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Abstract 

It has recently been demonstrated how perceptual learning, that is an improvement in a 

sensory/perceptual task upon practice, can be boosted by concurrent high-frequency 

transcranial random noise stimulation (tRNS). It has also been shown that perceptual learning 

can generalize and produce an improvement of visual functions in participants with mild 

refractive defects. 

By using three different groups of participants (single-blind study), we tested the efficacy of a 

short training (8 sessions) using a single Gabor contrast-detection task with concurrent hf-

tRNS in comparison with the same training with sham stimulation or hf-tRNS with no 

concurrent training, in improving visual acuity (VA) and contrast sensitivity (CS) of 

individuals with uncorrected mild myopia. 

A short training with a contrast detection task is able to improve VA and CS only if coupled 

with hf-tRNS, whereas no effect on VA and marginal effects on CS are seen with the sole 

administration of hf-tRNS. 

Our results support the idea that, by boosting the rate of perceptual learning via the 

modulation of neuronal plasticity, hf-tRNS can be successfully used to reduce the duration of 

the perceptual training and/or to increase its efficacy in producing perceptual learning and 

generalization to improved VA and CS in individuals with uncorrected mild myopia. 

 

Keywords: mild myopia; visual perceptual learning; transcranial random noise stimulation; 

tRNS; contrast sensitivity; visual acuity 
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Introduction 

Sensory experience is important in shaping neural connections during the critical 

period early in life (Hubel & Wiesel, 1970). Although this view still holds true, it has been 

challenged and reassessed by many authors, who have demonstrated that the visual system 

continues to mature and respond to environmental changes even in adulthood (Fregnac, 

Shulz, Thorpe, & Bienenstock, 1988; Karni & Sagi, 1991; Sale, et al., 2011). This notion of 

visual network plasticity is paramount not only in helping us achieve a better understanding 

of the human visual system and of visual plasticity mechanisms, but also in identifying non-

invasive treatment tools and protocols to provide visual rehabilitation following injury, such 

as hemianopia following stroke (Huxlin, et al., 2009; Kasten, Wust, Behrens-Baumann, & 

Sabel, 1998), amblyopia, and even when the visual deficit is at the non-cortical level such as 

in cases of myopia and presbyopia. In the latter case especially, being able to manipulate 

neuroplasticity might help us achieve visual recovery through compensatory strategies 

(Camilleri, Pavan, Ghin, Battaglini, & Campana, 2014; Camilleri, Pavan, Ghin, & Campana, 

2014; Casco, et al., 2014; Durrie & McMinn, 2007; Tan & Fong, 2008). 

To date, the most common non–invasive, behavioral method implemented to boost 

visual network plasticity and achieve recovery of function in a variety of visual disorders is 

known as Perceptual Learning (PL). Visual PL is the improvement on a visual task following 

repeated practice on the same or on a related task. (Levi & Li, 2009; Nitsche, et al., 2009; 

Polat, 2009; Sagi, 2011). In the past decade, PL has started to be considered a useful tool for 

improving visual functions in clinical populations due to its generalizable effects. In fact, 

under specific conditions, PL is able to transfer to other stimuli, tasks and circumstances 

(Camilleri, Pavan, Ghin, Battaglini, et al., 2014; Jeter, Dosher, Petrov, & Lu, 2009; Liu & 

Weinshall, 2000; Maniglia, et al., 2011; McGovern, Webb, & Peirce, 2012; Webb, Roach, & 

McGraw, 2007; Xiao, et al., 2008; Zhou, et al., 2006), making it a practical tool that may 

yield potential benefits for various types of visual impairments. In general, most studies point 

to a localized increase in processing efficiency in V1 following practice on a visual perceptual 

task. This change can be attributed to a specific and localised plasticity in V1 or alternatively 

to a more complex network involving changes in the inputs V1 receives from other higher 

order brain regions following practice (top-down modulation). Additionally, PL may 

maximize in decision mechanisms the read-out of sensory signals through internal reward 

(Kumano & Uka, 2013; Lu, Liu, & Dosher, 2010; Petrov, Dosher, & Lu, 2005). 

So far, PL has been shown to be effective in improving, among other dysfunctions, 

visual abilities in amblyopia (Campana, Camilleri, Pavan, Veronese, & Lo Giudice, 2014; 
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Hussain, Webb, Astle, & McGraw, 2012; Levi & Li, 2009; Li, Young, Hoenig, & Levi, 2005; 

Polat, 2009; Polat, Ma-Naim, Belkin, & Sagi, 2004; Zhou, et al., 2006), mild refractive 

defects like myopia (Camilleri, Pavan, Ghin, Battaglini, et al., 2014; Tan & Fong, 2008) and  

presbyopia (Polat, et al., 2012), and central or peripheral vision loss and cortical blindness 

(Chung, 2011; Das, Tadin, & Huxlin, 2014; Huxlin, et al., 2009; Kasten, et al., 1998; Plank, et 

al., 2014; Rosengarth, et al., 2013; Sabel, Kenkel, & Kasten, 2005). In myopia, visual input is 

limited by an optical de-focus, despite normal neuronal connectivity and image processing. In 

individuals with myopia, high spatial frequencies (SFs) are perceived as low contrast even 

when their physical contrast is high, resulting in a reduced visual acuity (VA) (Durrie & 

McMinn, 2007; Tan & Fong, 2008). Naturally, in the case of refractive defects, sensory 

training does not modify the structure of the eye; nonetheless improvements on uncorrected 

(that is: in absence of any optical correction) VA and contrast sensitivity (CS) using 

perceptual learning paradigms have been found; the proposed underlying mechanism in the 

case of non-cortical visual defects is an increase of signal-to-noise ratio of the de-focused 

retinal image (Durrie & McMinn, 2007; Tan & Fong, 2008). PL with the use of single Gabor 

stimuli, has been shown to be able to increase VA and CS in a clinical population of patients 

with amblyopia (Zhou, et al., 2006), and in recent studies conducted by Camilleri, Pavan, 

Ghin, Battaglini, et al. (2014) and Casco et al. (2014) it was found that PL using a simple 

contrast detection task is able to improve uncorrected VA in participants with mild myopia. 

Despite its proven effectiveness, PL techniques require lengthy protocols in order to 

yield effective outcomes (usually a minimum of two months training of up to three to four 

times weekly) (Camilleri, Pavan, Ghin, Battaglini, et al., 2014; Polat, et al., 2004; Tan & 

Fong, 2008). Random noise stimulation could optimize the effects of a behavioral training 

with measurable changes in the brain by modulating neuronal excitability that are involved in 

long-term potentiation (Fritsch, et al., 2010; Stagg, et al., 2009) which may ultimately lead to 

neuroplasticity. Recent advancements in the field have highlighted the potential benefits of 

non-invasive brain stimulation (NIBS) techniques. These techniques allow for external 

modulation of neural activity in the human brain. Besides transcranial magnetic stimulation 

(TMS), the most common NIBS technique for improving perceptual or cognitive functions is 

transcranial direct current stimulation (tDCS), whereby a low constant current is delivered to 

the brain areas of interest via electrodes (an anode and a cathode) positioned on the scalp. 

Cortical excitability is typically increased under the anode, and decreased under the cathode 

(Nitsche & Paulus, 2000). tDCS has been shown to successfully improve various perceptual 

or cognitive abilities both in healthy participants and in patients, and when administered 
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either with (Looi, Duta, Brem, Huber, Nuerk & Cohen Kadosh, 2016) or without a concurrent 

training (Coffman, Clark & Parasuraman, 2014). In particular, tDCS has been found to 

improve functions such as working memory (Andrews, Hoy, Enticott, Daskalakis & 

Fitzgerald, 2011; Fregni, Boggio, Nitsche, Bermpohl, Antal, Feredoes, Marcolin, Rigonatti, 

Silva, Paulus & Pascual-Leone, 2005), long-term memory (Marshall, Molle, Hallschmid & 

Born, 2004; Sandrini, Brambilla, Manenti, Rosini, Cohen & Cotelli, 2014), language 

(Fertonani, Rosini, Cotelli, Rossini & Miniussi, 2010; Fiori, Coccia, Marinelli, Vecchi, 

Bonifazi, Ceravolo, Provinciali, Tomaiuolo & Marangolo, 2010; Monti, Cogiamanian, 

Marceglia, Ferrucci, Mrakic-Sposta, Vergari, Zago & Priori, 2008; Pisoni, Papagno & 

Cattaneo, 2012; Ross, McCoy, Wolk, Coslett & Olson, 2010; Sparing, Dafotakis, Meister, 

Thirugnanasambandam & Fink, 2008), visual and attentional skills (Antal, Nitsche, Kruse, 

Kincses, Hoffmann & Paulus, 2004; Bolognini, Fregni, Casati, Olgiati & Vallar, 2010; Kraft, 

Roehmel, Olma, Schmidt, Irlbacher & Brandt, 2010; Ding, Li, Spiegel, Chen, Chan, Luo, 

Yuan, Deng, Yu & Thompson, 2010). However, efficacy of tDCS has recently been disputed 

(e.g.: Mancuso, Ilieva, Hamilton & Farah, 2016; Horvath, Forte & Carter, 2015; Vannorsdall, 

van Steenburgh, Schretl, Jayatillake, Skolasky & Gordon, 2016). 

Transcranial random noise stimulation (tRNS) is an innovative method for boosting 

neural plasticity through the application of a weak alternating current at random frequencies 

(0.1–640 Hz). The neuromodulatory effects of tRNS are said to facilitate or inhibit neuronal 

activity by syncronising or desyncronising it (Grenier, Timofeev, & Steriade, 2001; Moss, 

Ward, & Sannita, 2004; Ponomarenko, Li, Korotkova, Huston, & Haas, 2008). Unlike in 

transcranial direct current stimulation (tDCS), where the neurons are embedded in a constant 

electrical field and may result in a homeostatic effect of the ion neural channels after 

prolonged use, random noise stimulation counteracts this phenomenon due to its fluctuating 

pattern. In fact, one known disadvantage of continuous use of tDCS for rehabilitative 

purposes is that it may result in a homeostatic effect of the neural population being 

stimulated, in that neurons tend to return to their initial ‘resting state’. This counteracting 

effect of tRNS may be attributed either to the repeated opening of sodium channels or to a 

higher sensitivity of neuronal networks to field modulation than the average single neuron 

threshold (Terney, Chaieb, Moliadze, Antal, & Paulus, 2008). 

Unlike tDCS, tRNS has only recently been explored within the visual domain 

(Camilleri, Pavan, Ghin, Battaglini, et al., 2014; Campana, et al., 2014; Fertonani, Pirulli, & 

Miniussi, 2011; Pirulli, Fertonani, & Miniussi, 2013). Fertonani and colleagues conducted a 

study testing the efficacy of different stimulation protocols on an orientation discrimination 
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task (Fertonani, et al., 2011). Their results concluded that high frequency tRNS (hf-tRNS), 

that is tRNS with a frequency ranging from 100 to 640 Hz, was the most efficacious type of 

NIBS for boosting PL in healthy participants, when compared with low frequency random 

noise, direct current (anodal and cathodal) and sham stimulation. Other studies show tRNS as 

yielding faster and more effective PL as well as transfer to VA and CS in healthy participants, 

people with mild myopia and amblyopia (Camilleri, Pavan, Ghin, & Campana, 2014; 

Campana, et al., 2014). In particular, a preliminary study showed that applying tRNS with a 

PL training protocol of 2 weeks (8 sessions) is able to achieve the same functional outcome 

on uncorrected VA, and a better outcome on uncorrected CS, as a two-month training 

protocol (24 sessions) (Camilleri, Pavan, Ghin, Battaglini, et al., 2014; Camilleri, Pavan, 

Ghin, & Campana, 2014). 

The aforementioned studies were unable to determine whether it is specifically the 

combined use of the techniques that brought about this fast improvement or whether tRNS 

alone is able to achieve the same outcome on the visual system in the absence of any 

behavioural training or whether there may be any potential placebo effect of the electrical 

stimulation. By using a between-groups approach where participants are trained, using a 

contrast detection training (Camilleri, Pavan, Ghin, Battaglini, et al., 2014; Camilleri, Pavan, 

Ghin, & Campana, 2014; Zhou, et al., 2006), with concurrent tRNS, or sham stimulation, or 

else receive tRNS with no behavioural training, the aim of this study is to isolate the 

contribution of PL, tRNS and the combination of both. Furthermore, this work focuses on the 

potential application of Transcranial Electrical Stimulation (TES), specifically tRNS, together 

with behavioral trainings, as a new approach to further ameliorate visual outcomes of existing 

training paradigms.  

 

Methods 

Apparatus 

Both the behavioural training and pre/post-tests were displayed on a 22-inch Philips 

Brilliance 202P4 luminance-calibrated (gamma-corrected with gamma = 1) monitor with a 

refresh rate of 60 Hz. The stimuli used in the training were created with the Matlab 

Psychtoolbox (Brainard, 1997; Pelli, 1997), whereas stimuli for measuring VA in the pre and 

post-tests were generated using the Freiburg Acuity and Contrast Test (FrACT 3.8) (Bach, 

1996, 2007). Spatial dithering (Bach, 1997) and colour bit stealing (Tyler, 1997) for 

increasing the depth of contrast resolution (12 bits) were enabled on the FrACT, thus allowing 
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higher luminance resolution. The screen resolution was 1280x1024 pixels, each pixel 

subtended 0.33 arcmin at a viewing distance of 3 meters, and 0.67 arcmin at a viewing 

distance of 1.5 meters. Viewing distance was equal to 3 meters for pre- and post-tests, 

whereas the training was administered from 1.5 meters (Das, et al., 2014; McGovern, et al., 

2012). All stimuli were presented centrally and both the tests and training were carried out in a 

dark, silent room. Background screen luminance (corresponding to mean luminance of Gabor 

stimuli) was 31.5 cd/m2. 

 

Transcranial Random Noise Stimulation (tRNS) 

The high frequency transcranial random noise stimulation was delivered to groups 1 

and 3 using a battery-driven stimulator (BrainSTIM, EMS) through a pair of saline-soaked 

sponge electrodes. The tRNS consisted of an alternating current of 1.5 mA intensity with a 

0mA offset applied at random frequencies. The frequencies ranged from 100 to 640Hz (high 

frequency range). This stimulation protocol has been demonstrated efficacious in boosting 

perceptual learning in previous studies (Camilleri, Pavan, Ghin, Battaglini, et al., 2014; 

Fertonani, et al., 2011; Pirulli, et al., 2013). The active electrode had an area of 16 cm2 and 

was placed over the occipital cortex measured at ~3 cm above the inion. The reference 

electrode had an area of 60 cm2 and was placed on the forehead. The current density was 

always maintained below the safety limits (below 1 A/m2) (Poreisz, Boros, Antal, & Paulus, 

2007). The electrodes were kept in place with bandages. 

 

Participants 

Thirty participants with mild myopia were recruited from the University of Padova 

(mean age of 25.31, ranging between 19 and 29). The participants were randomly assigned to 

one of three different treatment groups each consisting of 10 participants. The first group 

(PL+tRNS) carried out a 2-week (8 sessions) behavioral training using a contrast detection 

task combined with online high frequency tRNS (hf-tRNS) for 25 minutes of stimulation. The 

second group (PL+Sham) took part in the same training protocol but combined with Sham 

stimulation. The third group (tRNS alone) of participants carried out 25 minutes of hf-tRNS 

in the absence of any behavioral training. This was done in order to compare the effects of 

combining behavioral training with tRNS with the effects of behavioral training alone 

(without tRNS) and tRNS alone on uncorrected VA and uncorrected CS. 

All participants fit the following inclusion criteria: refractive error up to -2 diopters 

(D) in either eye (minimum was -0.75D), with astigmatism not exceeding -0.5D in either eye. 
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All tests and the behavioral training were administered binocularly and without the use of 

optical corrections. All participants had a stable refractive index for the 6 months preceding 

the training. Exclusion criteria included the presence of any other condition for reduced VA 

other than simple myopia and/or mild astigmatism, including pregnancy, diabetes mellitus, 

presence of myopia-related ocular complications and any previous ocular surgery. To ensure 

the inclusion and exclusion criteria were met, prior to commencement of the training, the 

participants carried out a detailed assessment by an optometrist. Additionally, each participant 

in the two tRNS groups filled in a questionnaire to check that all were eligible to undergo 

non-invasive brain stimulation (e.g., no history of seizures, no internal metal objects or 

previous traumatic brain injury). At the end of the study each participant was given the 

possibility to participate to the protocol that produced the largest mean improvement in VA. 

The Local Ethics Committee approved this study. 

 

Stimuli and Procedure 

Prior to (pre-tests) and after the training (with or without tRNS) (post-tests), 

uncorrected VA and uncorrected CS were measured for each participant by using Landolt-C 

and Grating tests of the Freiburg Visual Acuity Test (FrACT) (Bach, 1996, 2007). The Best-

Pest adaptive procedure was used to calculate the absolute threshold for each of these tests. 

Stimulus duration lasted until the participants' response. An auditory cue was presented upon 

stimulus presentation and a different auditory cue was implemented as feedback for error 

responses. 

The Landolt-C test was used to assess uncorrected VA. The task of the participants 

was to indicate, in every trial, the orientation of the gap of the Landolt-C out of eight possible 

orientations. Contrast stimuli for the uncorrected CS assessment consisted of sinusoidal 

gratings presented in a circular window with a narrow Gaussian taper. Size of the gratings 

was 3 deg. Grating orientations used were 0, 45, 90 or 135 deg. The task of the participant 

was to discriminate the orientation of the grating at different spatial frequencies, ranging from 

1 to 15 cycles per degree (cpd), in separate blocks. 

The behavioral (training) paradigm consisted of a two-interval forced choice (2IFC) 

task where the participants had to detect the presence of a single Gabor patch, which changed 

in contrast according to the performance of the participant. The threshold corresponding to 

79% of correct detection was determined by using a 1up-3down staircase procedure(Levitt, 

1971). Stimuli used in the training were comprised of Gabor patches consisting of a 

cosinusoidal carrier enveloped by a stationary Gaussian. Standard deviation of the luminance 
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Gaussian envelope (σ) was equal to the sinusoidal wavelength (λ); therefore, the size of the 

Gabor patch covaried with its spatial frequency. Additionally, the spatial phase of the 

cosinusoidal carrier equaled to zero (evenly symmetric Gabor patch). Stimulus duration lasted 

200 ms. In order to reduce spatial and temporal uncertainty both an auditory and a spatial cue 

were implemented. On each trial a central fixation point preceded the presentation of each 

interval, and an auditory cue indicated when the stimulus (if present) appeared. Performance 

feedback was also provided to the participants in the form of an auditory beep following an 

incorrect response. 

Participants in groups 1 and 2 (PL+tRNS and PL+Sham respectively) underwent 8 

training sessions over 2 weeks (4 consecutive sessions each week) and trained on 4 different 

orientations of the stimulus with a single spatial frequency (ranging from 6 to 15 cpd) chosen 

according to the individual’s cutoff performance in the pretest uncorrected CS measurement, 

defined as the spatial frequency at which the estimated contrast threshold from pre-training 

uncorrected CS measurements was closest to 0.50 (Michelson contrast) (Zhou, et al., 2006). 

Since interleaving different stimulus conditions (roving) has been shown to hinder perceptual 

learning (Herzog, Aberg, Fremaux, Gerstner, & Sprekeler, 2012; Kuai, Zhang, Klein, Levi, & 

Yu, 2005), in order to increase the efficacy of perceptual learning, participants were trained 

on the same orientation for 2 consecutive days. Each session consisted of 8 blocks each 

containing 60 trials, which lasted for approximately 45 minutes. 

Participants in group 1 (PL+tRNS) were administered hf-tRNS (1.5mA) during the 

first 25 minutes of each session, which covered the first 5 blocks (Fertonani, et al., 2011). 

Participants in group 2 (PL+Sham) underwent sham stimulation for the same length of time. 

In the sham condition, the stimulation was a placebo for all eight blocks and was delivered for 

20s at the beginning of each block. Participants in group 3 (tRNS alone) were administered 

hf-tRNS (1.5mA) for 25 minutes, without any concurrent task, for 8 sessions over 2 weeks (4 

consecutive sessions each week). This matches the stimulation parameters of group 1. 

 

Results 

All data were subject to the Kolmogorov-Smirnov test of normality. Pre- and post-

tests of uncorrected VA measurements, for each of the three groups, were normally 

distributed (p>.05), therefore ANOVAs and t-tests were used for this data. For what concerns 

Log-transformed uncorrected CS, pre- and post-tests with various spatial frequencies in the 

three groups, were not normally distributed (p<.05), therefore the non-parametric Wilcoxon 
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signed-rank test was used, separately for each group and for each spatial frequency, to assess 

differences between pre- and post-tests. 

Uncorrected VA at pre-test underwent to a one-way ANOVA in order to assess 

whether there were any significant VA differences between groups that could in turn explain 

different training/stimulation outcomes. No significant differences were found between the 

three groups in uncorrected VA at pre-test (F2,27=0.09, p>.05, η2
p=0.007). 

A mixed-design ANOVA with ‘group’ as the between subjects factor was used to 

compare pre- and post-test measurements of uncorrected VA. A significant interaction of 

pre/post by group indicated that the groups differed in their pre versus post outcome 

(F2,27=14.481, p<.0001, η2
p=0.518). Post hoc analysis was carried out using t-tests which 

revealed a significant difference for pre and post-test in group 1 (PL+tRNS) (t9=4.474, p<.01, 

r=0.83). Results indicate an improvement of 0.171 LogMAR from a baseline measurement of 

0.337 LogMAR to a post-test reading of 0.166 LogMAR (Figure 1). No significant 

differences were observed for either group 2 (PL+Sham, t9=-1.221, p>.05, r=0.37) or group 3 

(tRNS alone, t9=-0.295, p>.05, r=0.09). Bonferroni-corrected t-tests aiming at comparing the 

amount of improvement in the different groups revealed a significant difference between 

group 1 and 2 (t18=4.36, p<.001, r=0.71) and between group 1 and 3 (t18=4.15, p<.01, r=0.7), 

but not between group 2 and 3 (t18=-0.83, p>.05, r=0.19).   

 

FIGURE 1 ABOUT HERE 

 

With regards to uncorrected CS, pre- and post-test measurements were compared with 

a Wilcoxon signed-rank test on the Log-transformed CS data. Participants undergoing both 

random noise stimulation and behavioural training (group 1) improved significantly at the 

following spatial frequencies: 3 cpd (Z=-1.988, p<.05), 5cpd (Z=-2.293, p<.05), 7 cpd (Z=-

2.09, p<.05), 9 cpd (Z=-2.191, p<.05), and 11 cpd (Z=-2.599, p<.01). No significant 

improvements were seen at the lowest (1 cpd) and highest (15 cpd) tested spatial frequencies 

(Figure 2). In group 2 (PL+Sham), no significant differences were observed at any tested 

special frequency. Interestingly in group 3, which included only tRNS, a significant 

difference was found at 9cpd (Z=-1.988, p=<.05). No other significant differences were found 

in group 3. 

 

FIGURE 2 ABOUT HERE 
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Discussion 

The present study focuses on the application of tRNS together with a visual training, 

specifically, a single Gabor contrast detection paradigm (Camilleri, Pavan, Ghin, & Campana, 

2014; Zhou, et al., 2006), to further enhance the outcome of existing PL regimes so as to 

improve visual defects. In this study, however, we did not find any improvement in either VA 

or CS when the visual training was administered in absence of tRNS (PL+Sham group). This 

could be possibly due to the failure of achieving PL with only 8 sessions where orientation 

was changed every two sessions, similar to a roving procedure (Herzog, et al., 2012). In fact, 

by using the same PL paradigm (contrast detection) in myopic participants, in a previous 

study we found that 24 sessions were needed to achieve a VA improvement of 0.16 LogMAR, 

whereas no improvement in CS was found even with such a long training (Camilleri, Pavan, 

Ghin, Battaglini, et al., 2014). However, if PL is boosted by the concomitant administration of 

hf-tRNS as shown by previous studies (Camilleri, Pavan, Ghin, Battaglini, et al., 2014; 

Campana, et al., 2014; Fertonani, et al., 2011; Pirulli, et al., 2013), then 8 sessions of training 

become enough efficacious to improve uncorrected VA of a similar amount of 24 training 

sessions with no concurrent stimulation, and to significantly improve uncorrected CS 

(whereas no improvement was obtained with 24 training sessions using the same paradigm 

(Camilleri, Pavan, Ghin, Battaglini, et al., 2014).     

The obtained improvements in uncorrected VA and uncorrected CS in the combined 

treatment group suggest a specific mechanism underlying the effects by which tRNS acts: it 

seems to require external sensory (visual) input, thereby acting on the neurons activated by 

the task at hand. This idea is further strengthened by the lack of significant improvement 

when tRNS was applied in isolation of a behavioural task. Interestingly however, in the 

absence of the behavioural training, tRNS resulted in improved contrast sensitivity at 9 cpd. 

Some improvement in contrast sensitivity with the sole use of brain stimulation, so far, has 

been observed in individuals with amblyopia after the administration of either anodal tDCS 

(Spiegel, Byblow, Hess, & Thompson, 2013) or high-frequency repetitive TMS (Clavagnier, 

Thompson, & Hess, 2013; Thompson, Mansouri, Koski, & Hess, 2008). Although here, 

improvement on CS is much more limited (to a single spatial frequency) than when combined 

with PL, suggesting a weaker effect of tRNS in the absence of a behavioural task. These 

results may be explained by the underlying phenomenon of stochastic resonance, whereby the 

signal to noise ratio of the low threshold stimulus may be enhanced by adding noise to the 

system (Terney, et al., 2008). Stochastic resonance has been used previously for explaining 

enhancements of behavioural effects that have been found with TMS, therefore moving 
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beyond the older idea of TMS as a “virtual lesion”: if a low level of neural noise (produced by 

low-intensity TMS) is introduced into the system during processing of a weak stimulus, the 

membrane potential of those neurons tuned to the stimulus will be increased so to reach the 

threshold and make them firing, consequently, stimulus detection/discrimination will be 

facilitated (Miniussi, Harris & Ruzzoli, 2013; Schwarzkopf, Silvanto & Rees, 2011). In the 

present study, the random noise stimulation at frequencies between 100 and 640 Hz may be 

interacting with the neurons already activated by the low contrast Gabor stimuli and by doing 

so, enhance their firing response (increasing signal to noise ratio), whilst preventing the 

network from becoming desensitized and progress to a homeostatic state as can occur with 

tDCS. On the other hand, when tRNS is applied in the absence of any input, the stimulation is 

unspecific and may simply add noise to the system. In fact, there is emerging consensus that 

the effects of brain stimulation techniques are highly dependent on the state of the stimulated 

neuronal population (Cattaneo & Silvanto, 2008; Silvanto, Muggleton, Cowey & Walsh, 

2007; Silvanto, Muggleton, & Walsh, 2008). For example, in a study investigating the effects 

of offline theta burst stimulation on a subsequent visual motion discrimination task, Silvanto 

and colleagues (Silvanto, Muggleton, Cowy & Walsh, 2007) found that external induction of 

neuronal plasticity (such as in the case of brain stimulation) also depends on the state of the 

targeted neurons during stimulation. Despite here induction of neural plasticity was found 

with above-threshold (simple) stimuli, larger improvements in tasks via perceptual learning 

(and thus neural plasticity) typically occur with more challenging, near-threshold stimuli 

(Polat et al., 2004; Sagi, 2011).    

Since the seminal paper of Bliss and Lomo (1973), it is well established that high 

frequency stimulation is able to produce long term potentiation through strengthening of 

synaptic connections. More recently, it has been suggested that also noisy electrical 

fluctuations are able to boost synaptic signals (Moss, et al., 2004). Interestingly, oscillations 

within a frequency range of 80–200 Hz included in the high frequency band, have been 

associated with plasticity processes (Grenier, et al., 2001) and learning (Ponomarenko, et al., 

2008). Another recent study by Fertonani and colleagues (Fertonani, et al., 2011) explains 

how the repetitive action of tRNS may induce direct temporal summation of neural activity 

and may desynchronize (pathological or inefficient) rhythms by increasing the signal to noise 

ratio. A very recent study proposes that, unlike tDCS, tRNS-induced plasticity is independent 

of NMDA receptors and involves the modulation of voltage-gated sodium channels (Chaieb, 

Antal, & Paulus, 2015). Due to the recurring potentiation of sodium channels, its aftereffects 

through LTP may outlast those observed after tDCS stimulation. The aftereffects of tRNS on 
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cortical excitability have recently been evaluated in the motor cortex by measuring the 

participants MEPs following 4, 5 and 6 minutes of stimulation (Chaieb, Paulus, & Antal, 

2011). The researchers observed that increased cortical excitability following 5 minutes of 

tRNS lasted only for 10 minutes. Whereas 6 minutes of tRNS induced an even stronger 

excitability increase of up to 30 minutes post stimulation. 

The application of TES as a potential tool in neuro-rehabilitation is a relatively young 

concept. Yet many studies are seeking to understand the mechanisms by which different TES 

techniques can complement an existing cognitive training (Dhaliwal, Meek, & Modirrousta, 

2015; Yun, Chun, & Kim, 2015). tES is non-invasive and if used correctly should not lead to 

any aversive effects, it is relatively cheap and can be implemented in various contexts as an 

adjunct to existing techniques, which although are effective in isolation, might not be offering 

the most optimal treatment to patients. tRNS, a younger sister of tDCS, has not featured in as 

many studies, yet due to the mechanisms by which it acts and its lack of discomfort, is 

starting to capture the attention of many clinical researchers. The present study identifies the 

potential this device has in assisting existing visual rehabilitation methods, such as PL, and 

encourages further insight into the exact mechanisms by which it is acting. In line with the 

present work, a recent study by Campana and colleagues, suggested how hf-tRNS stimulation 

applied to V1 in combination with a lateral masking paradigm results in a significant 

improvement in VA and CS in the amblyopic eye of participants (Campana, et al., 2014). 

Furthermore, the improvements following combined tRNS and PL in mild myopia, using the 

same protocol as in the present study, have been shown to be maintained for up to 3 months 

post training (Camilleri, Pavan, Ghin, Battaglini, et al., 2014). 

Following these positive results, a larger clinical study is paramount in order to 

investigate more reliably, the effectiveness of these techniques in other clinical populations. 

In addition, it is necessary that follow-up measures are taken post-training to establish long 

term effects while allowing for flexible re-application of the training. It is still unclear what 

relevance these improvements will have in a real-life setting outside the laboratory. 

Additional use of questionnaires and self-reports assessing day-to-day improved vision is 

essential. 
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Figure captions 

Figure 1. Mean uncorrected VA improvement (LogMAR difference) between pre- and post-

test is shown for each of the three groups of participants. Error bars ±1 SEM. 

 

Figure 2. Mean uncorrected CS improvement (Log-transformed difference) between pre- and 

post-test is shown for each tested spatial frequency, separately for each of the three groups of 

participants. Error bars ±1 SEM. 
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