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Abstract— We present applications of the Frequency Map
Enhancement (FreMEn), which improves the performance of
mobile robots in long-term scenarios by introducing the notion
of dynamics into their (originally static) environment models.
Rather than using a fixed probability value, the method models
the uncertainty of the elementary environment states by their
frequency spectra. This allows to integrate sparse and irregular
observations obtained during long-term deployments of mobile
robots into memory-efficient spatio-temporal models that reflect
mid- and long-term pseudo-periodic environment variations.
The frequency-enhanced spatio-temporal models allow to pre-
dict the future environment states, which improves the efficiency
of mobile robot operation in changing environments. In a series
of experiments performed over periods of weeks to years, we
demonstrate that the proposed approach improves mobile robot
localization, path and task planning, activity recognition and
allows for life-long spatio-temporal exploration.

I. INTRODUCTION

As robots gradually enter human-populated environments,
they have to deal with the fact that the environments
are uncertain because they change over time. While the
probabilistic mapping methods used in robotics can handle
uncertain and incomplete environment knowledge, their the-
oretical foundations assume that the uncertainty is caused
by sensor noise rather than by natural processes that govern
the environment changes. The assumption of a static world
negatively impacts the ability of these models to reflect
the environment changes and effectively support long-term
autonomous operation of mobile robots. However, several
studies [1], [2], [3], [4], [5] indicated that explicit modeling
of the environment changes improves localization robustness.

Biber and Duckett [5] proposed to represent the world
dynamics by multiple maps with different timescales, which
are switched on the fly based on their consistency with the
current observations. Dayoub et al. [6] present a system that
evaluates the persistence of visual features over time in order
to identify features that are more likely to be stable. Churchill
and Newman [1] demonstrated that clustering spatially-close
observations into ‘experiences’ improves long-term localiza-
tion. The article [3] associates each cell of an occupancy
grid with a hidden Markov model, which improves the
localization robustness as well. Kucner’s method [7] assumes
that occupancies of grid cells are influenced by a moving
objects, which allows to infer typical motion patters in a
given environment. Sünderhauf’s method [4] proposes to
learn typical appearance changes caused by seasonal factors
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and use this knowledge for long-term predictions of envi-
ronment appearance. Finally, Rosen et al. [8] use Bayesian-
based survivability analysis to predict which landmarks will
be visible after some time and which are going to disappear.

Our approach to environment change modeling is based on
the assumption that some of the mid- to long-term processes
that cause the environment changes are (pseudo-)periodic,
e.g. seasonal foliage variations, daily illumination cycle or
routine human activities. To reflect this assumption, we
represent the probability of each local environment state not
by a single value, but by a probabilistic function of time
composed of several harmonic functions whose periodicities
and amplitudes relate to the frequencies and influences of
these hidden processes.

II. METHOD DESCRIPTION

The proposed method, coined the Frequency Map En-
hancement (FreMEn), represents the probability of each
environment state by a function of time

p(t) = p0 +

n∑
j=1

pj cos(ωj t+ ϕj), (1)

where n is the number of environment processes taken
into account, ωj , ϕj and pj relate to the frequencies, time
offsets and influences of these processes, and p0 is the mean
probability of the state. To obtain the parameters ωj , ϕj and
pj , we first obtain the frequency spectra S(ω) of long-term
observations of each environment state s(t) by means of a
(non-uniform) Fourier transform [9], i.e. S(ω) = FT (s(t)).
The parameters ωj , ϕj and pj in Equation (1) are equal to the
amplitudes, phases and frequencies of the n most prominent
spectral components of the spectrum S(ω). To deal with
the fact that robots might observe the environment on an
irregular basis, we employ a non-uniform Fourier Transform
scheme [9] similar to the one used in [10].

The approach, which was originally presented in [11], can
be applied to all environment models that represent the world
as a set of independent component with binary states. In
this short overview, we will show its use does not improve
only long-term localisation in changing environments [2],
[12], but that it also improves robotic search [13], path
planning [14] and activity recognition. We will also show
that the time-dependent probability of the environment states
expressed by Equation (1) allows the calculation of the
spatio-temporal environment entropy, which, combined with
information-theoretic planning, results in life-long spatio-
temporal exploration of dynamic environments [9], [15].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/42585471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1: Frequency-enhanced feature map [2] for visual localization: The observations of image feature visibility (centre,red)
are transferred to the spectral domain (left). The most prominent components of the model (left,green) constitute an analytic
expression (centre,bottom) that represents the probability of the feature being visible at a given time (green). This allows to
predict the feature visibility at a time when the robot performs self-localization (blue).

III. VISUAL LOCALIZATION

The problem of visual place recognition in changing
environments has received considerable attention during re-
cent years [16]. We propose to represent the variations in
appearance of different locations by modeling the visibility
of individual image features in the frequency domain. Thus,
we can predict which visual features are going to be visible at
which time and use these time-specific features to localise the
robot [2]. To evaluate our approach, we performed both in-
doors and outdoors experiments. The indoor experiment was
performed at the Lincoln Centre for Autonomous Systems,
where a SCITOS-G5 robot captured images of 8 areas every
10 minutes for one week and used the models created to
localize itself after one week, three months and one year [2].
The outdoor experiment was performed in the Stromovka
park in Prague, where a P3AT robot captured images of
designated places on a monthly basis for one year and used
the FreMEn feature map to determine its location during
three testing runs during the following year. While the indoor
dataset was mainly affected by the daily illumination cycle
and human activities, the outdoor dataset captured seasonal
variations of foliage.
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Fig. 2: The dependency of localization error on the number
of features used.

The dependence of the localization error on the number
of features used is shown on Figure 2, which indicates that
the frequency-enhanced models that generate a set of likely-
to-be-visible features for a particular time outperform the
‘static’ approach that relies on the most stable features,
i.e. modelling the appearance variations by our approach
improves the robustness of localization.

IV. CONTINUOUS LASER-BASED LOCALIZATION

While the advantages of using dynamic representations for
visual localisation are clear, because the environment appear-
ance variations are significant due to the passive nature of
the cameras, the usefulness of dynamic maps for laser-based,
2d localisation was demonstrated only in highly dynamic
environments, such as parking lots [3]. However, maps are
not useful only for localization, but also for planning. Thus,
a mobile robot that operates in the long-term should be able
to reason about the nature of the environment changes it
encountered during its deployment: knowing that obstacles
which were blocking a corridor a hours ago are likely to
be gone by now or that during noon, the cafeteria is too
crowded, is beneficial when planning the robot’s path.

However, the major part of the changes observed in 2D
occupancy grids build by lasers are not periodic. Typically,
they are caused by temporary stationary objects that tend to
disappear after some time. Since modeling periodic changes
alone is not sufficient, we combined FreMEn with the
approach presented in [3] and created a 2D occupancy
grid that models both the periodicity and stationarity of
the changes [12]. This FreMEn 2D occupancy grid was

Environment change example (cubdoard doors open/closed)

Fig. 3: Example of the regular variations and corresponding
map sections predicted for morning (left) and evening (right).

integrated into the ROS navigation stack of our SCITOS-
G5 robot, which operated in a populated open plan office
for 2 weeks. During these two weeks, we observed that
the efficiency of the robot navigation gradually improved
(e.g. path re-planning was triggered less often), while the
reduction in the localization error was only marginal [12].



V. TOPOLOGICAL PATH PLANNING

Imagine a robot operating in an office like environment
24/7, performing different user-defined tasks at different
locations. The robot needs to schedule not only these tasks,
but also has to determine when to visit its charging station.
To create the schedule, the robot needs to predict which areas
of the environment are going to be accessible at which times.

To address this problem, we represented the environment
as a topological map, where the traversability of individual
edges was modelled by FreMEn [14], see Figure 4. Using
this topological map, the robot can not only plan its path,
but it can also determine what is the chance of the path’s
successful traversal, i.e. the chance of reaching a given
destination at a particular time. To evaluate our approach,

Fig. 4: Partial map of the operational environment with
temporal edge traversability models. Nodes represent loca-
tions and edges movement actions which can fail, e.g. door
passing requires an open door. The (illustrative) graphs show
the predicted probability of successful edge traversal.

we let our SCITOS-G5 robot operate in an populated office-
like environment for more than 10 weeks, during which
the robot learned that two edges of the topological map
exhibit periodic changes to their traversability. The first edge
corresponded to a laboratory safety door that was kept closed
at night and the second edge led through a narrow area
behind lecturer’s desks, which was occasionally blocked by
chairs. Using its knowledge about the dynamics of these
edges, the robot could infer that the best time to perform
its activities in the office areas was afternoon during the
weekdays, because at other times, it would risk that after
completing these tasks, it would not be able to return to
the laboratory and reach its charging station, see the map in
Figure 4.

VI. ROBOT SEARCH

Another combination of topological representations with
FreMEn was used to model object and people presence in a
robotic search scenario. Here, a mobile robot has to find a
certain object or person as quickly as possible. For the sake
of simplicity, we assume that the object or person is detected
as soon as the robot arrives at its location.

To plan an efficient search path through the individual
locations, the robot needs to take into account the probability
of object occurrence. Improved knowledge about possible
object location leads to more efficient plans and hence,
shorter times to locate the desired object. We formulated

the search as a path planning problem in a graph where
the probability of object occurrences at particular nodes
is a function of time represented by FreMEn [13]. To

Fig. 5: Aruba ‘CASAS’ [17] apartment with probabilities of
person presence in two rooms.

evaluate our approach, we used three datasets collected over
several months containing person and object occurrences in
residential and office environments. Several types of spatio-
temporal models were created for each of these datasets
and the efficiency of the search method was assessed by
measuring the time it took to locate a particular object. The
experimental results indicated that representing the dynamics
of object occurrences by FreMEn reduced the search time by
25% to 65% compared to maps that consider the probability
of object occurrences as independent of time.

VII. LIFE-LONG EXPLORATION

In the previous scenarios, the map was created from
sensory data which were gathered when the robot was
performing user-motivated tasks. This passive approach to
mapping is not only slow, but it typically results in an
incomplete knowledge that might lead to misinterpretations
of the processes that govern the environment changes. To
deal with this, the robot has to explore its environment in an
active way, which does not only mean that it should visit all
the relevant locations at least once, but it should also revisit
them to understand how they change over time.

The crucial issue is to determine where and when to
perform observations in order to refine and complete the
spatio-temporal model. Since the FreMEn model predicts
the probability of the environment states, we use it to
calculate the states’ entropy, which directly corresponds to
the amount of information obtained by observing these states
at a particular time. Application of information-based explo-
ration methods to the spatio-temporal entropy predicted by
FreMEn resulted in intelligent and continuously improving
exploratory behaviour, which evolves as the environment
knowledge becomes more refined over time [9], [15].

Figure 6 illustrates the exploratory behaviour on the
Aruba [17] dataset, where the robot created a spatio-temporal
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Fig. 6: Spatio-temporal exploration behaviour: The robot
uses its probabilistic world model (second row) and spatio-
temporal entropy estimates (third row) to schedule its obser-
vations (bottom graph) and learn the environment dynamics
(top). As the environment knowledge improves over time,
the scheduled observations provide more information which
allows for further refinement of the environment model.

model of person presence used for the robot search [13].
During the first day, the robot has no knowledge of the
environment and it has no room or time preference when
scheduling its observations. After the first day, it schedules
more visits of the rooms where the person presence changes
more often. The second day observations provide information
about the rooms’ dynamics: the robot assumes that the
bedroom has a daily periodicity and that the kitchen is visited
five times per day. This causes the expected information gain
to be time-dependent – e.g. evening and morning observa-
tions of the bedroom provide more information than in the
afternoon, which is reflected by the exploration schedule, see
the last row of Figure 6.

VIII. ACTIVITY RECOGNITION

Using the office and household datasets from Sections III
and VI respectively, we also tested the use of the FreMEn as
a model providing temporal-based priors for human activity
recognition. The FreMEn models were created incrementally
by a Bayesian update scheme, which was performed every
time an activity was recognized. The method gradually
learned about the typical rhythms of the people’s activities,
effectively reducing the error in activity classification, see
Figure 7 and article [18].
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Fig. 7: Activity recognition error over time

IX. CONCLUSION

We presented applications of a method that improves the
efficiency of long-term mobile robot operation in changing
environments. The method assumes that in a mid-term per-
spective, the environment is influenced by processes which
might be periodical and that the evolution of the some envi-
ronment states can be described by the periodicity, amplitude
and time shift of these underlying processes. To identify the
parameters of these processes and to predict the environ-
ment’s local state we use techniques based on the Fourier
transform. We gave an overview of the methods’ applications
so far, showing that in long-term scenarios, it reduces locali-
sation error [2], [12], speeds-up robotic search [13], improves
path planning [14], activity recognition. and allows for active,
life-long environment exploration [9], [15]. To facilitate the
use of the method by other researchers, we published its
ROS-compatible source code at http://fremen.uk.
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“Where’s waldo at time t? using spatio-temporal models for mobile
robot search,” in ICRA, 2015.

[14] J. Pulido Fentanes, B. Lacerda, T. Krajnı́k, N. Hawes, and M. Han-
heide, “Now or later? predicting and maximising success of navigation
actions from long-term experience,” in ICRA, 2015.

[15] J. M. Santos, T. Krajnik, J. Pulido Fentanes, and T. Duckett, “Lifelong
information-driven exploration to complete and refine 4d spatio-
temporal maps,” Robotics and Automation Letters, 2016.

[16] S. Lowry, N. Sunderhauf, P. Newman, J. Leonard, D. Cox, P. Corke,
and M. Milford, “Visual place recognition: A survey,” IEEE Transac-
tions on Robotics,, vol. PP, no. 99, pp. 1–19, 2015.

[17] D. J. Cook, “Learning setting-generalized activity models for smart
spaces,” IEEE Intelligent Systems, no. 99, p. 1, 2010.

[18] C. Coppola, T. Krajnı́k, N. Bellotto, and T. Duckett, “Learning
temporal context for activity recognition,” in European Conference
on Artificial Intelligence (ECAI), 2016, in review.


