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ABSTRACT 

Anaerobic ammonium-oxidizing (anammox) bacteria derive their energy for growth from the 

oxidation of ammonium with nitrite as the electron acceptor. N2, the end product of this 

metabolism, is produced from the oxidation of the intermediate, hydrazine (N2H4). Previously, we 

identified N2-producing hydrazine dehydrogenase (KsHDH) from the anammox organism Kuenenia 

stuttgartiensis as the gene product of kustc0694 and determined some of its catalytic properties. In 

the genome of K. stuttgartiensis, kustc0694 is one out of ten paralogs related to octaheme 

hydroxylamine (NH2OH) oxidoreductase (HAO). Here, we characterized KsHDH as a covalently cross-

linked homotrimeric  octaheme protein as found for HAO and HAO- related hydroxylamine-oxidizing 

enzyme kustc1061 (KsHOX) from K. stuttgartiensis. Interestingly, the HDH trimers formed octamers 

in solution, each octamer harboring an amazing 192 c-type heme moieties. While HAO and KsHOX 

are capable of hydrazine oxidation as well, KsHDH was highly specific for this activity. To understand 

this specificity, we performed detailed amino acid sequence analyses and investigated the catalytic 

and spectroscopic (electronic absorbance, EPR) properties of KsHDH in comparison with the well-

defined HAO and HOX. We conclude  that HDH specificity is most likely derived from structural 

changes around the catalytic heme 4 (“P460”) and of the electron-wiring circuit comprising seven 

His/His-ligated c-type hemes in each subunit. These nuances make HDH a globally prominent N2-

producing enzyme, next to nitrous oxide (N2O) reductase from denitrifying microorganisms. 

--------------------------------------------------------- 

An estimated 30-70% of all N2 that is released into the atmosphere is produced by anaerobic 

ammonium-oxidizing (anammox) bacteria (1,2), which represent one of the latest scientific 

discoveries in the biogeochemical nitrogen cycle. These organisms gain their energy for growth from 

the oxidation of ammonium, with nitrite as the electron acceptor, to produce N2. Employing 

advanced molecular tools, these bacteria have been detected in nearly every anoxic environment 

where fixed nitrogen compounds are degraded (3). Besides its biogeochemical and ecological 

relevance, the anammox process has found worldwide application in ammonium removal from 

wastewater as an environment-friendly and cost-effective alternative to conventional systems (4). 

In our current understanding, anammox catabolism is comprised of three consecutive, coupled 

reactions with two  intermediates, nitric oxide (NO) and hydrazine (N2H4): (1) the one-electron 

reduction of the substrate nitrite  to NO, (2) the activation of the  second substrate ammonium with 

NO and the concomitant input of three electrons to synthesize N2H4, and (3) the oxidation of 

hydrazine, the most powerful reductant in nature, to N2 [Equations (1-3)] (5-7). The four electrons 

that are released during hydrazine oxidation then drive the reduction reactions (1) and (2). 

NO2- + 2H+ + e-  (1) 

NO + NH4+ + 2H+ + 3e-  

(E0’= +0.06 V) (2) 

N2H4  - (E0’= -0.75 V) (3) 

The enzyme that catalyzes hydrazine oxidation and thus effectively produces about half of all N2 

emitted into the atmosphere is called hydrazine dehydrogenase (HDH) or hydrazine-oxidizing 

enzyme (HZO). In our previous work, we identified HDH from Kuenenia stuttgartiensis (KsHDH) as 

the gene product of kustc0694 and determined some of its catalytic properties (5). A hydrazine- 

oxidizing enzyme highly related to kustc0694 was isolated before from the anammox enrichment 

culture KSU-1, but the exact reaction catalyzed by it has so far remained unknown (8). In the genome 



of K. stuttgartiensis, kustc0694 is one of the ten paralogs of hydroxylamine oxidoreductase (HAO)-

like proteins (3, 6). HAO-like proteins have two structurally well-characterized representatives, 

NeHAO from Nitrosomonas europaea (9-11) and hydroxylamine oxidase from K. stuttgartiensis 

(kustc1061; here denoted as KsHOX) (12). NeHAO is a key enzyme in aerobic ammonium-oxidizing 

bacteria, which catalyzes the four-electron oxidation of hydroxylamine to  nitrite [Equation (4)], 

whereas KsHOX is a dominant protein in the anammox bacterium catalyzing the three-electron 

amino acid level), NeHAO and KsHOX are structurally highly similar (10-12). Both are homotrimeric 

proteins in which each monomer binds eight c- type hemes (Fig. 1). The arrangement of 24 hemes of 

both proteins is fully superimposable. 

  

Within a subunit, seven His/His ligated hemes constitute an electron-wiring circuit towards an 

external electron acceptor (12,13). To facilitate efficient electron transport, these hemes may be 

electronically coupled, resulting in highly convoluted EPR spectra of as-isolated, fully oxidized (all 

ferric) NeHAO (14,15). One heme (heme 4) forms part of a structurally conserved catalytic center 

(Fig. 1). This   heme 

4 is covalently bound to a tyrosine residue  from a neighboring subunit. This unusual crosslink 

induces a pronounced ruffling of the porphyrin plane and gives rise to a characteristic absorption 

band at around 460 nm in the UV-visible spectrum of the reduced protein (9, 10, 12, 14). After this 

absorption band, catalytic heme 4 is termed the P460 cofactor. Due to small structural changes 

around the P460 catalytic site (Fig. 1C), KsHOX oxidizes hydroxylamine to NO, rather than to nitrite 

as NeHAO does (12). Interestingly, both HAO and HOX can use hydrazine as a substrate, too 

[Equation (3)], although with lower catalytic efficiency (kcat/ Km) than their physiological substrate, 

hydroxylamine [9,12]. 

NH2OH - + 5H+ +  4e- 

(E0’= +0.065 V) (4) 

NH2OH - 

(E0’= -0.030 V) (5) 

Here, we characterized KsHDH in detail and identified it as a homotrimeric octaheme protein in 

which the three subunits are covalently bound to form a P460-like prosthetic group as found in 

NeHAO and KsHOX. In contrast to the two latter enzymes, the homotrimers of KsHDH themselves 

were  found to form octamers in solution. KsHDH specifically oxidized hydrazine to N2 in accordance 

with Equation (3), and was inhibited by NH2OH and NO. The genome   of 

K. stuttgartiensis harbors a close paralog of kustc0694, namely kustd1340, whilst close orthologs of 

kustc0694 and kustc1340 were detected in all anammox genomes sequenced thus far. Considering a 

close structural relationship with other HAO-like proteins, we addressed which features determine 

the specificity of HDH from anammox bacteria. 

RESULTS 

HDH is a Homotrimeric Protein with Covalently Bound Subunits forming Octamers in Solution- 

Hydrazine dehydrogenase from K. stuttgartiensis was purified as a bright red protein that, when 

-

220 kDa (Fig. 2 A). When resolved by SDS-PAGE, the protein remained at the top of the gel. 



Occasionall

an arrow). MALDI-TOF MS verified that all visible bands were derived from the same protein that 

had been annotated as the octaheme protein kustc0694. Notably,  18 out of 83 predicted peptides in 

the m/z 500- 4,000 range were detected after tryptic digestion, including two peptides (molecular 

masses 2,173.9 Da and 2,615.2 Da) that distinguished kustc0694 from its close paralog kustd1340 

(96% sequence identity at the amino acid level; Supplemental Fig. S1). Peptides comprising a 

CX2,4CH motif for covalent heme c binding remained beyond detection. Linear MALDI-TOF MS 

theoretical value (201,610.5 Da) of a homotrimer with each monomer (62,271.5 Da) possessing eight 

bound heme c (Mr= 616.5) molecules. Thus, the high molecular mass of native KsHDH indicated that 

the three subunits were covalently bound to each other. Calculation of the subunit theoretical mass 

took into account N-terminal cleavage (after Val-107) following an alternative translation start site at 

Met-75 (see below; Supplemental Fig. S1). Cleavage  of the N-terminal leader sequence (32 amino 

acids) would facilitate export of HDH into the anammoxosome, an anammox-specific cell organelle 

where catabolism resides and where processed HDH is specifically localized as recently shown by 

immunogold labelling (16). 

The oligomeric state of KsHDH was corroborated by the results from sedimentation velocity 

analytical ultracentrifugation (AUC SV) and analytical size-exclusion chromatography coupled to 

multi-angle light scattering (SEC/MALS) analyses (Table 2;  Fig. 3AB). Both methods showed a 

prominent species corresponding to the homotrimer (α3, calculated mass of 201.6 kDa) and a 

monomeric species (Mr = 61,000-75,000) in minor amounts. Strikingly, both methods also revealed 

aggregates with molecular masses of 1,760.7 ± 7.0 kDa and 1,731.7 kDa as determined by SEC/MALS 

and AUC SV, respectively (Table 2). In the AUC sedimentation profile, these aggregates represented 

the major peak (Fig. 3A). As judged from their molecular mass, aggregates could account for 

octamers of homotrimeric KsHDH      (α24=      (α3)8,      1,612.9      kDa). 

Fractionation of the α3 and α24 peaks from SEC and separate re-injection onto the column again 

resulted in chromatograms featuring two major peaks with elution volumes as observed for the 

original sample. This indicated a dynamic equilibrium between the α3 and α24 species in solution. 

Transmission electron microscopy (TEM) of negatively stained KsHDH samples supported the AUC SV 

and SEC/MALS results and revealed assemblies with an approx. size o16f 1n6m×, next to smaller 

(approx. 8 × 8 nm) globular particles accounting for the homotrimers (Fig. 4A). After 

glutaraldehyde cross-linking and re-purification by SEC, these 16   n×m   particles   having   a   four

 -fold symmetry were the most abundant species observed, besides particles with a five-fold 

symmetry in minor amounts (Fig. 4, B, D-F). The 16 × 16 nm particles were visible as tetrameric 

configurations and as two parallel dumbbells, probably representing orthogonal views of the same 

particle (Fig. 4, D, E). These large particles would then be composed of eight egg-like protein 

molecules, their tops pointing to each other. One may note that one such assembly would carry a 

calculated 192 heme c molecules. KsHOX did not migrate as higher MW aggregates, neither on 

SEC/MALS nor on AUC SV chromatograms. TEM showed a homogeneous distribution of 8 × 8 nm 

particles only (Fig. 4C). Their size and shape fitted the dimensions (9 × 9 × 9 nm) determined for the 

tulip-shaped KsHOX homotrimeric structures (Fig. 1A) (12). 

Sequence Analysis of KsHDH and its Homologs related to HAO-like octaheme proteins from other 

Anammox Species - MALDI-TOF MS indicated KsHDH to be a homotrimeric protein possessing eight 

c-type hemes per subunit and identified the protein as the gene product of kustc0694, rather than of 

the close paralog kustd1340. Close homologs of kustc0694 and kustd1340 were readily detected in 

other sequenced anammox  genomes (79-96% sequence identities of the N- terminally cleaved        



gene products; Supplemental Fig. S1). However, kustc0694 differed from all others by the presence 

of a 75-amino-acid N-terminal extension. This extension was most likely an artifact caused by an 

erroneously annotated start  codon,  the actual translation start being Met-75. In agreement with 

this, 21 nucleotides  upstream of Met-75 a Shine-Dalgarno sequence (AGGAGG) was present. Met-75 

was followed by an N-terminal leader sequence (32 amino acids) seen at this position in all other 

HDH homologs. Moreover, the first peptide (Mr = 2691.2 Da) that we could detect in tryptic digests 

was the one immediately following Val-107 in the KsHDH sequence. 

Multiple protein sequence alignment affiliated the HDH-like proteins with octaheme proteins with 

known crystal structures and functions (NeHAO and KsHOX) (Supplemental Fig. S1). This affiliation 

was supported by sequence conservation of the eight heme c binding motifs, including the positions 

of the seven histidines that act as distal ligands to the seven His/His-ligated heme c moieties 

involved in electron transfer. An unusual feature of the HDH proteins was the presence of a CX4CH, 

rather than a CX2CH, binding motif for heme 3. Taking into account the conserved position of this 

motif and of the distal histidine (H3’), this heme 3 would be His/His ligated, making it an electron-

transferring one, but possibly with a different spatial orientation as compared to heme 3 in NeHAO 

and KsHOX. 

arrangement of heme cofactors of NeHAO and KsHOX are virtually identical (Fig. 1) (10- 12). This 

similarity particularly concerns the structure of the catalytic heme 4 and its surroundings. Sequence 

comparison suggested that the structural similarity might include the HDH members. Notably, key 

amino acids involved in the covalent binding of an adjacent subunit to heme 4 (a tyrosine) and in 

proton withdrawal from the substrates (an aspartate- histidine pair) could be detected in the HDH 

sequences, next to the amino acids  forming part of a hydrogen-bonding network that transports 

protons to the water-filled cavity at the substrate entrance site (Fig. 1, B, C). A critical difference 

between NeHAO and KsHOX is the presence a tyrosine (Tyr-358) that assists in the addition of a 

water molecule to a nitrosyl intermediate during nitrite formation in the former protein [Equation 

(4)] (12). In KsHOX, this tyrosine is moved away from the catalytic site by a two-amino acid 

contraction and the position of the NeHAO Tyr-358 is occupied by a methionine (Met- 323). This very 

same contraction and methionine replacement was also found in the HDH members. One may note 

that neither hydroxylamine oxidation to NO [Equation (5)] nor hydrazine oxidation to N2 [Equation 

(3)] include a water addition. Opposite to the catalytic site near the proximal histidine of heme 4 

(P460), there is a distinction between the three proteins (Fig. 1B, C) that might be of relevance in 

determining substrate specificity. Here, the carboxylate oxygen of Asp-231 in NeHAO is at hydrogen-

bonding distance to the proximal histidine of heme 4 (P460), while the carbonyl oxygen of Ala-201 

occupies this position in KsHOX. Remarkably, in the HDH members a cysteine was observed at this 

site, possibly affecting the heme 4 redox potential (see below). 

KsHDH is an N2–producing Enzyme- KsHDH catalysed the four-electron oxidation of hydrazine to N2 

according to Equation (3). This four-electron stoichiometry was apparent when following the 

reaction with excess ferric cytochrome c as the electron acceptor (Fig. 5A). Experiments with double-

labeled hydrazine (H215N-15NH2) confirmed that double-labeled N2 was the end product of this 

reaction, fitting the expected 1:1 stoichiometry (Fig.    5B).    Hydrazine    oxidation   followed 

Michaelis-  

-1 mg-  



 did not serve as a substrate, neither in oxidative nor 

in reductive directions, when assays were performed in the presence of oxidized or reduced 

cytochrome  c, respectively. In the absence of cytochrome c, hydroxylamine disproportionation into 

ammonium   and   nitrogen   species   of higher oxidation states (NO2-, NO, N2O, N2) did not occur.  

Other  nitrogenous  compounds   tested (NH4+, NO, NO2-, NO3-) were not converted in assays with 

oxidized or reduced cytochrome c as    co-substrate    either.    Instead    of   being substrates, 

 

inhibitors of hydrazine oxidation activity. These findings  demonstrated   that   KsHDH,   indeed   was 

a dedicated hydrazine dehydrogenase that makes N2. 

The   catalytic   properties   of KsHDH were similar to those reported for its homolog (HDH/HZO) 

purified from the anammox enrichment culture KSU-1 (Table  3). Octaheme KsHOX from K. 

stuttgartiensis (kustc1061) and from other anammox bacteria oxidizes hydrazine as well, albeit with 

lower catalytic efficiency (kcat/ Km). Hydrazine also served as a substrate for NeHAO, surprisingly 

with kcat and Km values that were superior to genuine HDH, even though hydrazine does not play a 

role in N. europaea metabolism: this organism and other aerobic ammonium oxidizing 

microorganisms are not able synthesize hydrazine, which is an exclusive property of anammox 

bacteria (3,5-7). 

KsHDH harbors a P460 prosthetic group- As expected from its bright red color, linear MALDI-TOF MS 

and protein sequence analyses, KsHDH was a multiheme protein. The UV-vis electronic absorbance 

spectrum of as-isolated, fully oxidized KsHDH displayed features typical for ferric heme c proteins, 

namely a dominant absorption peak having a maximum at 408 nm and a broad absorption band in 

the 550 nm region (Fig. 6). After reduction by dithionite, pronounced absorption peaks emerged 

respectively, that are typically for ferrous c-type hemes. However, an absorption band at 473 nm 

revealed the presence of a P460- type ferrous heme group in KsHDH as is typical for NeHAO and in 

KsHOX, and in agreement with the presence of a conserved Tyr in the sequence alignments 

(9,10,12,14). The sequential reduction of KsHDH by the addition of small aliquots of dithionite 

demonstrated that the His/His ligated hemes were reduced first (Fig. 7, A, B). Only after their 

reduction, the P460 band  emerged, implying that its redox potential would be lowest. Equilibration 

of KsHDH at a series of defined potentials supported this conclusion (Fig. 7C), and suggested an Em 

of about -420 mV for P460 in KsHDH, while the His/His- ligated hemes reduced at Em values ranging 

between -70 and -410 mV. The P460 reduction potentials of NeHAO and KsHOX (Em = -260 mV and -

300 mV vs NHE, respectively) are substantially higher (12-14). 

When as-isolated KsHDH was incubated with   its   substrate,   hydrazine, the protein became 

partially reduced, as concluded from the increase in the absorbances at 420 nm, 524 nm and 554 nm 

derived from the His/His- ligated c-type hemes (Fig. 6). The degree of reduction was dependent on 

the concentration of hydrazine added. Neither hydroxylamine  nor NO influenced the absorption 

spectrum of oxidized KsHDH, but both compounds instantaneously oxidized the dithionite-reduced 

protein. 

EPR Spectroscopy of  HAO-like octaheme proteins- The sequence analysis and biophysical data 

presented above suggested that the HDH members shared the common architecture of NeHAO and 

KsHOX enzymes (Fig 1). This was assessed by inspection  of EPR spectra arising from the oxidized 

forms of all three enzymes. 

Previously, Hendrich et al. (15) were able to delineate the complex spectra of fully oxidized NeHAO 

into four distinct EPR species   covering   the   expected   eight    Fe3+ 



centers in the eight hemes per subunit (Table 4). Two of the species (#3 and #4) could be 

unambiguously assigned to specific hemes. EPR species #4 was the result of spin-coupled heme 4 

(P460) and heme 6 (see Fig. 1D for the numbering and spatial orientations of the hemes). 

Importantly, this species was only observed when EPR spectra were recorded in the parallel mode. 

EPR species #3 was derived from magnetically interacting heme 3 and heme 5. The analyses by the 

authors (15) left four magnetically isolated low-spin hemes unassigned, which were observed as two 

species (#1 and #2) covering one and three heme centers, respectively (Table 4). Thus, none of these 

showed appreciable interaction with each other. A one-electron reduction of NeHAO caused the 

partial reduction and a notable change of spin species #2 (15). Such one-electron reduction would 

concern the heme with the highest redox potential, which is heme 2 in NeHAO (13). Heme 2 is a key 

electron sink, since it can accept electrons passing via hemes 5 and 3 within the same subunit or 

passing via hemes 7 and 8 from an adjacent subunit, before transferring these to solvent-exposed 

exit heme 1 (Fig. 1D). In the following, we started from the assumption that heme 2 also has the 

highest redox potential in KsHOX and KsHDH. Supported by our analyses of KsHOX and KsHDH (see 

next), we then assigned spin species #2 to non- coupled hemes 7 and 8 together with heme   2, 

leaving the isolated EPR species #1 to heme 1 (Table 4). 

EPR Spectroscopy of KsHOX- Following the same approach as Hendrich et al. (15) and using the same 

theoretical spin Hamiltonian [Equation (6)], we could deconvolute the EPR spectrum of KsHOX into 

the same spin species and allocate those species to all hemes (Table 4; Fig. 8A and Figs. 9, A, B). 

Whereas spin species #2 now could be resolved into two subspecies (#2a, heme 2, and #2b, hemes 7 

and 8; Table 4), the overall EPR spectrum of as- isolated, fully oxidized KsHOX (Fig. 8A) was highly 

similar to the one described for NeHAO (14, 15). This was expected, because the heme arrangement 

in both proteins was fully conserved, both regarding the spatial orientations and positions of the 

hemes, and their distances with respect to each other (Fig. 1D) (12). Simulation of the normal mode 

EPR spectra of KsHOX and the individual heme centers are shown in Figs. 9, A, B; simulation 

parameters are listed in Table 4. In the normal mode EPR spectra recorded in this work, the coupled 

heme pair 6 and 4 remained beyond detection and since we had no access to  parallel mode EPR, 

these hemes were not determined. Consequently, a total of six out of eight hemes per monomer 

would be observed. In agreement herewith, quantitation of the EPR spectrum versus a copper 

perchlorate  standard (31) of oxidized, as-isolated, KsHOX (665 µM of hemes as determined 

optically) yielded a value of 480 ± 35 µM S= ½ low-spin hemes, which is consistent with a total of six 

EPR- visible hemes. Except for small differences in g-values, the main difference between KsHOX and 

NeHAO was the strength of the magnetic coupling (D’zz – D’xx) between hemes 3 and  5. 

For   KsHOX   a   value   of   0.031   cm-1  was determined for the oxidized enzyme; for NeHAO the 

value was 0.08 cm-1 (15). For analyses  the  same  relative  orientation  of the two heme centers 

given by Euler angles between the g-tensor axes of 45°, -180°, 135° were used. These angles differ by 

only 15 ± 5° from the angles between the crystallographic axis (55.5°, -173.3°, 115.0°), similar to the 

orientation in NeHAO. As extensively discussed by Hendrich et al. (15), the lack of precise 

coincidence of the two sets of axes is among others due to the relative orientation of the imidazole 

planes of the coordinating His- residues -being co-planar or not-, and/or to the orientation  of the 

imidazole planes relative  to the heme meso-position. A peculiar feature of the EPR spectra of KsHOX 

prominent, the intensity of the signal varied between different enzyme preparations, never taking 

integral values. This might suggest that the residual high spin heme signal originated from a heme 

residue that either was pentacoordinated or that was  hexacoordinated  with  water  (or  OH-), a 



straightforward candidate being heme  4 lacking the covalent tyrosine binding with the neighboring 

subunit as is the case for monomeric KsHOX. 

From UV-visible light optical changes it was deduced that incubation of KsHOX with its substrate 

hydroxylamine caused the two- electron reduction of the c-type heme centers (12). This result was 

corroborated by EPR spectroscopy. After incubation with NH2OH, hemes 3 and 5 were each reduced 

 completely disappeared from the EPR spectrum of KsHOX, which is 

attributed to heme 2 (Figs. 8B and 9A). This observation suggested that hemes 3 and 5 have very 

similar high midpoint redox potentials. The same conclusion regarding the redox properties of the 

heme couple 3 and 5 was reached in the study on NeHAO (14). After reduction, the magnetic 

coupling strength  between  hemes  3  and 5 increased somewhat to 0.035 cm-1 and the g-values of 

the remaining oxidized species differed slightly from those in the oxidized enzyme (Table 4). In 

addition, some  resonances sharpened slightly (e.g. the gx attributed to hemes 7 and 8), or 

broadened slightly (e.g. the gy of heme 1) (Table 4; Fig. 9B). Apparently, the magnetic properties of 

hemes 1, 7 and 8 were affected by the reduction of a common neighboring heme, which is heme 2 

(Fig. 1D), justifying their assignments. We may note that the same EPR spectral changes were found 

when KsHOX  was incubated with hydrazine, giving further support to our previous study (12) that 

binding of hydrazine is associated with the two- electron reduction of His/His-ligated c-type hemes. 

Overall, the X-band EPR spectra of KsHOX could be accurately simulated using the parameters listed 

in Table 4 (Figs 9A and B). Using these same parameters, the simulated Q-band spectrum of as 

isolated KsHOX well agreed the experimental spectrum (Fig. 9C), supporting the multicomponent 

analysis. 

EPR Spectroscopy of KsHDH- At first glance, the EPR spectrum of as-isolated KsHDH (Fig. 8C) was 

quite different from the one of KsHOX (Fig. 8A). In addition, analysis of the EPR spectrum of oxidized 

KsHDH was complicated by the fact that the majority of the EPR signals appeared to be broadened 

due to magnetic interactions. This was, for example, evidenced by the absence of separate gx- 

resonances (~ 1.5 < g < 1.2) or sharp gy- resonances (at g ~ 2 – 2.2) in oxidized KsHDH. Owing to the 

broad signals obscuring baseline sloping, quantitation of the EPR spectra was less accurate. 

Consequently, quantitation of the normal mode EPR spectrum of KsHDH (265 µM of hemes as 

determined optically)  showed  a  larger  spread  (210  ± 50µM). Nevertheless, the latter value was in 

agreement with the presence of six out of eight EPR-visible hemes: As before, the coupled hemes 6 

and 4 (P460) were not detected. Only after reduction by hydrazine a magnetically isolated low spin 

heme center became visible (gx = 1.51, gy = 2.256 and gz = 3.10), which amounted to approximately 

0.45 hemes per monomer as the result of a partial reduction (Table 4; Figs. 8, C, D and 10, A, B). The 

main difference between the spectra of oxidized KsHDH and of oxidized KsHOX/NeHAO was that an 

adequate simulation of the spectrum of KsHDH required that not only hemes 3 and 5, but also the 

signal allocated to hemes 7 and 8 contributed as a magnetically coupled pair of hemes. Other special 

features were the presence of a trio of relatively isotropic low- spin heme species and of a highly 

anisotropic low-spin (HALS) heme with gx,x,z = 1.6, 2.05, 3.14 (Table 4; Figs. 11, A, B). In total, the 

trio accounted for one heme per monomer at which individual species integrated to approximately 

one-third of an integral value. 

In KsHDH, the magnetic coupling strength between heme 3 and 5 (0.074 cm-1 and 0.087   cm-1   

after   reduction)   and   the Euler angles were found to be nearly the same as in NeHAO (Table 4). 

For heme pair 7 and 8, the magnetic coupling was weaker (0.035 cm-1) and,   importantly,   the    

Euler   angles    were different (45°, 180°, 87°) suggesting different relative heme orientations (Table 

4). In the KsHOX structure, the difference  in orientations of heme 7 and 8 is evident (Fig. 1D). In the 

structure of KsHDH, which has yet to be resolved, these Euler angles could be different, resulting in 



the observed spin-spin interaction between hemes 7 and 8. Thus, spin species #2b in KsHDH (Table 

4) is derived from two interacting, neighboring hemes, the only candidates being hemes 7 and 8. 

Consequently, the corresponding spin species in the KsHOX and NeHAO EPR spectra should comprise 

these hemes 7 and 8 as well, even though they are not spin-coupled in these proteins. 

 excess hydrazine (0.1 mM) resulted in a dramatic change of the 

EPR spectrum (Figs. 8D and 10, A, B). In total, each enzyme monomer became reduced by 2.95 ± 0.4 

electrons according to the EPR simulations, whereas a value of 3.2 ± 0.5 electrons was determined 

from direct double integration of the experimental spectra. More specifically, heme pair 3 and 5 

hange splitting increased to    0.087 cm-1  (Table  4).  

Reduction  of  the  protein by hydrazine led to the complete disappearance of the trio of relatively 

isotropic low-spin heme species, whereas the HALS heme became reduced by 55%. Upon reduction, 

the broad resonances of the latter sharpened and shifted. In contrast, heme pair 7 and 8 remained 

fully oxidized. Assuming as before that heme 2 has the highest redox potential, this heme 2 was 

allocated to the trio of relatively isotropic low- spin heme species. It is tempting to speculate that 

within the homotrimeric protein the three hemes 2 take somewhat different positions, directing 

electron transfer within and in between the subunits and resulting in the three slightly different EPR 

signals observed. The assignment would leave the isolated HALS signal to heme 1. It should be noted 

that treatment of KsHDH with various concentrations of hydrazine resulted in the reduction of 3-4 

His/His ligated hemes as deduced from the UV-vis spectral changes (Fig. 6). The three-electron  

reduction calculated from the EPR spectra agrees with this. 

Except for the signals discussed above, the EPR spectrum of KsHDH showed the presence of two 

more signals in minor amounts (Table 4). The first one concerned a high spin heme (<0.02 per 

monomer), highly resembling the one observed in KsHOX. Like in the latter protein, this high spin 

heme could be the result of small contamination of monomeric KsHDH. 

 In the g = 2 region, the EPR spectrum of oxidized KsHDH showed an unusual signal (Fig. 10C) 

characterized by a peak-to-peak width of 36 Gauss, no resolved hyperfine structure and an apparent 

g-value of 2.009. Upon reduction by hydrazine, this signal decreased nearly threefold in intensity. 

The signal relaxed rapidly. Its low amount (0.005 spins per monomer) might point to an impurity (but 

not a HIPIP 4Fe-4S center giving its overall line shape). However, its reduction by hydrazine 

suggested it to be a component of KsHDH. If so, the signal might derive from a tyrosine radical, more 

specifically from Tyr536’ crosslinked to heme 4. This would explain both its rapid relaxation and 

unusual line shape affected by the magnetism of the   S= 5/2 Fe3+ of heme 4. 

Overall, the EPR spectra of as-isolated KsHDH, both in the absence and presence of its substrate 

hydrazine (Figs. 8, C, D) could be adequately simulated (Figs. 10, A, B) by the parameters listed in 

Table 4, as was the case with KsHOX. Although quite different at first appearance, our analyses 

showed that the EPR spectra of KsHDH were well described by the same framework as those of 

NeHAO and KsHOX (Table 4). This provided strong evidence that HDH, indeed possessed the same 

architecture and arrangement of His/His- ligated c-type hemes as NeHAO and KsHDH. Again, 

differences in the EPR spectra were the likely result of only minute differences in the relative 

orientation of the two imidazole planes of the two histidines that coordinate the low- spin hemes 

and of the precise location of these imidazole planes relative to e.g. the meso- positions of the 

porphyrin rings. These differences might affect the heme redox potentials, enabling a fine-tuning of 

electron transfer in order to optimize catalytic activities. 

 



DISCUSSION 

Here we purified and characterized hydrazine dehydrogenase from the anammox bacterium K. 

stuttgartiensis (KsHDH), the gene product of kustc0694. HDH is a key enzyme in anammox 

metabolism, which oxidizes the intermediate hydrazine to the end product N2. Biophysical 

properties, detailed sequences analysis, as well as UV-vis and EPR spectral data strongly suggested 

that HDH and its close homologs in other anammox genomes were   structurally   quite   similar,   or    

nearly identical, to two also structurally highly related octaheme proteins, NeHAO and KsHOX. Both 

NeHAO and KsHOX are capable of hydrazine oxidation, but HDH was specific in  this activity (Table 

3). This raises the question of how HDH is tuned for its specific action. An answer to this question 

may be found in differences, in the way HDH is structured, in the way hydrazine gets bound to its 

catalytic site, and in the way the four electrons and four protons derived from hydrazine oxidation 

[Equation (3)] are abstracted and transferred during catalysis. 

A special property of KsHDH was that it assembled into octamers of  homotrimers (Table 2 and Figs. 

3-5). Such association  would require specific amino acid sequences that promote the interaction 

between the homotrimers. Interestingly, HDH members contained a conserved stretch of 15 amino 

acids in their C-terminal region, which was absent in HAO and HOX (Supplemental Fig. S1). From the 

crystal structures of the latter two proteins, it is inferred that the stretch could be localized at the tip 

of each monomer, where it would be well situated to promote the interaction between two egg- or 

tulip-shaped, covalently bound homotrimers. 

As-isolated, catalytically competent KsHDH reacted with hydrazine. This reaction was accompanied 

with reduction of His/His ligated c-type hemes. In case of KsHOX, incubation with hydrazine caused 

the reduction of two such hemes, whereas a dinitrogen species bound to P460 catalytic center was 

observed in its crystal structure soaked with hydrazine, which could be a diazene (HN=NH) derivative 

(Fig. 1B) (12). Similarly, binding of hydrazine to the catalytic site, immediately followed by a two-

electron oxidation would be the first step in the HDH catalytic cycle proposed in Fig. 11. Analogously, 

hydroxylamine oxidation by KsHOX and NeHAO is initiated by the concomitant binding of this 

substrate and its two-electron oxidation, yielding   a   nitroxyl   (HNO)   species   in     a 

{FeNO}7 configuration as an intermediate (22, 23). An intrinsic problem of such  two-electron 

oxidations is that the first heme that accepts these electrons (heme 6; see Fig. 1D) can carry only one 

electron at a time. Here, the tyrosine attached to the catalytic heme 4 could function by temporarily 

storing the second electron as put forward previously (12). This would explain the presence of the 

P460 group in this type of HAO-like proteins that favor oxidative reactions (24). KsHDH was 

incapable of hydroxylamine oxidation (Table 3) and this compound did not interact with the fully 

oxidized, as-isolated enzyme. We note the redox potential of the P460 prosthetic group (actually 

-420 mV; Fig. 8C) was 120-150 mV lower than in KsHOX (Eo’ = -300 mV; (12)) 

and in NeHAO (Eo’ =   -260 mV; (13,14)). The lower Em value for the catalytic heme 4 in KsHDH could 

arise from the cysteine predicted to be in the second coordination sphere of the catalytic heme 4 in 

KsHDH, but not the HAO and HOX, enzymes (Fig. 1, B, C). If present as a thiolate anion, this cysteine 

would significantly affect the electronic properties of heme 4, including the bond length with the 

proximal histidine, and as the result thereof the redox potential of this heme (25). In case of KsHDH, 

the electron- donating (reducing) power of NH2OH might become insufficient for bond formation 

with the ferric P460, preventing turnover of this compound. However, hydroxylamine and also NO 

were strong competitive inhibitors and these compounds oxidized reduced KsHDH instantaneously, 

indicating an interaction with ferrous heme P460   as a catalytic cycle intermediate (Fig. 11). In 

hindsight, the serendipitous finding that hydrazine is an intermediate in the anammox process (26) 

was apparently due to the inhibition of the HDH reaction by hydroxylamine added to the assays. In 



anammox bacteria, hydrazine is the ultimate electron donor in energy conservation, whereas 

hydroxylamine likely is a side-product of the preceding hydrazine synthase reaction (5,6). 

Apparently, these bacteria have evolved dedicated enzymes for hydrazine and hydroxylamine 

metabolism, at which KsHOX recycles hydroxylamine efficiently into hydrazine synthase substrates 

(NO and three electrons; Equation (2)). The above oxidation reactions require the well-timed 

transfer of single electrons to an exit heme 1. Branched electron  transfer chains in homotrimeric 

NeHAO and KsHOX enable electron export both to heme 1 of the subunit where substrate oxidation 

takes place and to heme 1 of a neighboring subunit (Fig. 1D). Possibly, HDH kinetically fine-tunes this 

electron transfer by (reversible) octamerization and by a rearrangement of the electron-transfer 

circuit including the modified binding of heme 3 by a CX4CH-motif. 

 HDHs from anammox bacteria, which belong to the HAO-like octaheme proteins, are responsible for 

the production of a significant amount of N2 that is released into the atmosphere. Besides HDH 

(kustc0694 and kustd1340) and HOX (kustd1061) the genome of K. stuttgartiensis harbors seven 

more HAO paralogs with as-yet unknown functions. Most of these are also found in other anammox 

genomes (6), whereas genes coding for a plethora of related HAO-like proteins can be found in 

genomic databases (see e.g. (24)). Together, these HAO-like proteins may represent an 

environmentally important, but still poorly understood potential of enzyme activities, all taking 

advantage of common structural properties, but each one tuned for a specific function by subtle 

modifications of their catalytic sites and multiheme electron transport module. 

EXPERIMENTAL PROCEDURES 

Protein Purification- HPLC grade chemicals were purchased from Baker (Phillipsburg, NJ); all other 

chemicals were of highest grade available. All purification steps took place under air and –apart from 

FPLC-  at 4    oC.    KsHDH    was    isolated    from  K.stuttgartiensis grown continuously as planktonic 

cells in a 10-liter membrane bioreactor (5). Routine purification included the following. Biomass (4 l, 

A600 = 1.0 - 1.2) was harvested by centrifugation at 8,000 x g for 15 min. Harvested cells were 

resuspended in 5 ml 20 mM potassium phosphate buffer  (pH 7). Cells were broken by three 

subsequent passages through a French Pressure cell operating at 138 MPa. The cell lysate was 

incubated with 1% (w/v) sodium deoxycholate on a rotating incubator (20 rpm) for 1 h. After 

incubation, cell debris was removed by centrifugation (3,000 x g, 15 min) and the obtained 

supernatant was subjected to ultracentrifugation (150,000 x g, 1 h) in a Discovery 100 

ultracentrifuge equipped with a T-1270 rotor (Sorvall, Newton, CT) to pellet cell membranes. The 

intense dark red supernatant after ultracentrifugation constituted the cell-free extract. An Äkta 

purifier  (GE  Healthcare)  was  used  for the subsequent FPLC steps. In both steps, the columns were 

eluted at a flow rate of 2 ml min- 1;  the  eluate  was  monitored  at  280  nm  and collected in 2-ml 

fractions. To purify HDH, cell-free   extract   was   loaded   onto   a 30-ml column packed with Q 

Sepharose XL (GE Healthcare), which was equilibrated with 2 column volumes of 20 mM Tris-HCl  

buffer (pH 8). After application of the sample, the column was washed with 2 volumes of this Tris-

HCl buffer to remove unbound proteins. Hereafter, the sample was eluted isocratically in three steps 

(200, 400 and 1000 mM NaCl in the 20 mM Tris-HCl buffer, pH 8). Hydrazine dehydrogenase activity 

was recovered in the 400 mM NaCl step. Three column fractions (6 ml) that were devoid of 

hydroxylamine oxidase activity were collected and desalted in the above-mentioned potassium 

phosphate buffer using spinfilters (cut-off, 100 kDa; Vivaspin 20, Sartorius Stedim Biotech,  Aubagne, 

France) to prepare the sample for the following FPLC step. In this step the desalted fractions were 

applied to a 10-ml Ceramic Hydroxyapatite (Bio-Rad, Hercules, Ca) column, which was equilibrated 

with 5 column volumes of 20 mM potassium phosphate buffer, pH 7. Following sample loading, HDH 

activity was eluted from the column as a broad symmetrical peak upon isocratic elution with 20 mM 



potassium phosphate buffer (pH 7) for approximately three column volumes. Active fractions were 

collected and concentrated  using spinfilters as described above. Purity and identity of the fractions 

were determined by non-denaturing PAGE and SDS-PAGE, as well as MALDI-TOF analysis. Enzyme 

preparations kept in ice were immediately used for further experiments or rapidly frozen in liquid 

nitrogen for storage. By this procedure, the enzyme was purified 15-fold with a yield  of 21% (Table 

1). Both the recovery and purification factor were likely to be underestimates, since the cell-free 

extract contained a substantial amount of hydrazine dehydrogenase activity derived from 

hydroxylamine oxidase (KsHOX, kustc1061). KsHOX was purified as described previously (12). 

Analytical Ultracentrifugation (AUC)- Protein samples were concentrated in 25 mM HEPES-KOH,   pH    

7.5,   25    mM    KCl   to A1cm=0.46 at 280 nm. Sedimentation velocity analytical ultracentrifugation 

was performed in a Beckman ProteomeLab XL-I (Beckmann Coulter GmbH, Krefeld, Germany) 

analytical ultracentrifuge equipped with an An60Ti rotor at 30,000 rpm and 20 °C in a two-sector cell 

with a 1.2 cm optical path length. Absorption scan   data   were   collected   at   280   nm and 

evaluated using SEDFIT (www.analyticalultracentrifugation.com, (27)). The maximal sedimentation 

coefficients (Smax) were calculated according to (28); Smax =  0.00361 M2/3. The ratio of Smax/ Sw, 

20°C in the range  of  1.2-1.3  indicates  a  globular  shape  of the particles. To calculate molecular 

masses from the sedimentation coefficients  obtained by sedimentation velocity analytical 

ultracentrifugation (AUC SV) globular particles (Smax/ Sw, 20°C = 1.2) were assumed. 

Size-exclusion Chromatography coupled to Multi-angle Static Light Scattering (SEC/MALS)- KsHDH 

oligomers in solution were  analyzed  by  analytical  size exclusion chromatography at a flow rate of 

0.5 ml   min-1 using a Waters HPLC system (Waters Corp., Milford, MA), equipped with a Superose 6 

(10/300 GL) gel filtration column (GE Healthcare), a filter of 100 nm pore size, and UV-Vis and 

refractive index (RI) detectors. Prior to the experiments, the column had been pre-equilibrated with 

gel filtration buffer (150 mM  KCl,  50  mM  HEPES-KOH,  pH  7.5) at room  temperature.  40-µl  

samples  with  A    1cm≈ 5 were injected using an autosampler. Static light scattering analysis was 

performed in line using a DAWN HELEOS multi-angle scattered light photometer (Wyatt Technology 

Corp., Santa Barbara, CA) (laser wavelength λ= 658 nm). Data were processed using the ASTRA 

software. Multi-angle scattered light (MALS) analysis accounted for any shape. 

Transmission electron microscopy (TEM)- Samples of native KsHOX and  KsHDH in 25 mM HEPES-

KOH, pH 7.5, 25mM KCl were used directly for negative staining. In addition, a KsHDH sample was 

subjected to glutaraldehyde cross-linking as follows. KsHDH was diluted to A280 ≈ 0.5 in gel filtration 

buffer (150 mM KCl, 50 mM HEPES-KOH, pH 7.5) and 0.1% (v/v;  approx.10 mM) glutaraldehyde was 

added. After incubation at 37 °C the reaction was quenched by addition of Tris-HCl, pH 8.0 to a final 

concentration of 167 mM. Afterwards, the sample was concentrated and applied to a Superose 6 

(10/300 GL) gel filtration column (GE Healthcare, Uppsala, Sweden) at 0.5ml min-1 and 4 °C. 

Fractions of the peak eluting at (11±1) ml were pooled, concentrated and buffer-exchanged to 25 

mM HEPES-KOH, pH 7.5, 25 mM KCl using a 100 kDa MWCO Amicon ultrafiltration device (Millipore 

Bioscience, Schwalbach, Germany). 

 For negative staining, 10 µl of a dilute protein solution (A280 ≈ 1) in 25 mM HEPES/KOH,   pH   7.5,   

25   mM   KCl   was pipetted onto a glow-discharged copper grid with carbon-coated formvar (Plano 

GmbH, Wetzlar, Germany) and removed after one minute by gentle blotting from one side with filter 

paper. The grid was then immediately rinsed with 100 µl water, blotted again and treated with 10 µl 

2% (w/v) uranyl acetate solution for one minute. After removing the staining solution thoroughly by 

blotting with filter paper, the grid was dried in air for 5-10 min and then inserted in the vacuum port 

of a FEI Tecnai G2 T20 Twin transmission electron microscope (FEI, Eindhoven, The Netherlands) 



running at 200 kV accelerating voltage. Electron micrographs were recorded with a  FEI Eagle 4k HS, 

200kV CCD camera. 

Enzyme Assays- Reaction mixtures (1 ml) in 20 mM potassium phosphate buffer (pH7) were 

prepared in 2-ml glass cuvettes (1-cm path 

(Sigma-Aldrich) and enzyme as required. Cuvettes were sealed with rubber stoppers. Reactions were 

monitored at 550  nm in a Cary 50 (Agilent, Santa Clara, CA) spectrophotometer at 37 oC. After  

recording the absorbance at 550 nm for one min, the reaction was started by the addition of a 

Hesparged hydrazinium sulfate (Merck, Darmstadt, Germany) stock solution, or other substrates to 

be tested. Inhibitors (1, 10, 50   or  

to the addition of the enzyme. Hydroxylamine was added from a He- sparged hydroxylammonium 

chloride (Merck Darmstadt, Germany) stock solution. A NO- containing stock solution (0.9 mM) was 

prepared by sparging anoxic potassium phosphate buffer with a NO-He gas mixture (1:1, v/v) for ten 

mins. This stock solution was injected to the assays with a 50-

headspace, the volume of reaction mixtures containing NO was increased to 1.5 ml. Reactions in the 

reductive direction were assayed by adding partially reduced cytochrome c as an electron donor. 

on rates were determined from the 

initial linear part of the reaction curves using the spectrophotometer  (Cary)  software   package. 

 

19,600  M-1.cm-1)  upon  reduction of cytochrome c  (29).  Rates  were  evaluated by non-linear 

regression analysis using the Origin 8.5.1 program (OriginLab Corporation, Northampton, MA) 

applying Michaelis- Menten kinetics. Apparent inhibition constants (Ki) of hydroxylamine and NO 

were evaluated by applying the Michaelis-Menten equation and best fits were obtained when 

adapted for competitive, rather than for other modes of inhibition. 

To determine 30N2 formation from double-labeled hydrazine (H215N-15NH2), reaction mixtures 

were prepared in 3-ml Exetainers (Labco, High Wycombe, UK) inside a glove box (97.5% Ar and 2.5% 

H2; <0.2 ppm O2). Reaction mixtures (2 ml) in 20 mM   potassium   phosphate   buffer   (pH     7) 

- labeled hydrazine (98% pure; Cambridge Isotope 

Laboratories, Cambridge, UK) and 33 ng of purified HDH. After closing the exetainers with a rubber 

stopper, 1 ml of Ar  gas was injected by a syringe to establish a 1 atm overpressure. Incubations were 

performed inside  the  glove  box  at  37  oC  and reactions were followed by GC-MS analysis of 

headspace samples that were taken at regular time intervals with a gas-tight syringe. 

Optical redox determinations- For reduction by dithionite, small aliquots of a freshly prepared 

anaerobic stock solution of dithionite were sequentially added to 1 ml of enzyme as specified in 

anoxic 50 mM  HEPES buffer (pH 7). Spectra were recorded at 4 oC in a 1-cm path length cuvette 

using a V650 Spectrophotometer (Jasco Analytical Instruments, Easton, MD) placed inside an 

anaerobic glove box. Spectra were corrected for the effect of dilution by the subsequent additions of 

dithionite. 

Electrochemical redox titrations of the purified HDH were performed at room temperature in a 

home-built optical transparent thin  layer  electrochemical  (OTTLE)  cell (30 µl) connected to a 

in 50 mM MOPS (pH 7) containing 50 mM KCl and in the presence of 2,5-dimethyl-1,4-benzoquinone, 

1,2 naphtoquinone, 5-methylphenazinium methyl sulfate, p-naphtoquinone, phenazine 

  



ethosulfate, 5-hydroxy-p-naphtoquinone, 1,2 dimethyl naphtoquinone, 2,5-dihydroxy-p-

benzoquinone, 5,8-dihydroxy-1,4-naphtoquinone, 9,10-anthraquinone, 9,10-anthraquinone-2-

sulfonate, benzyl viologen and methyl viologen as redox mediators at 20 µM final concentration 

each. All titrations were performed in oxidative and reductive directions in steps of 50 mV. The 

solution potential was changed once no further optical changes were observed and the system was 

assumed to have reached redox equilibrium. Optical spectra were recorded between 400 nm and 

600 nm on a Cary 60 spectrophotometer (Agilent, Santa Clara, CA). Spectral changes within a single 

experiment were evaluated on the basis of the Soret band  at 420 nm and the alpha band at 554 nm 

for the seven His/His ligated low-spin hemes, and at 473 nm for the active site P460 chromophore. It 

should be noted that the P460 signal that only arose at very low redox potentials was not always 

stable, hampering a precise determination of its midpoint redox potential. 

EPR Measurements- X-band EPR spectra were measured on Bruker ER200D (microwave frequency, 

9.39 GHz) and Varian E-9 (frequency, 9.188 GHz)  spectrometers. The Q-band spectrum was 

recorded on the Varian E-9 (frequency, 35 GHz). Modulation amplitudes and microwave power were 

1 mT and 2 mW, respectively. Samples were kept at 12 K by a homemade He-flow cryostat. Prior  to 

the measurements, samples of as-isolated, oxidized KsHDH and KsHOX, both in the absence and 

presence of their substrates were filled into quartz tubes and shock-frozen in liquid nitrogen. 

Analysis, spectral simulations and quantification of the signals against a copper perchlorate standard 

were performed as described in (30, 31). 

In order to simulate EPR spectra of spin-coupled heme centers, we used the spin Hamiltonian in 

Equation (6) derived by  Bencini and Gattesschi (32), which was also used by Hendrich et al. (15) in 

their analyses  of the EPR spectra of NeHAO. 

HS  =   JS1.S2  +   S1.D′.S2  +   d.S1  ×   S2 + 

 (6) 

In the equation, J is the isotropic exchange coupling between two (S= ½) low-spin    heme centers, D′ 

the symmetric traceless tensor of the exchange interaction, d the polar vector of the antisymmetric 

exchange contribution and the last two terms represent the Zeeman interaction of each S= ½ system 

with the external magnetic field. In our home-written EPR simulation program, which is available 

upon request and which was incorporated into the IGOR Pro 6.0 program 

(https://www.wavemetrics.com/), the antisymmetric exchange contribution was omitted from the 

simulation because it hardly makes a contribution to the spectral shape at the X- and Q-band 

frequencies used here.  Next, our simulations were second-order in the spin Hamiltonian 

parameters, rather than using diagonalization of the spin Hamiltonian as was done in (15). Further, 

simulation and quantitation of the EPR spectra of magnetically isolated (S= ½) low-spin heme centers 

only used the Zeeman terms of Equation (6) as described (19, 20). 

Other Analytical Procedures- Proteins were identified from polyacrylamide gels by MALDI-TOF mass 

spectrometry on a Bruker Biflex III mass spectrometer (Bruker Daltonik, Bremen, Germany) operated 

in reflectron mode. Samples for MALDI-TOF were prepared as described previously (33). Each 

spectrum (500-4000 m/z) was analyzed using the Mascot Peptide Mass Fingerprint (Matrix Science, 

London, UK) against the K. stuttgartiensis database allowing methionine oxidation as variable 

modification, 0.2 Da peptide tolerance and at most one miss- cleavage. The molecular mass of the 

KsHDH holoenzyme was determined on the same Bruker Biflex III mass spectrometer, operating in 

the linear mode. 

https://www.wavemetrics.com/


The formation of gaseous nitrogen compounds and their masses (NO, NO2, N2O, N2) were 

quantified by gas chromatography (Agilent 6890 equipped with a Poropak Q column at 80 oC; 

Agilent, Santa Clara, CA) combined with a mass spectrometer (Agilent 5975c    quadruple    inert    

MS)    (5).  Protein concentrations were measured with the Bio- Rad protein assay, based on the 

Bradford method (34), using BSA as standard. Alternatively, concentration of purified KsHDH was 

determined from the S -1 

cm-1). The value is presented in terms of subunit concentration (67.2 kDa). 

 Protein Sequence and Structure Analyses- Protein sequences were retrieved from  genomic 

databases (K. stuttgartiensis, PRJNA16685; Jettenia caeni strain KSU-1, PRJDA163683,         PRJDB68;        

Scalindua profunda, Taxon Object IDs 2017108002 and 2022004002 at JGI; Brocadia sinica, 

PRJDB103). Multiple amino acid sequence alignments  were  made  with  the    ClustalW2 program at 

the EMBL-EBI website (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Atomic coordinates and 

structure factors of KsHOX  (kustc1061)  and  its  substrate  soaks (12) were retrieved from the 

Protein Data Bank (PDB) (accession numbers PDB 4N4J-M). The crystal structure of NeHAO (10,11) 

was obtained from the PDB under accession numbers 1FGJ, 4FAS and 4N4N-O. 
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FIGURE LEGENDS 

 

FIGURE 1. Common structural elements of hydroxylamine oxidoreductase-like proteins. A, overall 

architecture of the homotrimeric hydroxylamine oxidase from Kuenenia stuttgartiensis (KsHOX) (PDB 

ID code 4N4L). Its three subunits are displayed in different colours. Localization of the catalytic site 

in one of the three subunits is indicated by the square. B, X-ray structure of the heme 4 (P460) 

catalytic center of KsHOX soaked with hydrazine seen from the same axis as in (A). A dinitrogen 

species, a putative diazene (HN=NH) (blue) is seen on top of the heme. C, the Table shows 

corresponding amino acids found in the crystal structure of N. europaea hydroxylamine 

oxidoreductase (NeHAO) (PDB ID codes 1FGJ, 4FAS and 4N4N-O) and in the amino acid sequence of 

hydrazine dehydrogenase from K. stuttgartiensis, together with putative functions of the amino 

acids during catalysis (12). D, arrangement of the c-type hemes in homotrimeric hydroxylamine 

oxidase from K. stuttgartiensis (KsHOX). The Figure shows the outline of the structure of KsHOX (PDB 

ID code 4N4J) seen from the bottom along the 3-fold symmetry axis featuring the 24 hemes. The 8 

hemes present in the same monomer have the same color and are numbered as indicated. Note that 

hemes are arranged in a ring-like structure. The spatial arrangement of these hemes is fully 

conserved in hydroxylamine oxidoreductase from N. europaea (NeHAO) (10-12). Following oxidation 

of the substrate at the catalytic heme 4 (filled numbered circles), the generated electrons pass 

through heme 6, from which they make take two different routes to an exit heme 1 (dashed arrows): 

(1) via hemes 3 and 5 towards heme 2, and (2) via hemes 7 and 8. In the latter route, electrons are 

directed to heme 2 of the next subunit, enabling electron transfer in between different subunits. 

Structural images were made using PyMOL (http://www.pymol.org). 

 

FIGURE 2. Native and SDS-denaturing polyacrylamide gel electrophoresis (PAGE) of purified KsHDH. 

-16% linear gradient Blue Native gel. B, 8% SDS- PAGE of 

KsHDH. Numbers refer to the molecular masses of ruler proteins. Note that the protein did not 

migrate into the SDS gels. The thin band marked by the arrow was identified as the KsHDH monomer 

(67 kDa). 

 

FIGURE 3. Sedimentation velocity analytical ultracentrifugation (AUC) and analytical size- exclusion 

chromatography coupled to multi-angle static light scattering (SEC/MALS). A, sedimentation 

coefficient distribution of KsHDH in 25 mM HEPES/KOH pH 7.5, 25 mM KCl. The three peaks 

correspond to the HDH monomer (α, 5 S), the covalently bound homotrimer (α3, 10.97 S) and the 

non-covalently bound octamer of the homotrimers (α24, 43.33 S). B, SEC/MALS chromatogram of 

KsHDH on a Superose 6 (10/300 GL) column in 50 mM HEPES-KOH, pH 7.5, 150 mM KCl. The 



absorbance at 280 nm (dashed) and 409 nm (solid) were recorded. The two major peaks correspond 

to the covalently bound homotrimer (α3, 15.5 ml) and the non-covalently bound octamer thereof 

(α24, 11.2 ml). The HDH monomer (α, ≈ 16.7 ml) elutes only as a minor peak. The molecular mass 

distribution obtained by MALS analysis is shown in gray. 

 

FIGURE 4. Negative stain transmission electron microscopy (TEM). A, negatively stained particles of 

native KsHDH. Particles sizes corresponding to the homotrimers (8 × 8 nm) as well as tetrameric 

assemblies (16 × 16 nm) are visible. B, negatively stained particles of KsHDH after glutaraldehyde 

cross-linking and re-purification by SEC. Large tetrameric assemblies are the major species. C, 

negatively stained particles of KsHOX. D, E, F, close up views of particles from panel B (labeled 

accordingly) showing particles with four-fold symmetry as well as particles with a more elongated 

shape, probably representing two orthogonal views of an octamer-of-trimers (α24) assembly of 

KsHDH. We also observe particles with an apparent five-fold symmetry (F), which could represent an 

intermediate state in oligomerization. They are probably not due to the cross-linking given their 

occurrence in native protein as well (see panel A, upper left). 

 

FIGURE 5. Hydrazine oxidation to N2 by KsHDH. A, hydrazine oxidation (initial concentration,  10 

oxylamine (dashed line). The 

concentration of reduced cytochrome c was calculated on the basis of the increase of absorbance at 

  

-1.cm-1). B, formation of labelled 30N2 from double-labeled hydrazine 

(H215N-15NH2, 16 nmol) was follo

of KsHDH. 

 

FIGURE 6. Effect of hydrazine on the electronic absorbance spectrum of KsHDH. Spectra are the 

following: as- -1; 0.67 µm) (black line), fully (dithionite) reduced spectrum 

 

of 1 

-ligated c-type 

hemes, respectively, assuming each heme to contribute equally to a spectral change. The inset 

details the spectrum of as-isolated KsHDH in the 450-600 nm region. 

 

FIGURE 7. Optical redox determinations of KsHDH. A, reduction of as- - 1; 

0.64 µM) by the sequential addition of dithionite aliquots under anaerobic conditions. Spectra were 

corrected for the effect of dilution by the additions. Arrows indicate the directions of the spectral 

changes. The absorbance band at 473 nm derived from the P460 prosthetic group appeared only 

after  the complete reduction of the His/His-ligated c-type hemes featured in their reduced state by 

their 



absorption maxima at 420 nm, 524 nm and 554 nm. The spectrum of fully reduced KsHDH is 

highlighted by the red line. B, reduced minus oxidized absorbance spectra during dithionite 

reduction displayed in (B). Note that spectral changes occur around distinct isosbestic points at 412 , 

433, 464, 485, 508, 533 and 562 nm, indicating that the spectral changes as the result of the 

reduction of the P460 catalytic heme do not interfere those of the His/His-ligated c-type hemes. C, 

cell. Normalized redox potential-dependent spectral 

changes of the His/His- ligated hemes of KsHDH were followed in oxidative (ox) and reductive (red) 

directions at 554 nm (black squares, ox; blue triangles, red) and at 420 nm (red circles, ox; green 

diamonds, red). Spectral changes at 473 nm as the result of the reduction of the P460 prosthetic 

group are shown as red triangles. Data were fitted (black line) by a Nernstian curve assuming a one-

electron reduction resulting in an Em= -420 mV. 

 

FIGURE 8. EPR spectroscopy of KsHOX and KsHDH. A, EPR spectrum of as-isolated, oxidized KsHOX 

- isolated, 

 

 

FIGURE 9. EPR spectroscopy of KsHOX. A, X-band EPR spectra of oxidized (Ox) KsHOX (83 

µM) and after reduction by NH2OH (100 µM). Experimental spectra are in red, simulated total 

spectra are in black and the simulations of the individual heme centers are in blue. Note that this 

particular preparation contained 0.14 high spin heme per monomer (Table 4); other preparations 

had generally lower amounts. B, simulations of EPR spectra (red) and the effect of reduction by 

NH2OH (blue). In the spectrum of the heme pair 3-5, the magnetic coupling is slightly increased (see 

e.g. gz peak), for heme 1 the gy resonance is broadened and for hemes 7 and 8 the gx resonance 

sharpens after reduction by NH2OH. Small shifts in g-values upon reduction are reported in Table 4. 

C, Q-band EPR spectrum (red) of KsHOX and simulation (blue) using the same parameters as for the 

X-band spectrum (Table 4). 

 

FIGURE 10. EPR spectroscopy of KsHDH. A, X-band EPR spectrum of as-isolated oxidized KsHDH (33 

µM), the simulation (simul) of the complete spectrum and of the individual components with 

integral intensities used in the simulation. Stick diagrams (black) represent magnetic couplings of 

0.035 and 0.074 cm-1 in the gz resonance of heme pair 7 and 8, and heme pair 3 and 5, respectively. 

Heme 1 and heme 2 account for one spin per monomer each; the heme pairs 3-5 and 7-8 represent 

two spins per monomer each. The radical represents 0.005 spin per monomer. B, X-band EPR 

ul) of the 

complete spectrum and the individual components with the intensity factor used in the simulation 

shown in 

parentheses. Stick diagrams (in black) represent magnetic couplings of 0.035 and 0.087 cm-1 in the  

gz 

  

resonance of heme pair 7 and 8, and heme pair 3 and 5, respectively. The radical represents 0.002 

spin per monomer. C, X-band EPR spectrum of oxidized KsHDH in the g = 2 region. 



 

FIGURE 11. Proposed catalytic cycle of hydrazine oxidation to dinitrogen gas by HDH. As- isolated 

KsHDH is fully oxidized and is catalytically competent. Reaction with hydrazine accompanied by the 

release of two electrons results in the formation of a diazene (HN=NH) derivative bound to the heme 

4 (P460) catalytic site. In the structure of KsHOX, which is capable both of hydroxylamine and 

hydrazine oxidation to nitric oxide (NO) and N2, respectively, such diazene could be modelled after 

soaking with hydrazine (Fig. 1B) (PDB ID code 4N4L) (12). The next steps then would comprise the 

oxidation of diazene, without an intermediate nitrogenous species, directly to N2, again yielding two 

electrons. These two electrons have to be stored and discharged one by one through the c-type 

hemes wiring circuit. It is well conceivable that reduced (ferrous; Fe(II)) heme 4 is an intermediate in 

this sequence. Such ferrous heme 4 would bind hydroxylamine (NH2OH) and nitric oxide (NO), both 

strong competitive inhibitors of the reaction, explaining their inhibitory effect (dashed line). It 

should be noted that neither hydroxylamine nor NO interact with oxidized KsHDH. In as-isolated 

KsHDH, the P460 cofactor most likely binds a distal water molecule, as observed in the KsHOX (PDB 

ID code 4N4J) and NeHAO (4N4O) crystal structures (12). The absence of a clear high-spin signal in 

the KsHDH EPR spectrum (Fig. 9, C, D and Fig. 11, A, B) indicative of a penta- coordinated heme, is 

consistent with the presence of distal water in as-isolated KsHDH P460. Following the release of the 

product (N2) of the four electrons formed during hydrazine oxidation, replacement of water to the 

catalytic site would prepare HDH for the next reaction cycle. In the figure, the P460 cofactor is 

represented by the ellipse including the histidine (His) proximal ligand and a distal water molecule in 

the as-isolated resting state. 

  

TABLE 1 

Purification of Hydrazine Dehydrogenase from K. stuttgartiensis 

 

Step Protein (mg ml-1) Volume (ml) Total protein (mg) -1 

mg protein-1) -1) Yield (%) Purification (-fold) 

Cell extract 53 10 530 0.55 292 100 1 

Q-Sepharose 11 6 66 1.1 73 25 2 

Hydroxyapatite 0.6 12 7.2 8.4 60 24 15 

 

 

 

TABLE 2 

Characterization of KsHDH oligomers in solution 

 

Stoichio- Calculated AUC* Mass from AUC Mass from MALS 

metry Mass [kDa] Sw, 20°C Smax Smax/ Sw, 20°C SV [kDa] [kDa] 



α 67.2 5 6.0 1.20 68 75.0 ± 2.0 

α3 201.6 10.97 12.4 1.13 220.7 182.1 ± 1.8 

α24=(a3)8 1612.9 43.33 49.7 1.15 1731.7 1760.2 ± 7.0 

 

*Sedimentation velocity analytical ultracentrifugation (AUC SV) coefficients  are  given  in  Svedberg  

units (1S =10-13 s). Sw, 20°C, sedimentation coefficients extrapolated to water at 20°C; Smax, 

maximal sedimentation coefficients at which Smax = 0.00361 M2/3. The ratio of Smax/ Sw, 20°C in 

the range of 1.2- 

1.3 indicates a globular shape of the particles. To calculate molecular masses from the 

sedimentation coefficients, globular particles (Smax/ Sw, 20°C = 1.2) were assumed. Multi-angle light 

scattering (MALS) analyses accounted for any shape. 

  

TABLE 3 

Catalytic and structural properties of hydrazine dehydrogenase from Kuenenia stuttgartiensis and 

other hydrazine-oxidizing enzymes 

Kinetic values are given for mammalian cytochrome c as electron acceptor. HDH/ HZO, hydrazine 

dehydrogenase/ oxidase; HOX, hydroxylamine oxidase (kustc1061 for K. stuttgartiensis); HAO, 

hydroxylamine oxidoreductase. KSU-1, anammox strain KSU-1; B. anammox., Brocadia 

anammoxidans; N. europaea, Nitrosomonas europaea. NA, not applicable; NR, not reported. 

 

Organism K. stuttgartiensis K. stuttgartiensis KSU-1 KSU-1 B. anammox. N. 

europaea 

Enzyme HDH HOX HZO/HDH HOX HOX HAO 

-1 mg-1)   6.2 0.54 1.1 14 

kcat N2H4 (s-1) 36 4.9 13.4 1.1 3.4 47 

   5.5 25 18 4 

kcat/ KM N2H4 (s- -1) 3.5 0.1 2.4 0.042 0.19 12 

-1   mg-1) NA  NA 9.6 21 28.5 

kcat NH2OH (s-1) NA 15 NA 19 64 95 

 NA  NA 33 26 3.6 

kcat/ KM NH2OH (s- -1) NA 3.4 NA 0.58 2.5 26 

  NA 2.4 NA NA NA 

  NA NR NR NR NA 

Total size (kDa)  184 130 118 183 200 



Subunit size (kDa) 67.2 61.3 62 53 58 66 

Subunit composition       

Catalytic heme optical maximum (nm) 473 468 472 468 468 463 

Catalytic heme midpoint potential (mV) -420 -300 NR NR NR -260 

Reference This paper 12 8 17 18 19-21 
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TABLE 4 

EPR spectroscopic properties of hydroxylamine oxidoreductase from N. europaea (NeHAO), 

hydroxylamine oxidase (KsHOX) and hydrazine dehydrogenase (KsHDH) from K. stuttgartiensis EPR 

species are numbered according to reference (15) with our refinement. Numbers in parentheses 

indicate the integral number of spins; %, percentage of the total of integrated spins. 

 

  

  

Protein 

EPR species (Fe/monomer) (%) 

  

gxyz-values Comment/ assignment 

  

NeHAOa  

1 (1) 1.20; 2.26; 3.03 Uncoupled heme 1. 

2 (3) 1.35; 2.19; 3.11 (3.09)b Uncoupled hemes7 and 8. Includes the easily reducible 

  heme 2 

3 (2) 1.27; 2.28; 3.06 Coupled hemes 3 and 5 

4 (2) 8 Coupled hemes 6 and 4 (P460). Only observed in parallel 

  mode EPR 

KsHOX   

1  (1) 1.452 ;2.305;2.955 Heme 1; g-values become 1.452, 2.260, 2.980 after 

  NH2OH incubation 



2a (1) 1.41; 2.145; 3.1412 Reduced after NH2OH incubation. Heme 2 

2b (2) 1.41, 2.217, 2.955 Uncoupled hemes 7 and 8; g-values become 1.37, 2.217, 

  2.980 after NH2OH incubation 

3  (2) 1.40; 2.18; 3.247 Coupled hemes 3 and 5 (Euler angles: 45°, -180°, 135°). 

  After NH2OH incubation each heme reduces by 60%, gz 

  changes to 3.265 and the exchange splitting increase 

  from 0.031 to 0.035 cm-1. 

4  (2) N.D.c - 

5 (minor) 6.07; 5.81; 1.98 High spin heme, but amount is preparation-dependent 

  (0.03 – 0.14/monomer; the higher value shown in Figs. 

  9, A, B and 10A). 

KsHDH   

1  (1) 1.6; 2.05; 3.14 Uncoupled heme (heme-1) with broad resonances that 

  sharpen and shift (gx,y,z = 1.51, 2.256, 3.10)  upon 

  reduction by hydrazine 

 1.772; 2.06; 2.579 Heme 2. N2H4 reducible. Same heme in slightly 

(6.7%) 1.772; 2.06; 2.543 different environments 

(6.1%) 1.772; 2.06; 2.497  

2b (2) 1.5; 2.3; 3.0 Coupled hemes 7 and 8. (Euler angles: 45°, 180°, 87°). 

  No reduction by hydrazine, but gz changes to 3.05. The 

  exchange splitting is 0.035 cm-1 

3 (2) 1.5; 2.3; 3.0 Coupled hemes 3 and 5. (Euler angles: 45°, -180°, 

  135°). Reduction by hydrazine (70%), and gz changes to 

  3.04. The exchange splitting is 0.074 cm-1 and 0.087 cm- 

  1 after reduction 

4 (2) N.D.c - 

5 (minor) 6.0, 6.0, 2.0 Minor high spin heme (< 0.02/monomer) 

6 (minor) 2.009 Possible tyrosine radical coupled to heme 4. 

 

a Data were taken from Hendrich et al.   (15) 

b In  parentheses,  gz after  1-electron reduction 



c N.D, not determined. Signal accounting for hemes 6 and 4, which only would be observed in 

parallel mode EPR. 
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SUPPLEMENTAL FIGURE LEGEND 

 

FIGURE S1. Multiple protein sequence alignment of hydrazine dehydrogenase and other HAO- like 

octaheme proteins. The Figure shows the alignment of hydrazine dehydrogenase kustc0694 from 

Kuenenia stuttgartiensis (KsHDH), its close homologs and paralogs from other anammox bacteria, 

hydroxylamine oxidase (KsHOX, kustc1061) from K. stuttgartiensis, and hydroxylamine 

oxidoreductase from N. europaea (Neuro_HAO). Predicted N-terminal signal sequences are printed 

in blue. These sequences are absent in proteins with known crystal structures (KsHOX, NeHAO). The 

CX2CH heam binding motifs of the heme c molecules are highlighted red (white letters); primed 

numbers represent the histidines proximal ligands to the respective heme c molecules as deduced 

from the KsHOX and NeHAO crystal structures. Heme 3 in KsHDH and its homologs having an 

unusual CX4CH binding motif is highlighted pink (white lettering). The tyrosine involved in the 

covalent binding to the catalytic heme 4 (P460) in KsHOX (Tyr-491) and NeHAO is highlighted purple 

(white letters). The aspartate, histidine and tyrosine residues (Tyr-358 in NeHAO) near the catalytic 

site are highlighted blue (white letters). Note that the tyrosine is apparently conserved in all 

proteins. However, in KsHOX the tyrosine is moved away from the catalytic site by several 

Ångströms by a two-amino acid contraction and it is replaced at that position by a methionine (Met-

323) (12). This same contraction is found in the HDH proteins. A 15-amino acid sequence in the C-

terminal part, which is specific for KsHDH and its close homologs is printed in bold. Peptide 

sequences identified for KsHDH by MALDI-TOF analyses are underlined. Protein identifiers and 

abbreviations represent the following: kust, K. stuttgartiensis; KSU-1_HzoB (ZP_10100863) and KSU-

1_HzoB (ZP_10098714), hydrazine dehydrogenase/ oxidase (Hzo) from anammox enrichment culture 

KSU-1; BROSI, anammox bacterium Brocadia sinica (PRJDB103); scal, HAOs from anammox 

bacterium Scalindua profunda (Taxon Object IDs 2017108002 and 2022004002 at JGI). 


