂, η̂), 	̂2 = 1

n

n∑
i=1

φ∗⊗2
i (�̂, η̂),

H∗
n(η̂|�̂) = H∗

1n(η̂|�̂) + H∗
2n(η̂|�̂)H1n(�̂|η̂)−1H2n(�̂|η̂),

φi(�̂, η̂) = g∗
i (η̂|�̂) − H∗

2n(η̂|�̂)H−1
1n (�̂|η̂)gi(�̂|η̂),

φ∗
i (�̂, η̂) = gi(�̂|η̂) − H2n(�̂|η̂)

{
H∗−1

n (η̂|�̂)
[
g∗

i (η̂|�̂)

−H∗
2n(η̂|�̂)H−1

1n (�̂|η̂)gi(�̂|η̂)
]}

,

gi(�̂|η̂) = Ri

[
∂f (Yi|Xi, �̂)/∂�

f (Yi|Xi, �̂)
− ∂ψn(Y∗

i , �̂, η̂)/∂�

ψn(Y∗
i , �̂, η̂)

]
,

g∗
i (η̂|�̂) = Ri

∂π̂∗(Xi, �̂, η̂)/∂η

π̂∗(Xi, �̂, η̂)

−(1 − Ri)
∂π̂∗(Xi, �̂, η̂)/∂η

1 − π̂∗(Xi, �̂, η̂)
,

where H1n(�|η), H2n(�|η), H∗
1n(η|�), and H∗

2n(η|�) are given
in the online supplementary materials. The formula of the
estimator for asymptotic variance is very complicated, hence
bootstrap method is used to estimate the variance.

Remark 1. Our method is based on [Y , X|R = 1] while the
method in Zhao and Shao (2015) is based on [Z|Y , U, R =
1], therefore, we argue that the proposed method should be
more efficient because it includes information of the conditional
likelihood [Y , U|R = 1]. However, it is difficult to make direct
theoretical comparison between them since the variance of the
two estimators depend on different quantities that cannot be
compared directly. Specifically, the variance of �̂ is affected by
the η̂ and the empirical distribution function Gn(X), while the
variance of the Zhao and Shao (2015) estimator depends on the
empirical distribution of Z and the estimated parameter in the
parametric model of U given Z.

Remark 2. Under our semiparametric setting, the unknown
propensity score function π(·) and the marginal distribution
function of X are infinite dimensional nuisance parameters,
whereas η and � are finite dimensional parameters of interest.
Naturally, it is of interest to determine whether the proposed
estimators can attain the semiparametric efficiency bounds.
However, a concise analytic expression of the efficient score
function is not obtainable in general. It worth noting that
in existing literature, discussions of semiparametric efficiency
under nonignorable missingness are based on a parametric
model for propensity score and moment restriction model for
the response and covariates. This is because the nuisance tan-
gent space and hence the efficient score has simple and concise
forms in that case, more detail see, for example, Rotnitzky
and Robin (1997), Miao et al. (2019), and Morikawa and Kim
(2019). The question of how to develop a method for studying
semiparametric efficiency under more general settings is a topic
worth further study.

4. Simulation Study

In this section, we evaluate the finite sample performance of
the proposed maximum pseudo-likelihood estimator (MPCL).
We compare MPCL to the complete case only method (CC),
the maximum parametric likelihood estimation method based
on correctly specified models (ML), and misspecified models
(MML), the method proposed in Tang, Little, and Raghunathan
(2003) (TLR) and the method proposed in Zhao and Shao
(2015) (ZS). Let X = (X1, UT = (X2, X3)

T)T , where X1 ∼
N(0, 1), X2 ∼ U(0, 1), and X3 ∼ N(0, 1). The outcome Y is
generated from the following model:

Y = β1 + β2X1 + β3X2 + β4X3 + ε,
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where ε ∼ N(0, γ ), β1 = 1.5, β2 = −1, β3 = 2, β4 = 1, and
γ = 1. We consider four missing data scenarios, one using a
logistic model and another using a probit model

S1 : P(R = 1|Y , U) = exp(Y + ηTU)/[1 + exp(Y + ηTU)]
S2 : P(R = 1|Y , U) = (Y + ηTU), where  is the standard

normal distribution function
S3 : P(R = 1|Y , U) = exp(Y + ηTŨ)/[1 + exp(Y + ηTŨ)],

where Ũ = (Ũ1, Ũ2) and Ũi = 1 − (0.5Ui)2, i = 1, 2
S4 : P(R = 1|Y , U) = exp(Y + ηTŨ)/[1 + exp(Y + ηTŨ)],

where Ũ = (Ũ1, Ũ2) and Ũi = 1 − (1 − 0.5Ui)2, i = 1, 2

Notice that S1 and S2 are linear and monotonic in Ui, S3 is
nonmonotonic and symmetric in Ui (assuming the chance of a
normal variate exceeding 6 standard deviations from the mean is
practically zero), S4 is nonmonotonic and asymmetric in Ui. For
S1 and S2, we consider three different levels of missingness ratio:
M1: η = (0, 0); M2: η = (−2, −1); M3: η = (−4, −5). For S3
and S4, we use levels of missingness ratio: M4: η = (−0.5, −0.5);
M5: η = (−2, −2), respectively.

The simulation missingness ratios in S1 and S2, under M1–
M3, are approximately: 16%, 30%, 50% and 12%, 28%, 50%,
respectively. Note that the propensity score depends only on the
outcome Y under M1, while it depends on both the outcome
and the covariates under M2 and M3, that is, the requirement
of Tang, Little, and Raghunathan (2003) is satisfied in M1 but
not under M2 and M3. For S3 and S4, the missingness ratios are
approximately 30%.

The simulation results are given in Tables 1–8. We evalu-
ate the performance of the estimators based on bias (BIAS),
standard error (SE), estimated standard error (SEE, obtained by
bootstrap), proximity of empirical confidence interval coverage
to the nominal target coverage of 0.95 (CP), and mean square
error (MSE). All simulations use a sample size of n = 300
with 500 replications and 300 bootstrap resampling for SEE. We
used a probit model for S1 and logistic model for S2–S4. For
MML, the outcome model is always correctly specified while the
propensity score is misspecified such that it uses a logit model
when the actual is probit and vice versa. For ZS, the distribution
of all covariates are assumed to be correctly specified.

To assess bias, we adopt a rule suggested by Olsen and Schafer
(2001) that bias does not have undue influence on inference
unless the standardized bias (bias over SE) exceeds 0.4. Applying
that rule, we conclude that the estimates based on the proposed
MPCL are unbiased. The sample SEs are similar to the corre-
sponding SEEs. Moreover, the coverage probabilities are close
to the target nominal level of 0.95. On the other hand, CC
exhibits serious biases that lead to low coverage probabilities. As
expected, the performance of ML based on a correctly specified
data model and propensity score is the best among all methods.
However, MML is seriously biased. For all methods, perfor-
mance is inversely related to missingness ratio, in all scenarios.

Under M1, the performance of TRL is slightly better than
MPCL. This result is not unexpected since M1 satisfies the
requirements of TRL. Furthermore, TRL does not need to esti-
mate the parameters in the propensity score; hence, the dimen-
sion of the unknown parameters for TRL is lower than that for
the proposed method. Under M2 and M3, the propensity score
depends on the covariates, in those cases, using TRL results in
seriously biased estimates.

Table 1. Estimation results of M1 under scenario S1.

MPCL

β1 β2 β3 β4 γ η1 η2

BIAS −0.001 0.010 0.013 −0.007 −0.008 −0.046 0.033
SE 0.146 0.068 0.230 0.067 0.051 0.373 0.737
SEE 0.142 0.069 0.227 0.070 0.051 0.371 0.764
CP 0.942 0.944 0.942 0.964 0.938 0.947 0.952
MSE 0.021 0.005 0.053 0.005 0.003 0.141 0.542

ML

β1 β2 β3 β4 γ η1 η2

BIAS −0.005 0.010 0.018 −0.005 −0.007 −0.006 0.035
SE 0.132 0.065 0.218 0.066 0.048 0.221 0.409
SEE 0.129 0.065 0.216 0.064 0.047 0.213 0.407
CP 0.948 0.942 0.952 0.960 0.920 0.932 0.944
MSE 0.017 0.004 0.048 0.004 0.002 0.049 0.168

MML

β1 β2 β3 β4 γ η1 η2

BIAS −0.126 −0.022 0.109 0.011 0.046 0.257 −0.833
SE 0.137 0.067 0.224 0.064 0.053 0.176 0.306
SEE 0.137 0.067 0.226 0.066 0.053 0.165 0.311
CP 0.846 0.924 0.926 0.962 0.882 0.614 0.236
MSE 0.034 0.005 0.062 0.004 0.005 0.097 0.787

TRL

β1 β2 β3 β4 γ

BIAS −0.007 0.007 0.017 −0.005 −0.007
SE 0.142 0.067 0.230 0.067 0.050
SEE 0.137 0.068 0.226 0.068 0.049
CP 0.938 0.948 0.946 0.962 0.938
MSE 0.020 0.005 0.053 0.005 0.003

ZS

β1 β2 β3 β4 γ

BIAS −0.003 −0.002 0.013 0.007 −0.008
SE 0.186 0.085 0.312 0.151 0.088
SEE 0.201 0.094 0.317 0.153 0.091
CP 0.966 0.962 0.940 0.966 0.944
MSE 0.034 0.007 0.097 0.023 0.008

CC

β1 β2 β3 β4 γ

BIAS 0.197 0.077 −0.125 −0.075 −0.043
SE 0.130 0.065 0.215 0.063 0.044
SEE 0.126 0.063 0.213 0.063 0.043
CP 0.636 0.736 0.914 0.762 0.790
MSE 0.056 0.010 0.062 0.010 0.004

It is also easy to observe that the proposed method is consid-
erably more efficient than ZS, which confirms our conjecture in
Section 2. In all simulations we carried out, the MPCL is consis-
tently at least 2 times and can be up to more than 4 times (for
β4 and γ ) more efficient than ZS, based on MSE. As suggested
in Section 2, MPCL is based on the conditional distribution
Y , X|R = 1 while ZS is based on the conditional distribution,
U|Y , Y∗, R = 1, hence MPCL uses more information from the
data than ZS. In the situations we studied, MPCL is more robust
than ML and TRL, and considerably more efficient than ZS.

As pointed out by one of the referees, the proposed MPCL
method involves iterated optimizations, and hence, computa-
tional effort of the method is a concern. For the simulation
study, the average time per simulation (with no bootstrapping
to illustrate the actual run time), all based on n = 300 obser-
vations, are (in seconds): 0.195, 1.528, 1.724, 2.124, 5.610, and
7.037, respectively, for CC, ML, MML, TLR, ZS, and MPCL.
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Table 2. Estimation results of M2 under scenario S1.

MPCL

β1 β2 β3 β4 γ η1 η2

BIAS 0.021 0.012 −0.013 0.002 −0.014 −0.056 −0.041
SE 0.154 0.095 0.238 0.074 0.054 0.642 0.745
SEE 0.157 0.097 0.239 0.073 0.052 0.632 0.740
CP 0.946 0.946 0.954 0.938 0.928 0.937 0.955
MSE 0.024 0.009 0.057 0.006 0.003 0.415 0.557

ML

β1 β2 β3 β4 γ η1 η2

BIAS −0.033 0.045 0.011 0.007 −0.007 0.004 −0.012
SE 0.137 0.083 0.227 0.072 0.052 0.335 0.419
SEE 0.143 0.084 0.232 0.070 0.050 0.332 0.414
CP 0.958 0.938 0.954 0.946 0.928 0.954 0.942
MSE 0.019 0.007 0.052 0.005 0.003 0.107 0.177

MML

β1 β2 β3 β4 γ η1 η2

BIAS −0.142 −0.073 0.079 −0.004 0.037 0.767 −0.578
SE 0.154 0.088 0.247 0.072 0.057 0.272 0.322
SEE 0.150 0.087 0.241 0.071 0.056 0.259 0.325
CP 0.832 0.888 0.938 0.942 0.916 0.198 0.540
MSE 0.044 0.013 0.067 0.005 0.005 0.662 0.437

TRL

β1 β2 β3 β4 γ

BIAS −0.237 −0.082 0.165 0.066 0.052
SE 0.166 0.111 0.262 0.078 0.069
SEE 0.162 0.106 0.255 0.075 0.065
CP 0.696 0.868 0.896 0.850 0.906
MSE 0.084 0.019 0.096 0.010 0.008

ZS

β1 β2 β3 β4 γ

BIAS −0.017 0.002 0.030 0.014 −0.007
SE 0.223 0.122 0.363 0.169 0.099
SEE 0.222 0.125 0.346 0.163 0.099
CP 0.952 0.956 0.927 0.949 0.960
MSE 0.050 0.015 0.132 0.029 0.010

CC

β1 β2 β3 β4 γ

BIAS 0.240 0.171 −0.067 −0.053 −0.040
SE 0.139 0.083 0.232 0.073 0.048
SEE 0.141 0.083 0.232 0.070 0.047
CP 0.622 0.464 0.924 0.856 0.842
MSE 0.077 0.036 0.058 0.008 0.004

As expected, the computing time is longest for MPCL, but
manageable for practical purposes.

5. Empirical Illustration

For over half a century, the Peabody Picture Vocabulary Test
(PPVT, Dunn and Dunn 2007) has been an important tool
for measuring the receptive vocabulary in Standard American
English. The test is standardized and age adjusted to be used
for all age groups, native or nonnative English speakers, and
independent of English proficiency level. In this section, we give
results of a study of PPVT data collected as part of the National
Longitudinal Survey of Child and Young Adult (NLSY79 Child).
The NLSY79 Child survey is a longitudinal study that follows the
biological children of women in NLSY79. As of 2016, more than
10,000 children have been interviewed in at least one survey
round. The children in the survey are assessed and interviewed

Table 3. Estimation results of M3 under scenario S1.

MPCL

β1 β2 β3 β4 γ η1 η2

BIAS 0.033 0.029 0.018 0.004 −0.018 −0.048 0.034
SE 0.191 0.144 0.301 0.083 0.058 0.845 0.852
SEE 0.184 0.142 0.292 0.086 0.061 0.815 0.816
CP 0.930 0.934 0.928 0.952 0.940 0.955 0.932
MSE 0.038 0.022 0.091 0.007 0.004 0.714 0.725

ML

β1 β2 β3 β4 γ η1 η2

BIAS 0.008 0.011 0.017 0.007 −0.014 −0.074 −0.042
SE 0.167 0.118 0.284 0.079 0.057 0.508 0.396
SEE 0.166 0.120 0.280 0.083 0.059 0.512 0.412
CP 0.942 0.954 0.966 0.938 0.964 0.944 0.958
MSE 0.029 0.014 0.081 0.006 0.003 0.263 0.158

MML

β1 β2 β3 β4 γ η1 η2

BIAS −0.152 −0.103 −0.003 −0.016 0.029 1.279 0.479
SE 0.169 0.123 0.294 0.084 0.065 0.414 0.345
SEE 0.173 0.124 0.290 0.083 0.065 0.418 0.345
CP 0.881 0.887 0.946 0.958 0.944 0.159 0.718
MSE 0.052 0.026 0.086 0.007 0.005 1.806 0.348

TRL

β1 β2 β3 β4 γ

BIAS −0.547 −0.492 −0.276 0.092 0.180
SE 0.245 0.223 0.383 0.098 0.133
SEE 0.243 0.219 0.385 0.095 0.131
CP 0.428 0.488 0.908 0.860 0.884
MSE 0.359 0.292 0.222 0.018 0.050

ZS

β1 β2 β3 β4 γ

BIAS −0.013 0.014 0.036 0.019 −0.005
SE 0.254 0.185 0.419 0.184 0.111
SEE 0.261 0.181 0.426 0.186 0.114
CP 0.966 0.950 0.953 0.958 0.963
MSE 0.065 0.034 0.176 0.034 0.012

CC

β1 β2 β3 β4 γ

BIAS 0.258 0.234 0.141 −0.039 −0.037
SE 0.174 0.123 0.291 0.081 0.053
SEE 0.167 0.121 0.283 0.083 0.055
CP 0.646 0.490 0.902 0.926 0.874
MSE 0.097 0.070 0.104 0.008 0.004

every two years. These assessments measure cognitive skills,
temperament, motor and social development, self competence,
behavioral issues, and their home environment. One of the
assessments is the PPVT. There is a large literature on using
PPVT as an index for family production models in economics
(see, e.g., Becker 1981; Blau and Grossberg 1992, and references
therein).

The PPVT is made up of a number of items. Each item
consists of 4 pictures. The interviewer says a word loud and the
child selects one of four pictures that best describes the word’s
meaning. Our sample comes from test results between 1986 and
1992. Our main interest is the trajectory of the test results in the
intervening years. We limit our focus to children aged between 3
and 4 years at the 1986 assessment. These children were offered
PPVT in 1986 and then again in. One of the research questions
of interest is whether there is a change in scholastic aptitude
and verbal skills over time and whether there is a gender bias
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Table 4. Estimation results of M1 under scenario S2.

MPCL

β1 β2 β3 β4 γ η1 η2

BIAS −0.001 0.011 0.013 −0.009 −0.008 −0.062 0.078
SE 0.141 0.068 0.226 0.065 0.051 0.294 0.719
SEE 0.135 0.067 0.219 0.067 0.050 0.326 0.704
CP 0.946 0.940 0.948 0.958 0.942 0.966 0.924
MSE 0.020 0.005 0.051 0.004 0.003 0.090 0.522

ML

β1 β2 β3 β4 γ η1 η2

BIAS −0.005 0.010 0.017 −0.006 −0.007 −0.009 0.033
SE 0.124 0.064 0.208 0.061 0.049 0.175 0.356
SEE 0.123 0.063 0.208 0.062 0.045 0.174 0.366
CP 0.958 0.934 0.944 0.954 0.940 0.952 0.958
MSE 0.015 0.004 0.044 0.004 0.002 0.031 0.128

MML

β1 β2 β3 β4 γ η1 η2

BIAS 0.065 0.034 −0.041 −0.027 −0.030 −0.283 1.146
SE 0.128 0.065 0.215 0.061 0.047 0.224 0.439
SEE 0.125 0.063 0.213 0.063 0.044 0.217 0.423
CP 0.920 0.909 0.951 0.931 0.858 0.756 0.271
MSE 0.021 0.005 0.048 0.004 0.003 0.130 1.505

TRL

β1 β2 β3 β4 γ

BIAS −0.007 0.008 0.019 −0.006 −0.007
SE 0.136 0.067 0.224 0.064 0.050
SEE 0.132 0.066 0.220 0.066 0.048
CP 0.950 0.942 0.948 0.952 0.940
MSE 0.018 0.005 0.051 0.004 0.003

ZS

β1 β2 β3 β4 γ

BIAS −0.015 −0.006 0.026 0.004 −0.004
SE 0.190 0.083 0.313 0.150 0.093
SEE 0.196 0.093 0.309 0.153 0.091
CP 0.972 0.965 0.952 0.958 0.930
MSE 0.036 0.007 0.098 0.022 0.009

CC

β1 β2 β3 β4 γ

BIAS 0.208 0.094 −0.156 −0.093 −0.051
SE 0.123 0.063 0.208 0.060 0.043
SEE 0.120 0.062 0.205 0.061 0.041
CP 0.574 0.634 0.886 0.650 0.724
MSE 0.058 0.013 0.068 0.012 0.004

in the change. To obtain a proper assessment, we need to take
into account maternal supply. Here, we use two measures of
maternal supply, the average income of the mother between
1986 and 1992 and education attainment of the mother as of
1986. Hence, we further restrict the sample to only those whose
mothers reported nonzero income in at least one year between
1986 and 1992. There are a total of n = 557 children who satisfy
these criteria and who have valid assessments in 1986. By 1992
assessment, their age ranges between 9 and 10 years with a mean
of 9.8 years. There are 282 males and 275 females.

A key characteristics of this sample is the significant amount
of missing data. In 1992, there are only 387 valid assessments,
giving a missing data rate of over 30%. There are a variety of
reasons why a child might skip the assessment, for example,
motivation, family influence, perceived poor performance, etc..
As a result, nonignorable missingness cannot be ruled out. Our
goal here is to analyze the data using the proposed method, and

Table 5. Estimation results of M2 under scenario S2.

MPCL

β1 β2 β3 β4 γ η1 η2

BIAS 0.007 0.021 0.017 −0.012 −0.012 −0.152 0.079
SE 0.157 0.102 0.245 0.070 0.056 0.541 0.647
SEE 0.153 0.098 0.236 0.071 0.052 0.551 0.658
CP 0.938 0.932 0.944 0.948 0.920 0.942 0.938
MSE 0.025 0.011 0.060 0.005 0.003 0.315 0.424

ML

β1 β2 β3 β4 γ η1 η2

BIAS −0.007 0.013 0.025 −0.008 −0.010 −0.021 −0.012
SE 0.143 0.089 0.235 0.067 0.052 0.268 0.333
SEE 0.140 0.085 0.228 0.068 0.050 0.291 0.357
CP 0.964 0.968 0.942 0.912 0.954 0.954 0.940
MSE 0.021 0.008 0.056 0.005 0.003 0.072 0.111

MML

β1 β2 β3 β4 γ η1 η2

BIAS 0.083 0.074 −0.016 −0.018 −0.031 −0.900 0.772
SE 0.145 0.089 0.236 0.068 0.051 0.354 0.432
SEE 0.141 0.086 0.230 0.069 0.048 0.349 0.426
CP 0.892 0.858 0.951 0.951 0.868 0.293 0.598
MSE 0.028 0.013 0.056 0.005 0.004 0.934 0.782

TRL

β1 β2 β3 β4 γ

BIAS −0.275 −0.107 0.195 0.082 0.068
SE 0.170 0.116 0.263 0.074 0.072
SEE 0.164 0.114 0.254 0.074 0.069
CP 0.646 0.842 0.876 0.796 0.880
MSE 0.104 0.025 0.107 0.012 0.010

ZS

β1 β2 β3 β4 γ

BIAS −0.015 0.004 0.027 0.011 −0.006
SE 0.222 0.125 0.357 0.169 0.099
SEE 0.223 0.129 0.342 0.162 0.098
CP 0.956 0.956 0.950 0.957 0.960
MSE 0.049 0.016 0.128 0.029 0.010

CC

β1 β2 β3 β4 γ

BIAS 0.259 0.219 −0.049 −0.079 −0.045
SE 0.142 0.089 0.234 0.068 0.049
SEE 0.140 0.086 0.230 0.069 0.046
CP 0.536 0.278 0.946 0.792 0.778
MSE 0.087 0.056 0.057 0.011 0.004

to compare it with several other methods that make different
assumptions on the missingness mechanisms.

Under the notations we defined in Section 1, we let the out-
come Y be the difference in PPVT score between 1986 and 1992.
The PPVT scores have been standardized to be normally dis-
tributed across age. Our main covariate of interest is Gender (1
= “Male,” 0 = “Female”). Other covariates are Race (1 = “White,”
0 = “Others”), Mother’s income, Mother’s education (1 = “>12
years,” 0 = “≤12 years”). We obtain mother’s income by taking
the total income over the years a mother reported income (in the
labor force) and dividing by the total hours of work reported
during those years. We also created three binary dummy vari-
ables that classify the data by the four quartiles of the 1986
PPVT score, these are named Dummy1, Dummy2, Dummy3.
So a 1986 PPVT score in the 1st, 2nd, 3rd, and 4th quartiles
would receive (0,0,0), (1,0,0), (0,1,0), (0,0,1), respectively, for
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Table 6. Estimation results of M3 under scenario S2.

MPCL

β1 β2 β3 β4 γ η1 η2

BIAS 0.009 0.031 0.042 −0.012 −0.020 −0.057 0.017
SE 0.185 0.148 0.296 0.083 0.064 0.775 0.807
SEE 0.181 0.144 0.290 0.084 0.061 0.742 0.787
CP 0.942 0.932 0.928 0.948 0.920 0.929 0.915
MSE 0.034 0.023 0.089 0.007 0.005 0.603 0.650

ML

β1 β2 β3 β4 γ η1 η2

BIAS −0.006 0.020 0.044 −0.010 −0.016 −0.063 −0.021
SE 0.168 0.125 0.281 0.080 0.061 0.501 0.320
SEE 0.164 0.123 0.276 0.081 0.059 0.469 0.323
CP 0.944 0.934 0.942 0.962 0.932 0.922 0.952
MSE 0.028 0.016 0.081 0.006 0.004 0.254 0.103

MML

β1 β2 β3 β4 γ η1 η2

BIAS 0.077 0.084 0.055 −0.011 −0.030 −1.192 −0.345
SE 0.160 0.124 0.278 0.084 0.062 0.462 0.376
SEE 0.169 0.125 0.285 0.082 0.058 0.471 0.401
CP 0.944 0.885 0.946 0.954 0.862 0.283 0.875
MSE 0.031 0.022 0.080 0.007 0.005 1.634 0.260

TRL

β1 β2 β3 β4 γ

BIAS −0.693 −0.661 −0.375 0.122 0.251
SE 0.311 0.314 0.430 0.101 0.202
SEE 0.306 0.312 0.424 0.099 0.204
CP 0.404 0.462 0.914 0.822 0.886
MSE 0.577 0.535 0.325 0.025 0.104

ZS

β1 β2 β3 β4 γ

BIAS −0.009 0.013 0.033 0.015 −0.009
SE 0.255 0.189 0.425 0.181 0.109
SEE 0.263 0.190 0.426 0.186 0.114
CP 0.956 0.950 0.946 0.955 0.955
MSE 0.065 0.036 0.181 0.033 0.012

CC

β1 β2 β3 β4 γ

BIAS 0.275 0.284 0.191 −0.064 −0.044
SE 0.168 0.129 0.285 0.083 0.058
SEE 0.168 0.127 0.283 0.082 0.055
CP 0.614 0.384 0.88 0.882 0.828
MSE 0.104 0.097 0.118 0.011 0.005

(Dummy1, Dummy2, Dummy3). The regression equation is

Y = β1 + β2Gender + β4Race + β4Mother’s Income
+β5Mother’s education + β6Dummy1 + β7Dummy2

+β8Dummy3 + ε, ε ∼ N(0, γ 2).

The complete case method, CC, discards subjects with missing
outcomes. In this case, analysis is based only on the 387 observa-
tions with both valid 1986 and 1992 PPVT scores. The method
of Tang, Little, and Raghunathan (2003, TLR) assumes nonig-
norable missing but the propensity for missingness to depend
only on the outcome but none of the covariates. The method of
Zhao and Shao (2015, ZS) allows nonignorable missingness to
depend on the outcome as well as the covariates but requires an
instrument. The method proposed in this article makes the same
assumption as ZS but does not require instrumental variables.
We use (13) and (14) to estimate η, and we referred the solution
as MCPL. For ZS, as suggested by Zhao and Shao (2015), binary

Table 7. Estimation results under scenario S3.

MPCL

β1 β2 β3 β4 γ η1 η2

BIAS 0.017 0.004 −0.010 −0.006 −0.010 −0.0835 −0.0995
SE 0.151 0.090 0.234 0.076 0.052 0.648 0.857
SEE 0.152 0.091 0.239 0.072 0.053 0.641 0.815
CP 0.948 0.946 0.948 0.924 0.924 0.951 0.921
MSE 0.023 0.008 0.055 0.006 0.003 0.426 0.743

ML

β1 β2 β3 β4 γ η1 η2

BIAS 0.010 −0.001 −0.009 −0.005 −0.009 −0.040 0.068
SE 0.141 0.081 0.221 0.072 0.051 0.378 0.467
SEE 0.140 0.080 0.233 0.069 0.051 0.380 0.461
CP 0.948 0.946 0.952 0.934 0.926 0.932 0.938
MSE 0.020 0.007 0.049 0.005 0.003 0.144 0.223

MML

β1 β2 β3 β4 γ η1 η2

BIAS −0.121 −0.086 0.026 −0.001 0.041 0.833 −0.390
SE 0.149 0.084 0.234 0.074 0.056 0.305 0.372
SEE 0.146 0.083 0.240 0.071 0.056 0.297 0.367
CP 0.876 0.834 0.962 0.932 0.908 0.240 0.786
MSE 0.037 0.014 0.055 0.005 0.005 0.786 0.290

TRL

β1 β2 β3 β4 γ

BIAS −0.160 −0.037 0.109 0.0551 0.036
SE 0.158 0.099 0.249 0.079 0.061
SEE 0.154 0.098 0.251 0.075 0.063
CP 0.830 0.918 0.926 0.878 0.930
MSE 0.051 0.011 0.074 0.009 0.005

ZS

β1 β2 β3 β4 γ

BIAS −0.011 −0.007 0.009 0.004 −0.008
SE 0.232 0.112 0.357 0.162 0.091
SEE 0.218 0.119 0.346 0.163 0.098
CP 0.932 0.956 0.944 0.964 0.962
MSE 0.054 0.013 0.127 0.026 0.008

CC

β1 β2 β3 β4 γ

BIAS 0.238 0.173 −0.035 −0.066 −0.040
SE 0.145 0.080 0.230 0.073 0.047
SEE 0.139 0.079 0.232 0.069 0.046
CP 0.608 0.392 0.942 0.820 0.832
MSE 0.078 0.037 0.054 0.010 0.004

instrumental variables are more robust. Furthermore, using
binary instruments eases the computational burden. Based on
the argument above that children who did poorly previously
might be more likely to miss an assessment, we let the instru-
mental variable to be the 1986 PPVT score. Hence, we define Z
= (Dummy1, Dummy2, Dummy3)T . It is reasonable to assume
that, P(D = 1|Y , Z) = P(D = 1|Y). In addition, scores in a
previous assessment is likely to be correlated with changes in
test score between 1986 and 1992. An additional hurdle for ZS
is to obtain the nonparametric distribution of the covariates,
conditional on the instruments. Among the covariates, 1986
PPVT score is continuous, whereas gender, race and mother’s
education are binary. We followed Zhao and Shao (2015, eqs. (6)
and (8) therein) by using a combination of kernel density and
discrete approximation to handle the discrete and continuous
components of the conditional distribution. For all methods, we
used 300 nonparametric bootstrap samples to estimate the SE of
the estimates.
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Table 8. Estimation results under scenario S4.

MPCL

β1 β2 β3 β4 γ η1 η2

BIAS 0.012 0.000 −0.016 −0.004 −0.010 0.003 0.120
SE 0.154 0.073 0.236 0.076 0.053 0.607 1.110
SEE 0.154 0.074 0.241 0.075 0.054 0.599 1.076
CP 0.946 0.948 0.950 0.934 0.944 0.951 0.989
MSE 0.024 0.005 0.056 0.006 0.003 0.367 1.243

ML

β1 β2 β3 β4 γ η1 η2

BIAS 0.009 −0.002 −0.012 −0.002 −0.009 0.001 0.024
SE 0.141 0.067 0.226 0.068 0.050 0.523 0.475
SEE 0.141 0.067 0.229 0.068 0.051 0.507 0.461
CP 0.944 0.942 0.954 0.946 0.932 0.934 0.936
MSE 0.020 0.005 0.051 0.005 0.003 0.273 0.226

MML

β1 β2 β3 β4 γ η1 η2

BIAS −0.109 −0.024 0.023 0.015 0.061 −0.230 0.092
SE 0.149 0.071 0.235 0.070 0.059 0.487 0.453
SEE 0.148 0.071 0.237 0.071 0.059 0.454 0.419
CP 0.886 0.916 0.952 0.944 0.852 0.922 0.910
MSE 0.034 0.006 0.056 0.005 0.007 0.289 0.213

TRL

β1 β2 β3 β4 γ

BIAS 0.021 0.005 −0.026 −0.007 −0.012
SE 0.151 0.072 0.239 0.076 0.052
SEE 0.151 0.071 0.241 0.074 0.053
CP 0.942 0.936 0.938 0.934 0.946
MSE 0.023 0.005 0.058 0.006 0.003

ZS

β1 β2 β3 β4 γ

BIAS −0.008 −0.006 0.002 0.009 −0.006
SE 0.231 0.093 0.356 0.160 0.090
SEE 0.219 0.100 0.340 0.162 0.097
CP 0.930 0.964 0.934 0.950 0.970
MSE 0.053 0.009 0.127 0.026 0.008

CC

β1 β2 β3 β4 γ

BIAS 0.312 0.087 −0.207 −0.095 −0.056
SE 0.139 0.066 0.224 0.068 0.044
SEE 0.136 0.066 0.225 0.067 0.044
CP 0.374 0.758 0.854 0.708 0.736
MSE 0.117 0.012 0.093 0.014 0.005

We use the CC estimates as initial values for the other
methods. The results of the analysis are given in Table 9. The
following trends emerge from the analysis. The estimates of the

regression coefficients using CC, TLR, MCPL are all in the same
direction. The results for ZS are drastically different from the
other methods. Its estimates are very different in magnitudes.
Furthermore, the SEs are very large. This is an indication of the
curse of dimensionality problem discussed earlier.

We now discuss the results for CC, TLR, and MCPL. The
estimates for race, mother’s income, and mother’s education
point to a higher improvement in PPVT scores between 1986
and 1992, for children who are white, whose mothers has a
higher income and whose mothers have >12 years of education.
The results for the last two factors seem to explain themselves
quite easily. Those whose mothers are more highly educated,
with higher income, provide better support and possibly moti-
vation for their children to improve. Blau and Grossberg (1992)
also suggested that mothers with higher income could allo-
cate a greater proportion of their time with their children on
developmental activities. Many studies, for example, Champion
et al. (2003) and references therein, suggested that children
from minority background tend to do poorly in tests such
as PPVT. These authors argued that children from minority
or linguistically diverse groups may not have experience with
or exposure to words that educators in schools expect them
to know. If this is true, then there would be less opportu-
nity for improvement over time as compared to whites. The
results show that girls improved more over time than boys.
This observation is consistent with many studies that showed a
gender bias in favor of females in language tests (e.g., Chiu and
McBride-Chang 2006, and references therein). The estimates for
Dummy1, Dummy2, and Dummy3 are all negative for all four
methods, and importantly, in increasing (negative) magnitude.
These dummy variables show comparison between the lowest
quartile (Dummy1 = Dummy2 = Dummy3 = 0) and the remain-
ing quartiles, suggesting the higher the PPVT score in 1986, the
lower the improvement, other factors being considered. This
may be explained by that each child has a ceiling on his/her
ability and there is more room for improvement for those who
initially fared poorly.

As pointed out earlier, the results for ZS are quite different
from the rest. In addition, its SEs are quite a bit higher than
the rest. The poor results of ZS (as measured by the size of its
SEs) can be attributed to two possible factors. First, ZS requires
more models than other methods, such as MCPL, which only
needs specification of the conditional distribution of the out-
come. Furthermore, ZS also needs to specify the conditional
distribution of the covariates that appear in the propensity score.

Table 9. Regression analysis of PPVT from the NLSY79 Children Survey.

CC ZS TLR MPCL

Parameter Estimate SEa Estimate SE Estimate SE Estimate SE

Intercept 78.8 1.83 76.4 15.2 79 2.03 79.8 2.19
Gender 1.23 1.18 3.75 4.43 0.35 1.45 0.797 1.55
Race 2.4 1.13 1.77 12.4 2.32 1.21 3.16 1.36
Mother’s Income 2.45 1.24 −12.6 17 2.6 1.36 2.82 1.45
Mother’s education 1.71 1.54 6.5 19.5 1.96 1.63 2.33 1.78
Dummy1 −4.59 1.73 4.72 14.6 −3.58 1.76 −4.19 1.86
Dummy2 −11.2 1.79 −15.6 12.1 −10.6 1.87 −11.6 2.09
Dummy3 −18 1.74 −20 16.6 −18.5 1.95 −20.4 2.61
γ 11.5 0.57 16.1 8.3 11.7 0.80 12.5 0.98

aBased on 300 bootstrap samples.
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That distribution is complex when the covariates are of mixed
categorical and continuous types, such as the data considered
here.

Comparing CC to TLR and MCPL, the coefficients for CC
are all slightly attenuated, which supports the hypothesis that
there may be some nonrandom missingness. In particular, if
children who did poorly have a higher propensity for missing
a future assessment, then the remaining subsample of complete
cases would be more similar than reality. Once adjustment for
nonrandom missingness has been made, the difference between
the 1986 low and high scorers is restored, leading to higher
values in the parameter estimates.

6. Concluding Remarks

This article proposes a new method that overcomes the well-
known limitation of Tang, Little, and Raghunathan’s (2003)
method by allowing the propensity score to depend on the
outcome as well as the covariates. Compared to the method
of Zhao and Shao (2015), our method is more efficient since
our likelihood includes information on the relationship between
the outcome and the covariates affecting missingness. In the
literature, profile likelihood is only known to work in a limited
number of semiparametric models, such as Vardi’s (1985) biased
sampling models and Cox’s (1972) regression models. In fact,
even if a full likelihood is available, viz.,

n∏
i=1

[
π(Yi + UT

i η)f (Yi|Xi, �)

]Ri

[ ∫
{1 − π(Y + UT

i η)}f (Yi|Xi, �)dY
]1−Ri

profiling in the manner of the current article is not possible,
since the support points π(·) are unknown. By working with a
pseudo-likelihood based only on the complete data, we success-
fully converted this problem to a biased sampling problem.

The proposed method uses an iterative optimization algo-
rithm. It is difficult to guarantee the objective functions are
convex/concave. For nonconvex optimization problems, the
choice of initial values is an important factor for the speed
of convergence. Common choices of initial values include: (1)
random starting point (generated from some random distribu-
tions which are defined on the parameter space); (2) the “best”
among different random starting points (for each set of initial
values, the objective functions are calculated and the set with the
optimal objective function value is considered as the “best” and
used as the starting point); (3) estimates from other estimators.
It is also possible to develop other methods according to the
characteristics of the data and the objective function. For the
simulations and empirical application, we tried to maximize
the pseudo-likelihood using different initial values. The answers
were similar in all cases. So we used the complete case estimates
as initial values. A similar strategy was employed by Zhao and
Shao (2015) and Tang, Little, and Raghunathan (2003). For
small sample size, we do not exclude the possibility that some
initial values may lead to local solutions. If this happens, we
suggest using multiple initial values and then choosing the
one with the largest pseudo-likelihood as the solution. In our
experience, this method works well.

Supplementary Materials

The proofs of the asymptotic properties are given in the Supplementary
Materials.
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