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ABSTRACT 
In this paper, we have proposed employing a hybrid 

classifier-hidden Markov model (HMM) as a supervised 

learning approach to recognize daily active states from 

sequential life-logging data collected from wearable 

sensors. We generate synthetic data from real dataset to 

cope with noise and incompleteness for training purpose 

and, in conjunction with HMM, propose using a 

multiobjective genetic programming (MOGP) classifier in 

comparison of the support vector machine (SVM) with 

variant kernels. We demonstrate that the system with 

either algorithm works effectively to recognize personal 

active states regarding medical reference. We also 

illustrate that MOGP yields generally better results than 

SVM without requiring an ad hoc kernel. 
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1. Introduction 

 

Life-logging data collected by wearable sensors has 

drawn great attention to monitoring people’s daily 

activities for healthcare, commercial and a range of other 

purposes [1]. In healthcare, there are various responsive 

instruments for assessment of quality of life (QoL), or for 

quantifying functional impairment related to vision. These 

instruments consist of questionnaires, e.g., VF-14 [2], SF-

12 [3], in which most questions require a single answer 

from multiple choices. In order to avoid the subjective 

bias from the patients and to be time efficient for both 

patients and the healthcare institute, the personal life-

logging data can be collected by mobile sensors, 

transmitted to the server over internet, and processed and 

modelled to fulfil questionnaires virtually automatically. 

One of the most common questions is to assess 

people’s daily activity state to evaluate his/her general 

health. For instance, the SF-12 questionnaire concerns a 

score from 1 to 5 while the conventional study and the 

public health guide only provides a statistical threshold to 

output a binary result [4]. Pekka Siirtola et al., recently 

used machine learning techniques over datasets consisting 

of 595 people and 678 features to detect sedentary young 

men with a ternary output [5]. This work employed 

several multiclass classifiers to model stationary datasets 

that ignores no sequential dependency if applied to life-

logging data. To cope with these limitations, we have 

applied hidden Markov models (HMM) with medical 

reference to process the sequential data and yield a multi-

state output. In this study, we consider the daily active 

states as a general health indicator for the question arising 

from the SF-12 questionnaire, therefore a five-state output 

is adopted.  

Hidden Markov models reach a wide success in 

modelling sequential data, for instance, in bioinformatics, 

natural language processing, and etc. It is a probabilistic 

description of a series of M variant observations emitted 

from K variant hidden states. The sequence of hidden 

states is a Markov chain with the probability distribution 

of each element being conditional on its current and past 

states. Using HMM for supervised learning tasks usually 

imposes strong assumptions, e.g., Gaussian mixture 

model (GMM), for continuous input or Bernoulli for 

categorical for estimating the emission matrix. When 

input is a high dimensional continuous vector, we have to 

trade-off the strength of assumptions against the number 

of parameters to be optimized. Further, the expectation 

maximization (EM) algorithm yields only local optima 

that highly depends on initialization.  

Common methods to search for an global optima of 

HMM parameters involves a range of parametric 

evolutionary algorithms, inclusive of (MO) genetic 

algorithms [6, 7], particle swarm optimisation [8], etc. 

However, these methods cannot fundamentally solve the 

problem when the input space is large. For instance, high 

dimensional continuous input vectors leads to large sized 

HMMs even if we have adopted the GMM that 

parameterizes continuous distribution of input vectors. To 

address a fair optima in large and sparse space remains a 

challenging optimisation problem. In order to construct a 

compact HMM and eliminate the assumptions used in 

GMM, a hybrid classifier/HMM is adopted to transfer the 

multidimensional continuous input vectors from the 

original space to a finite and discrete class space, which 

effectively reduces the structural complexity of HMM. 

Not only does the system have no impose of mixture 

models, it also avoids the initialization dependency and 

local optima yielded from the EM algorithm. Compared to 

conventional HMM, superior results are received by 

employing the hybrid system using SVM classifier in a 

range of problems [9, 10]. Thus, we propose to employ 

this system in predicting daily states. Further, we propose 
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using multiobjective genetic programming (MOGP) as a 

comparison to illustrate that our algorithm is generally 

better than the existing SVM/HMM in accuracy and 

generality, since no ad hoc selection of kernels is needed.  

This paper presents a scheme for supervised learning 

from life-logging data using a classifier/HMM. Section 2 

describes technical details in classifier/HMM scheme and 

in generating synthetic data to cope with noise and 

incomplete data. Section 3 presents competitive results 

from both MOGP/- and SVM/HMM, followed by the 

conclusion in Section 4. 

 

 

2. Meth odology 

 

2.1 Hybrid Classifier/Hidden Markov Model 

 

The general framework is presented in Figure 1.  

 

 
Figure 1. General framework of classifier/HMM system for daily active 

states prediction. 

 

The synthetic data is generated upon characteristics 

of real datasets, the detail of which will be presented in 

Section 2.3. With equal prior of hidden states, the 

synthetic data copes with noise and imbalance and is used 

for training classifiers. The real data is then classified 

with a class label belonging to the class space. Real data 

is then partitioned into two parts; one is used to estimate 

the HMM empirically while the other is predicted by 

Viterbi decoding [11] for assessment purpose. 

 

2.2 MOGP and SVM Classifiers 

 

Genetic programming (GP) is a non-parametric 

evolutionary optimization algorithm using tree-based 

syntax to represent non-parametric models as shown in 

Figure 2. For classification models, GP is used to search 

for a discriminative functions in a rich model space as 

there is no predetermine structure. The potential benefit is 

in turn to yield better results for general applications. 

The discriminative classifier 𝑓(𝑥) = 𝑡0  trained by 

GP is used to classify an input 𝑥𝑖 to class “0” if 𝑓(𝑥𝑖) <
𝑡0  or class “1” if 𝑓(𝑥𝑖) ≥ 𝑡0 . So, GP models maps the 

input vector into a scalar on decision space 𝑡 ∈ ℛ, where 

ℛ is the real domain. A threshold 𝑡0 is then determined 

where the empirical error is minimum. For instance, 

Figure 2 represents a non-parametric discriminative 

classifier  

−(𝑥1 + 0.34) ∙ 𝑥2    {
    ≥ 𝑡0, 𝑑𝑒𝑐𝑖𝑑𝑒 𝑐𝑙𝑎𝑠𝑠 1.
   < 𝑡0, 𝑑𝑒𝑐𝑖𝑑𝑒 𝑐𝑙𝑎𝑠𝑠 0.

 

 

To minimize the empirical error only, however, lead 

to overfitting models which yield small training error but 

large test errors. In order to cope with this inherent issue 

of empirical modelling, we have employed a 

multiobjective mechanism to minimize the model 

complexity simultaneously which effectively implements 

Occam’s Razer that suppresses the overfitting and 

enhance the model generalization.  

 

 
Figure 2. An example of GP tree 

 

The GP parameters are summarized in Table 1. We 

have run up to 80 000 tree evaluations, each of which 

newly generates a model. Another termination criterion is 

0/1 loss reaches zero. 

SVM classifier dominates the classification field due 

to its solid mathematical background – the statistical 

learning theory. By minimising the hinge loss [11], SVM 

converges to a maximal margin classifier with lowest 

expected risk in the kernel space, which, in turn, achieves 

low generalization error. In this paper, we have adopted ν-

SVM algorithm [12], where ν ∈ [0,1]  and is easier for 

fine-tuning than C-SVM. We have also examined three 

commonly used kernels, which are radial basis, 

polynomial and sigmoid to compare with MOGP. For 

both SVM and MOGP, we basically adopt one-vs-all 

scheme for multiclass classification. 

 
Table 1 

GP parameters 

Population size 100 

Evolutionary strategy Steady-state [13] 

Initialization 
Ramped [14];  

30 repetitions 

Termination criterion 
80 000 evaluation, or  

0/1 loss = 0 

Crossover 

Mutation 

Point crossover [14] 

Point mutation [14]; Tree depth = 4 

Node Type 

Unary minus 
Addition, Subtraction 

Multiplication 

Analytic quotient [15] 

 

2.3 Data Preprocessing 

 

The datasets were collected by “moves-app”, a cell phone 

app using accelerometer and GPS in the handset. When 

the phone is carried along with the users, the app 

processes the signals from the accelerometer to recognize 
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walking, running, or moving with transportations. The 

data is then transmitted to the server through internet. The 

dataset is a sequence of vectors, each of which consists of 

people’s daily accomplishment of distance, duration and 

number of steps from his/her physical activities, like 

walking or running. There are totally 10 datasets collected 

from 10 people for the experiments. The size of each 

dataset ranges from 118 days to 401. 

In terms of daily active level, there can be a huge 

difference from person to person. One who favors sports 

will always have highly active patterns which are not easy 

to be observed from those inactive people. Thus, the 

imbalanced real data is not ideal for training classifiers. 

To solve this problem, we have used the characteristics of 

the real data to estimate and extrapolate the synthetic data 

for personalized classifier training purpose. 

Recall the input vector, it consists of step, duration, 

and distance, all of which are highly correlated. We 

compute the statistical characteristics of speed S and step 

frequency F for each individual person over all his/her 

real data and use them as the basis to generate the 

synthetic datasets. We firstly randomly uniformly 

generate the duration 𝑑𝑟𝑖 . The step and distance will be 

generated by  

𝑠𝑡𝑒𝑝𝑖 = 𝑑𝑟𝑖 ∙ 𝒩(𝜇𝐹 , 𝜎𝐹
2) 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 = 𝑑𝑟𝑖 ∙ 𝒩(𝜇𝑆, 𝜎𝑆
2) 

, where 𝒩  is Gaussian distribution with its mean 𝜇 , 

variance 𝜎2. Training set for each person comprises 1000 

data with 200 data per state. Figure 3 shows a sample of 

synthetic data in five-colour compared with real data 

presented in black dots. The synthetic data provide a 

practical simulation to the real data and successfully cope 

with the issue of imbalance.  

 

 
Figure 3. An example of synthetic and real data distribution. 

 

To tag the ground truth for each datum, we have 

employed 10 000 steps, 60 minutes, and 8km as the 

median (state 3 out of 5) active reference according to the 

medical literature [4, 16]. We then use linear model to 

label all five states. 

 

𝑇𝑎𝑔𝑖 =
1

3
(
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

8𝑘𝑚
 × 3 +

𝑑𝑟𝑖

60𝑚𝑖𝑛
× 3 +

𝑠𝑡𝑒𝑝𝑖

10000
× 3) 

 

, where 𝑇𝑎𝑔𝑖  is capped by 5. We have to emphasize that 

to use a more complex (e.g., non-linear) medical model 𝑓 

that tags the input vector 𝑥𝑖 , namely  𝑇𝑎𝑔𝑖 = 𝑓(𝑥𝑖)  is 

beyond the scope of this paper, but any tagging procedure 

employed is independent to the learning process. We 

employ clean synthetic data set for training classifiers. For 

the noisy real data, noise model is typically unknown or 

dependent on the sensors. We thus assume a typical upper 

bound of relative error of 10%, without losing generality, 

and investigate all noise occasions below that. Namely, 

we assume a Gaussian noise 𝒩(𝜇, (𝑘𝜇)2), where 𝑘 ≤ 0.1. 

We examine six points which are k = {0, 0.02, 0.04, 0.06, 

0.08, 0.1}. 

 

 

3. Ex perimental Results and Discussion 

 

We investigate the relative performance on four 

algorithms. In classifier training process, we have 

employed a 5-fold cross-validation (CV) on the training 

data for SVM algorithms to fine-tune and select the best 

parameters. Since MOGP are evolving different models 

and has no straightforward way for CV, we thus repeat 5 

times with random partition of the 1000 synthetic data 

into training and selecting datasets and select the best 

results.  

For all of the four algorithms in the HMM process, 

we have 10 repetitions that is similar to leave-one-out 10-

fold method. In each fold, we empirically estimate the 

parameters in HMM using 9/10 of real data, followed by 

employing Viterbi decoding to perform the final 

prediction over the whole real data. The average of 10 

repetitions (folds) is the mean with respect to variant 

empirical estimations of HMM parameters and is used to 

represent the performance of each algorithm per data 

setting. This method is repeated over 6 noise settings of 

real data to investigate the robustness and generality of 

the algorithm over a real noise range. 

We have investigated four algorithms by 10 people 

by 6 noise settings in real data which summed up to 240-

element results in total. For the sake of briefness, we 

select a typical result on Person 1 and present it in Table 

II to illustrate how we process the data and assess the 

performance. 

Table 2 presents a typical result from an individual 

person. “HmmG”, “HmmR”, “HmmP”, and “HmmS” 

represent MOGP/HMM and SVM/HMM with Radial 

basis, Polynomial, and Sigmoid kernels, accordingly. On 

the left side of the table 2, the test error of each algorithm 

is shown in each column, each row of which regards 

various noise settings. We notice that the performance of 

each algorithm is worsened with increasing noise. To 

directly average test error over all noise settings is unfair 

as errors from large noise dominate the final result. So, 

we assign ranks in each noise setting to represent a 

relative performance of each algorithm. “1” represent the 
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best performance, hence the smallest test error while “4” 

is the worst. In Table 2, the relative ranks are presented on 

the right half and the rank expectations are summarized in 

the bottom row. This represents the relative performance 

expectation over all noise of 𝑘 ≤ 0.1 of each algorithm 

for Person_1. 

 
Table 3 

Rank Expectation for all datasets using HMM with variant classifiers 

Rank_Exp HmmG HmmR HmmP HmmS 

P1 1.8333 2.8333 1.8333 3.5 

P2 2.8333 2.8333 1.5 2.8333 

P3 2.25 3.1667 1 3.5833 

P4 2.5 2.5 2.5 2.5 

P5 3.25 1.5833 2.1667 3 

P6 2.5 1.6667 2.1667 3.6667 

P7 1.25 2.0833 3.8333 2.8333 

P8 2.5 2.5 2.5 2.5 

P9 2.1667 3.75 1.5833 2.5 

P10 2.25 2.9167 2.4167 3.8333 

Average of 

Rank_exp 
2.3333 2.5833 2.15 2.9333 

 

We have repeated this procedure over all of the 

datasets and summarize in the Table 3 that presents rank 

expectation from each algorithm and over all people. The 

bottom row shows the expectation of relative performance 

over all noise settings and over all datasets from each 

algorithm. We notice that MOGP/HMM yields better 

results than two SVM/HMM kernels but is interior to 

polynomial kernels. It indicates that MOGP/HMM is 

expected to be generally better than SVM/HMM for any 

people and any sensor noise less than or equal to 0.1, 

relatively. 

Overall, classifier/HMM system with MOGP or 

SVM have both receive practical results for daily active 

states prediction as shown in the left half of Table 2. The 

performance of each algorithm is positively proportional 

to the noise of test data. However, as long as the relative 

noise is less than 0.1, the error of any algorithm is always 

less than 0.14. In most cases, errors are less than 0.1. 

According to Table 3, SVM/HMM with polynomial 

kernel obtained highest (smallest) averaged rank of 2.15, 

followed by MOGP/HMM 2.33. SVM/HMM with radial 

and sigmoid kernels are ranked worse than MOGP/HMM 

at 2.58 and 2.93, respectively. The relative performance 

of the SVM/HMM algorithms varying on the kernel 

selection illustrates the generality of MOGP/HMM that 

requires no ad hoc kernel functions. The relative 

performance of MOGP/HMM is typically superior to 

SVM/HMM considering the commonly used kernels we 

have tested. 

 
Figure 4(a). A visualization of sequential input vs output; front view 

 

 
Figure 4(b). A visualization of sequential input vs output; side view 

 

We further visualize the output of our systems. Figure 

4(a) shows a front view of a 3D plot of data sequence 

consisting of 60 elements, each of which consists of 

Table 2 

Results of test error and relative ranks over all noise setting using HMM with variant classifiers for Person 1. 
 

Person_1 Test Error Rank 

Noise HmmG HmmR HmmP HmmS HmmG HmmR HmmP HmmS 

0 0.0119 0.0085 0.0261 0.0283 2 1 3 4 

0.02 0.0205 0.0227 0.0308 0.0368 1 2 3 4 

0.04 0.0573 0.0567 0.0463 0.0595 3 2 1 4 

0.06 0.0727 0.0765 0.0658 0.0736 2 4 1 3 

0.08 0.0894 0.0935 0.0840 0.0900 1 4 2 3 

0.10 0.1316 0.1357 0.1265 0.1325 2 4 1 3 

Ranks Expectation (Rank_Exp) 1.8333 2.8333 1.8333 3.5 
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sequence number, steps, and states predictions. We only 

use steps as a representative of the input for visualization 

purposes. In the sequence, the active state of each day is 

fluctuating, ranging from 1 to 5. When we have the side 

view for the same plot, we have Figure 4(b). We find out 

that the active state is basically positively correlates to the 

steps, although there are overlaps. This is due to the 

MOGP/HMM system considers duration, distance and the 

activity of its neighbourhood as well to yield the final 

decision. Overall, this system works effectively for daily 

active states and is potential for general serial supervise 

learning for healthcare. 

 

 

4. Conclusion and Future Work

 

In this paper, we have proposed using a hybrid 

classifier/HMM system for learning from sequential life-

logging data and in detail study its performance in human 

daily active states predictions. We have proposed a 

MOGP/HMM system, which yield generally better results 

in comparison of SVM/HMM. 

Our current work using HMM is based on first-order 

Markov assumption that current state depends on one of 

its previous states which is unnecessarily the reality. 

Higher-order Markov assumption considering information 

from more of the previous states will be further 

investigated to improve the performance. 
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