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Abstract. Let g be an element of a group G. For a positive
integer n, let En(g) be the subgroup generated by all commutators
[...[[x, g], g], . . . , g] over x ∈ G, where g is repeated n times. We
prove that if G is a profinite group such that for every g ∈ G there
is n = n(g) such that En(g) is finite, then G has a finite normal
subgroup N such that G/N is locally nilpotent. The proof uses
the Wilson–Zelmanov theorem saying that Engel profinite groups
are locally nilpotent. In the case of a finite group G, we prove that
if, for some n, |En(g)| 6 m for all g ∈ G, then the order of the
nilpotent residual γ∞(G) is bounded in terms of m.

1. Introduction

A group G is called an Engel group if for every x, g ∈ G the equation
[x, g, g, . . . , g] = 1 holds, where g is repeated in the commutator suffi-
ciently many times depending on x and g. (Throughout the paper, we
use the left-normed simple commutator notation [a1, a2, a3, . . . , ar] =
[...[[a1, a2], a3], . . . , ar].) A group is said to be locally nilpotent if ev-
ery finite subset generates a nilpotent subgroup. Clearly, any locally
nilpotent group is an Engel group. Wilson and Zelmanov [9] proved
the converse for profinite groups: any Engel profinite group is locally
nilpotent. In this paper we prove related results in terms of the sub-
groups

En(g) = 〈[x, g, . . . , g︸ ︷︷ ︸
n

] | x ∈ G〉.

Theorem 1.1. Suppose that G is a profinite group such that for every
g ∈ G there is a positive integer n = n(g) such that En(g) is finite.
Then G has a finite normal subgroup N such that G/N is locally nilpo-
tent.

In Theorem 1.1 it also follows that there is an open locally nilpotent
subgroup (just consider CG(N)) — but this fact will actually be one
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of the steps in the proof. The proof uses the aforementioned Wilson–
Zelmanov theorem and a similar result for finite groups. Obviously, for
finite groups there must be a quantitative analogue of the hypothesis
that the subgroups En(g) are finite. For finite groups it is convenient
to introduce the subgroups E(g) =

⋂∞
n=1En(g). It is also convenient

to denote the nilpotent residual of a group G by γ∞(G) =
⋂

i γi(G),
where γi(G) are terms of the lower central series (γ1(G) = G, and
γi+1(G) = [γi(G), G]).

Theorem 1.2. Suppose that G is a finite group and there is a positive
integer m such that |E(g)| 6 m for every g ∈ G. Then the order of the
nilpotent residual γ∞(G) is bounded in terms of m.

In Theorem 1.2 it also follows that the index of the Fitting subgroup
F (G) is bounded in terms of m (just consider CG(γ∞(G)). Theorem 1.2
can be viewed as a generalization of Zorn’s theorem [4, Satz III.6.3],
which says that a finite Engel group is nilpotent.

Theorem 1.2 also has an immediate consequence for profinite groups
if there is a uniform bound for the orders of the subgroups En(g), with
the correspondingly stronger conclusion.

Corollary 1.3. Suppose that G is a profinite group and there is a
positive integer m such that for every g ∈ G there is n = n(g) such
that |En(g)| 6 m. Then G has a finite normal subgroup N of order
bounded in terms of m such that G/N is locally nilpotent.

In a more general context, we mention our recent paper [6], in which
the subgroups En(g) were introduced. These subgroups were used in [6]
for obtaining generalizations of Baer’s theorem [4, Satz III.6.15] saying
that any Engel element of a finite group belongs to its Fitting subgroup.
It was proved in [6] that if, in a soluble finite group G, a subgroup
En(g) has Fitting height k, then g ∈ Fk+1(G), where Fi(G) are terms
of the Fitting series defined by induction: F1(G) = F (G) is the Fitting
subgroup and then Fi+1(G) is the inverse image of F (G/Fi(G)). For
nonsoluble finite groups, it was proved that if the generalized Fitting
height of En(g) is k, then g ∈ F ∗f(k,m)(G), where F ∗i (G) are terms of the

generalized Fitting series and m is the number of prime divisors of |g|.
A similar result was also obtained in terms of the nonsoluble length of
En(g).

We deal with finite groups first in § 2, and then consider profinite
groups in § 3.

Our notation and terminology is standard; for profinite groups, see,
for example, [8].

We say for short that an element g of a group G is an Engel element
if for any x ∈ G we have [x, g, g, . . . , g] = 1, where g is repeated in the
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commutator sufficiently many times depending on x (such elements g
are often called left Engel elements).

For a group A acting by automorphisms on a group B we use the
usual notation for commutators [b, a] = b−1ba and [B,A] = 〈[b, a] | b ∈
B, a ∈ A〉, and for centralizers CB(A) = {b ∈ B | ba = b for all a ∈ A}
and CA(B) = {a ∈ A | ba = b for all b ∈ B}.

Throughout the paper we shall write, say, “(a, b, . . . )-bounded” to
abbreviate “bounded above in terms of a, b, . . . only”.

2. Finite almost Engel groups

First we list a few elementary facts that will be used without special
references.

Clearly, the subgroup En(ḡ) constructed for the image ḡ of an ele-
ment g ∈ G in a quotient G/N is the image of En(g), and if g ∈ H 6 G,
then En(g) constructed for H is contained in En(g) constructed for G.
It follows that the condition that |E(g)| 6 m for all g ∈ G is inherited
by any section of G.

The following are well-known properties of coprime actions: if α is
an automorphism of a finite group G of coprime order, (|α|, |G|) = 1,
then CG/N(α) = CG(α)N/N for any α-invariant normal subgroup N ,
the equality [G,α] = [[G,α], α] holds, and if G is in addition abelian,
then G = [G,α]× CG(α).

In a finite group G the nilpotent residual subgroup γ∞(G) is of course
equal to some subgroup γn(G) for (all) sufficiently large n. Clearly,
γ∞(G)N/N = γ∞(G/N) for any normal subgroup N . Recall that the
Fitting series starts with the Fitting subgroup F1(G) = F (G), and by
induction, Fk+1(G) is the inverse image of F (G/Fk(G)). The follow-
ing lemma is well known and is easy to prove (see, for example, [5,
Lemma 10]).

Lemma 2.1. If G is a finite group of Fitting height 2, then γ∞(G) =∏
q[Fq, Gq′ ], where Fq is a Sylow q-subgroup of F (G), and Gq′ is a Hall

q′-subgroup of G.

Lemma 2.2. If P is a finite p-group, and g ∈ G is a p′-element, then
[P, g] 6 E(g).

Proof. For the abelian p-group V = [P, g]/Φ([P, g]) we have V = [V, g]
and CV (g) = 1. Then V = {[v, g] | v ∈ V } and therefore also

V = {[v, g, . . . , g︸ ︷︷ ︸
n

] | v ∈ V }

for any n. Hence, E(g)Φ([P, g]) > [P, g], whence the result. �
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Lemma 2.3. Let V be an elementary abelian q-group, and U a q′-group
of automorphisms of V . If |[V, u]| 6 m for every u ∈ U , then |[V, U ]|
is m-bounded, and therefore |U | is also m-bounded.

Proof. First suppose that U is abelian. We consider V as an FqU -
module. Pick u1 ∈ U such that [V, u1] 6= 0. By Maschke’s theorem,
V = [V, u1] ⊕ CV (u1), and both summands are U -invariant, since U
is abelian. If CU([V, u1]) = 1, then |U | is m-bounded and [V, U ] has
m-bounded order being generated by [V, u], u ∈ U . Otherwise pick
1 6= u2 ∈ CU([V, u1]); then V = [V, u1] ⊕ [V, u2] ⊕ CV (〈u1, u2〉). If
1 6= u3 ∈ CU([V, u1] ⊕ [V, u2]), then V = [V, u1] ⊕ [V, u2] ⊕ [V, u3] ⊕
CV (〈u1, u2, u3〉), and so on. If CU([V, u1] ⊕ · · · ⊕ [V, uk]) = 1 at some
m-bounded step k, then again [V, U ] has m-bounded order. However,
if there are too many steps, then for the element w = u1u2 · · ·uk we
shall have 0 6= [V, ui] = [[V, ui], w], so that [V,w] = [V, u1]⊕· · ·⊕ [V, uk]
will have order greater than m, a contradiction.

We now consider the general case. Since every element u ∈ U acts
faithfully on [V, u], the exponent of U is m-bounded. If P is a Sylow
p-subgroup of U , let M be a maximal normal abelian subgroup of
P . By the above, |[V,M ]| is m-bounded. Since M acts faithfully on
[V,M ], we obtain that |M | is m-bounded. Hence |P | is m-bounded,
since CP (M) = M and P/M embeds in the automorphism group of M .
Since |U | has only m-boundedly many prime divisors, it follows that
|U | is m-bounded. Since [V, U ] =

∑
u∈U [V, u], we obtain that |[V, U ]| is

also m-bounded. �

Lemma 2.4. If G is a finite group such that |E(g)| 6 m for all g ∈ G,
then G/F (G) has m-bounded exponent.

Proof. For every g ∈ G, the subgroup E(gk) is g-invariant for any
positive integer k. Choose k to be the maximum exponent of AutH
over all groups H of order at most m. Clearly, k is m-bounded.
Then [E(gk), gk] = 1. This implies that gk is an Engel element and
therefore belongs to the Fitting subgroup F (G) by Baer’s theorem [4,
Satz III.6.15]. �

Proof of Theorem 1.2. Recall thatG is a finite group such that |E(g)| 6
m for every g ∈ G. We need to show that |γ∞(G)| is m-bounded.

First suppose that G is soluble. Since G/F (G) has m-bounded ex-
ponent by Lemma 2.4, the Fitting height of G is m-bounded, which
follows from the Hall–Higman theorems [3]. Hence we can use induc-
tion on the Fitting height, with trivial base when the group is nilpo-
tent and γ∞(G) = 1. When the Fitting height is at least 2, con-
sider the second Fitting subgroup F2(G). By Lemma 2.1 we have
γ∞(F2(G)) =

∏
q[Fq, Hq′ ], where Fq is a Sylow q-subgroup of F (G),
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and Hq′ is a Hall q′-subgroup of F2(G), the product taken over prime
divisors of |F (G)|. For a given q, let H̄q′ = Hq′/CHq′

(Fq), and let V

be the Frattini quotient Fq/Φ(Fq). Note that H̄q′ acts faithfully on V ,
since the action is coprime [4, Satz III.3.18].

For every x ∈ H̄q′ we have |[V, x]| 6 m because [V, x] is a section
of E(x) by Lemma 2.2. Then |H̄q′| is m-bounded by Lemma 2.3. As
a result, |[Fq, Hq′ ]| = |[Fq, H̄q′ ]| is m-bounded, since [Fq, H̄q′ ] is the
product of m-boundedly many subgroups [Fq, h̄] for h ∈ Hq′ , for each
of which |[Fq, h]| 6 m, since [Fq, h] 6 E(h) by Lemma 2.2.

For the same reasons, the primes q for which [Fq, Hq′ ] 6= 1 are less
than or equal to m. As a result, |γ∞(F2(G))| is m-bounded. Induction
on the Fitting height applied to G/γ∞(F2(G)) completes the proof in
the case of soluble G.

Now consider the general case. First we show that the quotient
G/R(G) by the soluble radical is of m-bounded order. Recall that the
generalized Fitting subgroup is the product of the Fitting subgroup and
all subnormal quasisimple subgroups (here a group is quasisimple if it
is equal to its derived subgroup and its quotient by the centre is a non-
abelian simple group); the generalized Fitting subgroup contains its
centralizer. Let E be the generalized Fitting subgroup of G/R(G). It
suffices to show that E has m-bounded order. Since we are considering
the quotient by the soluble radical, E = S1×· · ·×Sk is a direct product
of non-abelian finite simple groups Si. Since the exponent of G/F (G)
is m-bounded by Lemma 2.4, the exponent of E is also m-bounded.
Now the classification of finite simple groups implies that every Si has
m-bounded order, and it remains to show that the number of factors
is also m-bounded. By Shmidt’s theorem [4, Satz III.5.1], every Si has
a non-nilpotent soluble subgroup Ri, for which γ∞(Ri) 6= 1. We apply
our theorem, which is already proved in the case of soluble groups, to
T = R1× · · · ×Rk. We obtain that |γ∞(T )| is m-bounded, whence the
number of factors is m-bounded.

Thus, |G/R(G)| is m-bounded. Since |γ∞(R(G)| is m-bounded by
what was proved above in the soluble case, we can considerG/γ∞(R(G))
and assume that R(G) = F (G) is nilpotent. Therefore |G/F (G)| is m-
bounded. We now use induction on |G/F (G)|. The basis of this induc-
tion includes the trivial case G/F (G) = 1 when γ∞(G) = 1. But the
bulk of the proof deals with the case where G/F (G) is a non-abelian
simple group.

Thus, we assume that G/F (G) is a non-abelian simple group of
m-bounded order. Let g ∈ G be an arbitrary element. The sub-
group F (G)〈g〉 is soluble, and therefore |γ∞(F (G)〈g〉)| is m-bounded



6 E. I. KHUKHRO AND P. SHUMYATSKY

by the above. Since γ∞(F (G)〈g〉) is normal in F (G), its normal clo-
sure 〈γ∞(F (G)〈g〉)G〉 is a product of at most |G/F (G)| conjugates,
each normal in F (G), and therefore has m-bounded order. Choose a
transversal {t1, . . . , tk} of G modulo F (G) and set

K =
∏
i

〈γ∞(F (G)〈ti〉)G〉,

which is a normal subgroup of G of m-bounded order. Therefore it is
sufficient to obtain an m-bounded estimate for |γ∞(G/K)|. Thus, we
can assume that K = 1. We remark that then

[F (G), g, . . . , g] = 1 for any g ∈ G, (2.1)

when g is repeated sufficiently many times. Indeed, g ∈ F (G)ti for
some ti, and the subgroup F (G)〈ti〉 is nilpotent due to our assumption
that K = 1.

We now claim that

[F (G), G, . . . , G] = 1 (2.2)

if G is repeated sufficiently many times. It is sufficient to prove that
[Fq, G, . . . , G] = 1 for every Sylow q-subgroup Fq of F (G). For any
q′-element h ∈ G we have [Q, h] = [Q, h, h] and therefore [Q, h] = 1 in
view of (2.1). Let H be the subgroup of G generated by all q′-elements.
Then G = FqH since G/F (G) is simple, and [Fq, H] = 1, so that

[Fq, G, . . . , G] = [Fq, Fq, . . . , Fq] = 1

for a sufficiently long commutator.
We finally show that D := γ∞(G) has m-bounded order. First we

show that D = [D,D]. Indeed, since G/F (G) is non-abelian simple, D
is nonsoluble and we must have

G = F (G)[D,D].

Taking repeatedly commutator with G on both sides and applying
(2.2), we obtain D = γ∞(G) 6 [D,D], so D = [D,D].

Since F (G) ∩ D is hypercentral in D by (2.2) and [D,D] = D, it
follows that F (G)∩D 6 Z(D)∩ [D,D] by the well-known Grün lemma
[1, Satz 4]. Thus, D is a central covering of the simple group D/(F (G)∩
D) ∼= G/F (G), and therefore by Schur’s theorem [4, Hauptsatz V.23.5]
the order of D is bounded in terms of the m-bounded order of G/F (G).

We now finish the proof of Theorem 1.2 by induction on the m-
bounded order k = |G/F (G)| proving that |γ∞(G)| is (m, k)-bounded.
The basis of this induction is the case of G/F (G) being simple: non-
abelian simple was considered above, and simple of prime order is
covered by the soluble case. Now suppose that G/F (G) has a non-
trivial proper normal subgroup with full inverse image N , so that
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F (G) < N C G. Since F (N) = F (G), by induction applied to N ,
the order |γ∞(N)| is bounded in terms of m and |N/F (G)| < k. Since
N/γ∞(N) 6 F (G/γ∞(N)), by induction applied to G/γ∞(N) the or-
der |γ∞(G/γ∞(N))| is bounded in terms of m and |G/N | < k. As a
result, |γ∞(G)| is (m, k)-bounded, as required. �

3. Profinite almost Engel groups

In what follows, unless stated otherwise, a subgroup of a profinite
group will always mean a closed subgroup, all homomorphisms will
be continuous, and quotients will be by closed normal subgroups. Of
course, any finite subgroup is automatically closed. We also say that
a subgroup is generated by a subset X if it is generated by X as a
topological group.

In this section we prove Theorem 1.1. It is convenient to state its
hypothesis as follows.

Hypothesis 3.1. For every element g of a group G there is a positive
integer n = n(g) such that En(g) is finite.

Recall that pro-(finite nilpotent) groups, that is, inverse limits of
finite nilpotent groups, are called pronilpotent groups.

Lemma 3.2. A profinite group satisfying Hypothesis 3.1 is pronilpotent
if and only if it is locally nilpotent.

Proof. Of course, any locally nilpotent profinite group is pronilpotent.
Conversely, suppose that G is a pronilpotent group satisfying Hypoth-
esis 3.1. Since En(g)(g) is finite, for any g ∈ G there is an open normal
subgroup N with nilpotent quotient G/N such that En(g)(g) ∩N = 1.
The image ḡ of g in the nilpotent group G/N is an Engel element.
Since En(g)(g) ∩ N = 1, the element g is an Engel element. Thus,
all elements of G are Engel elements, that is, G is an Engel profinite
group. Then G is locally nilpotent by the Wilson–Zelmanov theorem
[9, Theorem 5]. �

Recall that the pronilpotent residual of a profinite groupG is γ∞(G) =⋂
i γi(G), where γi(G) are (the closures of) the terms of the lower cen-

tral series; this is the smallest normal subgroup with pronilpotent quo-
tient. The following lemma is well known and is easy to prove. Here,
element orders are understood as Steinitz numbers. The same results
also hold in the special case of finite groups.

Lemma 3.3. (a) The pronilpotent residual γ∞(G) of a profinite group
G is equal to the subgroup generated by all commutators [x, y], where
x, y are elements of coprime orders.
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(b) For any normal subgroup N of a profinite group G we have
γ∞(G/N) = γ∞(G)N/N .

Proof. Part (a) follows from the characterization of pronilpotent groups
as profinite groups all of whose Sylow subgroups are normal. Part (b)
follows from the fact that for any elements x̄, ȳ of coprime orders in a
quotient G/N of a profinite group G one can find pre-images x, y ∈ G
which also have coprime orders. �

Before embarking on the proof of Theorem 1.1, we prove the follow-
ing generalization of Hall’s nilpotency theorem [2], which will be used
later and which we state in a stronger form than required here, in two
versions, for abstract and for profinite groups. We denote the derived
subgroup of a group B by B′.

Proposition 3.4. (a) Suppose that B is a normal subgroup of a group
A such that B is nilpotent of class c and γd(A/B

′) is finite of order k.
Then the subgroup C = CA(γd(A/B

′)) = {a ∈ A | [γd(A), a] 6 B′} has
finite k-bounded index and is nilpotent of (c, d)-bounded class.

(b) Suppose that B is a normal subgroup of a profinite group A such
that B is pronilpotent and γ∞(A/B′) is finite. Then the subgroup D =
CA(γ∞(A/B′)) = {a ∈ A | [γ∞(A), a] 6 B′} is open and pronilpotent.

Proof. (a) Since A/C embeds into Aut γd(A/B
′), the order of A/C is k-

bounded. We claim that C is nilpotent of (c, d)-bounded class. Indeed,
using simple-commutator notation for subgroups, we have

[C, . . . , C︸ ︷︷ ︸
d+1

, C, C, . . . ] 6 [[γd(A), C], C, . . . ] 6 [[B,B], C, . . . ],

since [γd(A), C] 6 B′ by construction. Applying repeatedly the Three
Subgroup Lemma, we obtain

[[B,B], C, . . . , C︸ ︷︷ ︸
2d−1

, C, . . . ] 6
∏

i+j=2d−1

[[B,C, . . . , C︸ ︷︷ ︸
i

], [B,C, . . . , C︸ ︷︷ ︸
j

[], C, . . . ]

6 [[[B,C, . . . , C︸ ︷︷ ︸
d

], B], C, . . . ]

6 [[[B,B], B], C, . . . ].

Thus, γd+1(C) 6 γ2(B), then γ(d+1)+(2d−1)(C) 6 γ3(B), then a similar
calculation gives γ(d+1)+(2d−1)+(3d−2)(C) 6 γ4(B), and so on. An easy
induction shows that γf (c, d)(C) 6 γc+1(B) = 1 for 1 + f(c, d) =
1 + d(c(c+ 1)/2− c(c− 1)/2, so that C is nilpotent of class f(c, d).

(b) As a centralizer of a normal section, D is a closed normal sub-
group. Since A/D embeds into Aut γ∞(A/B′), the subgroup D has
finite index; thus, D is an open subgroup. We now show that the
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image of D = CA(γ∞(A/B′)) in any finite quotient Ā of A is nilpo-

tent. Let bars denote the images in Ā. Then γ∞(Ā/B̄′) = γ∞(A/B′)
by Lemma 3.3(b). Therefore, D̄ 6 CĀ(γ∞(Ā/B̄′)). In a finite group,
γ∞(Ā/B̄′) = γd(Ā/B̄

′) for some positive integer d. Hence D̄ is nilpotent
by part (a). �

Recall that in Theorem 1.1, G is a profinite group satisfying Hypoth-
esis 3.1, and we need to find a finite normal subgroup such that the
quotient is locally nilpotent. The first step is to prove the existence of
an open locally nilpotent subgroup.

Proposition 3.5. If G is a profinite group satisfying Hypothesis 3.1,
then it has an open normal pronilpotent subgroup.

Of course, the subgroup in question will also be locally nilpotent by
Lemma 3.2; the result can also be stated as the openness of the largest
normal pronilpotent subgroup.

Proof. For every g ∈ G we choose an open normal subgroup Ng such
that En(g)(g)∩N = 1. Then g is an Engel element in Ng〈g〉. By Baer’s
theorem [4, Satz III.6.15], in every finite quotient of Ng〈g〉 the image
of g belongs to the Fitting subgroup. As a result, the (closure of the)
subgroup [Ng, g] is pronilpotent.

Let Ñg be the normal closure of [Ng, g] in G. Since [Ng, g] is normal
in Ng, which has finite index, [Ng, g] has only finitely many conjugates,

so Ñg is a product of finitely many normal subgroups of Ng, each of

which is pronilpotent. Hence, so is Ñg. Therefore all the subgroups Ñg

are contained in the largest normal pronilpotent subgroup K.
It is easy to see that G/K is an FC-group (that is, every conjugacy

class is finite): indeed, every ḡ ∈ G/K is centralized by the image of
Ng, which has finite index in G. A profinite FC-group has finite derived
subgroup [7, Lemma 2.6]. Hence we can choose an open subgroup of
G/K that has trivial intersection with the finite derived subgroup of
G/K and therefore is abelian; let H be its full inverse image in G.
Thus, H is an open subgroup such that the derived subgroup H ′ is
contained in K.

We now consider the metabelian quotient M = H/K ′, which also
satisfies Hypothesis 3.1, and temporarily use symbols Ei(g) for the
corresponding subgroups and elements of M . For every pair of positive
integers i, j, the set

Ei,j = {x ∈M | |Ei(x)| 6 j}
is clearly closed. By Hypothesis 3.1 we have

M =
⋃
i,j

Eij.
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By the Baire category theorem, one of these sets contains an open
subset; that is, there is an open subgroup U and a coset aU such that
aU ⊆ En,m for some n,m. In other words, |En(au)| 6 m for all u ∈ U .

It follows that |E2n+1(u)| 6 m2 for any u ∈ U . Indeed, consider the
subgroups

EM ′,n(a) = 〈[x, a, . . . , a︸ ︷︷ ︸
n

| x ∈M ′〉 and

EM ′,n(au) = 〈[x, au, . . . , au︸ ︷︷ ︸
n

| x ∈M ′〉,

which are contained in En(a) and En(au), respectively, and therefore
have order at most m. Because M is metabelian, it is easy to see
that both EM ′,n(a) and EM ′,n(au) are normal subgroups of M . In
the quotient M̄ = M/EM ′,n(a)EM ′,n(au), both M̄ ′〈ā〉 and M̄ ′〈āū〉 are
normal nilpotent subgroups of nilpotency class at most n. Hence their
product, which contains ū, is nilpotent of class at most 2n by Fitting’s
theorem. As a result, for any x ∈M we have

[x, u, . . . , u︸ ︷︷ ︸
2n+1

] ∈ [M ′, u, . . . , u︸ ︷︷ ︸
2n

] 6 EM ′,n(a)EM ′,n(au),

so that E2n+1(u) 6 EM ′,n(au)EM ′,n(a) and |E2n+1(u)| 6 |EM ′,n(au)| ·
|EM ′,n(a)| 6 m2.

Thus, the corresponding subgroups E2n+1(u) constructed for U sat-
isfy the uniform inequality |E2n+1(u)| 6 m2 for all u ∈ U . The same
inequality holds in every finite quotient Ū of U , to which we can there-
fore apply Theorem 1.2. As a result, |γ∞(Ū)| 6 k for some number
k = k(m) depending only on m. Then also |γ∞(U)| 6 k.

Let W be the full inverse image of U , which is an open subgroup of
G, and Γ the full inverse image of γ∞(U). Now let F = CW (γ∞(U)) =
{w ∈ W | [Γ, w] 6 K ′}. By Proposition 3.4(b), this is an open normal
pronilpotent subgroup, which completes the proof of Proposition 3.5.

�

Proof of Theorem 1.1. Recall that G is a profinite group satisfying Hy-
pothesis 3.1, and we need to show that γ∞(G) is finite. Henceforth we
denote by F (L) the largest normal pronilpotent subgroup of a profinite
group L. We already know that G has an open normal pronilpotent
subgroup, so that F (G) is also open.

Since G/F (G) is finite, we can use induction on |G/F (G)|. The basis
of this induction includes the trivial caseG/F (G) = 1 when γ∞(G) = 1.
But the bulk of the proof deals with the case where G/F (G) is a finite
simple group.
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Thus, we assume that G/F (G) is a finite simple group (abelian or
non-abelian). Let p be a prime divisor of |G/F (G)|, and g ∈ G \F (G)
an element of order pn, where n is either a positive integer or ∞ (so
pn is a Steinitz number). For any prime q 6= p, the element g acts by
conjugation on the Sylow q-subgroup Q of F (G) as an automorphism
of order dividing pn. The subgroup [Q, g] is a normal subgroup of Q
and therefore also a normal subgroup of F (G). The image of [Q, g] in
any finite quotient is contained in the image of En(g)(g) by Lemma 2.2.
Since En(g)(g) is finite, it follows that [Q, g] 6 En(g)(g) and [Q, g] is
finite.

Since [Q, g] is normal in F (G), its normal closure 〈[Q, g]G〉 in G is a
product of finitely many conjugates and is therefore also finite. Let R
be the product of these closures 〈[Q, g]G〉 over all Sylow q-subgroups
Q of F (G) for q 6= p. Since [Q, g] 6 En(g)(g), there are only finitely
many primes q such that [Q, g] 6= 1 for the Sylow q-subgroup Q of
F (G). Therefore R is finite, and it is sufficient to prove that γ∞(G/R)
is finite. Thus, we can assume that R = 1. Note that then [Q, ga] = 1
for any conjugate ga of g and any Sylow q-subgroup of F (G) for q 6= p.

Choose a transversal {t1, . . . , tk} of G modulo F (G). Let G1 =
〈gt1 , . . . , gtk〉. Clearly, G1F (G)/F (G) is generated by the conjugacy
class of the image of g. Since G/F (G) is simple, we have G1F (G) = G.
By our assumption, the Cartesian product T of all Sylow q-subgroups
of F (G) for q 6= p is centralized by all elements gti . Hence, [G1, T ] = 1.
Let P be the Sylow p-subgroup of F (G) (possibly, trivial). Then also
[PG1, T ] = 1, and therefore

γ∞(G) = γ∞(G1F (G)) = γ∞(PG1).

The image of γ∞(PG1) ∩ T in G/P is contained both in the centre
and in the derived subgroup of PG1/P and therefore is isomorphic to
a subgroup of the Schur multiplier of the finite group G/F (G). Since
the Schur multiplier of a finite group is finite [4, Hauptsatz V.23.5],
we obtain that γ∞(G) ∩ T = γ∞(PG1) ∩ T is finite. Therefore we can
assume that T = 1, in other words, that F (G) is a p-group.

If |G/F (G)| = p, then G is a pro-p group, so it is pronilpotent, which
means that γ∞(G) = 1 and the proof is complete. If G/F (G) is a non-
abelian simple group, then we choose another prime r 6= p dividing
|G/F (G)| and repeat the same arguments as above with r in place of
p. As a result, we reduce the proof to the case F (G) = 1, where the
result is obvious.

We now finish the proof of Theorem 1.1 by induction on |G/F (G)|.
The basis of this induction where G/F (G) is a simple group was proved
above. Now suppose that G/F (G) has a nontrivial proper normal
subgroup with full inverse image N , so that F (G) < N C G. Since
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F (N) = F (G), by induction applied to N the group γ∞(N) is finite.
Since N/γ∞(N) 6 F (G/γ∞(N)), by induction applied to G/γ∞(N)
the group γ∞(G/γ∞(N)) is also finite. As a result, γ∞(G) is finite, as
required. �
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