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Abstract Many studies have been conducted,investigating the effects that dia-
betes has to the retinal vasculature. Identifying and quantifying the retinal vascular
changes remains a very challenging task, due to the heterogeneity of the retina. Mon-
itoring the progression requires follow-up studies of progressed patients, since hu-
man retina naturally adapts to many different stimuli, making it hard to associate any
changes with a disease. In this novel study, data from twenty five diabetic patients,
who progressed to diabetic retinopathy, were used. The progression was evaluated
using multiple geometric features, like vessels widths and angles, tortuosity, central
retinal artery and vein equivalent, fractal dimension, lacunarity, in addition to the
corresponding descriptive statistics of them. A statistical mixed model design was
used to evaluate the significance of the changes between two periods: three years
before the onset of diabetic retinopathy and the first year of diabetic retinopathy.
Moreover, the discriminative power of these features was evaluated using a random
forests classifier and also a penalized logistic regression.The area under the ROC
curve after running a ten-fold cross validation was 0.7925 and 0.785 respectively.
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1 Introduction

Diabetic retinopathy (DR) is a major disease, affecting the lives of millions of peo-
ple around the world, leading to blindness, if left untreated or not diagnosed early
[3, 17]. It constitutes a complication of diabetes mellitus, although it is not uncom-
mon non-diabetic people to develop background retinopathy. In figure 1, two images
can be seen, from the same patient, one during diabetes and one after the first le-
sions (micro-aneurysm) have appeared in the retina. It is worth pointing out that a
normal/non-diabetic image does not seem to have any difference from a diabetic
retinal image, since at this stage, the changes occur only to the vascular geometry,
which cannot be easily identified.

Retina is a dynamic tissue and a very important, non-invasive window to the
blood vessels. Retina processes light through a layer of photoreceptors.The absorbed
light is converted into neural signals, in order to be forwarded through the optic
nerve head directly to the brain for visual recognition [17]. Each person’s retina is
unique just like the fingerprints, making it very difficult to compare different retinas,
since changes will inevitably and naturally exist. Therefore it is crucial, if someone
wants to study the effects that a disease cause to the retinal vasculature, to look at
specific segments and regions within the same subjects at different intervals. More
details addressing the importance of this approach will be given in the next sections.

The underlying mechanisms that provoke diabetes are more or less known, how-
ever it still remains unclear how this sequence of events affects the retina, both struc-
turally and functionally, leading to the development of DR. Diagnosing DR early or
identifying diabetic patients with higher risk, can have a big impact on our society
and possibly help clinicians deal with the disease earlier and delay the progression,
by monitoring the patients more intensively[3].

For the present study, fifty high resolution (3216-by-2316 pixels) fundus images
were used, taken from twenty five patients who progressed from diabetes to DR. Our
aim is to understand to what extend has the retinal vascular geometry been affected
by the progression and proliferation of diabetes, until the moment that the first le-
sions appear. To accommodate this, two groups were created;one for the period
three years before DR and one for the very first year that DR appeared. Therefore
we hypothesize that the retina is already adapting to the new underlying conditions,
and that especially during the advanced stages of diabetes (few years before DR),
these changes can be reliably identified and characterized. The images come from
a diabetic screening database in England and all of the ethical guidelines have been
followed. It is worth pointing out that in United Kingdom, all the people that are
diagnosed with diabetes are entering automatically into the diabetic screening pro-
gram for annual inspection of their retina. Therefore all the images are labeled and
identified by the year they were captured, defining clearly the periods of diabetes,
and also the initial appearance of DR.

The chapter is organized in three main sections. In the first section, all the meth-
ods, methodologies and tools will be described and analyzed, giving some essential
background information of the investigated geometric features and their importance,
as well as all the necessary image preprocessing. In the second part, the techniques
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Fig. 1 Two images taken
from the same patient. First
year of diabetic retinopa-
thy (left) and late stages
of diabetes (right). Micro-
aneurysms have already ap-
peared, defining, the begin-
ning of diabetic retinopathy.

for the statistical analysis, feature selection process and the classification approaches
will be thoroughly addressed. At the final section the results will be presented, to-
gether with the inferences and the implications of the present study, including dis-
cussion, limitations, future approaches and conclusions.

2 Related work

Retina includes both very small and very large vessels, which can range from very
few µm to more than 100 µm. It can be easily inferred that it is very difficult to com-
pare the retina of different people and include representative and balanced amount
of small and large vessels, which will in any case be different among people. During
progression of diabetes and also during DR the retinal geometry changes[25].

Most of the studies in the past, investigating either hemodynamic or geomet-
ric features, have been focused on the analysis of different groups of people. For
instance the oxygen saturation was investigated in different groups of people rang-
ing from normal subjects to proliferative retinopathy, finding significant differences
among them [15]. In another study they evaluated the differences between patients
with diabetes and DR, using as features only the vessels’ widths and angles [12].

Using different subjects, when investigating the human retina, makes it hard
to associate any identified changes to diabetes/DR, and not instead to the normal
changes that occur to the retina during aging, or between genders, or simply be-
cause different retinas, and more importantly different areas of the retina, might
also vary [3, 27]. A few follow-up studies have been conducted, studying similar
periods of diabetes, without though including in any classification system or eval-
uating features like central retinal vein/artery equivalent or tortuosity, which is the
purpose of this study [18, 4, 20, 19, 21].

3 Methods

As mentioned previously, fifty images in total were analyzed, making sure that all
the features can be measured in an equally reliable manner in all of them and thus
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ensure that the changes can be attributed to the progression of diabetes. All the
methods and tools were carefully chosen, having always as first priority the relia-
bility and accuracy of the measurements, rather than using the fastest or with the
fewest human interventions methods. For the image preprocessing, extraction of all
the features and for the mixed model design, the software Matlab 2015b was uti-
lized. On the contrary, for the regularized random forests (RRF) and the penalized
logistic regression, the open source software ”R” was used.

3.1 Features & Tools

A number of features were investigated in this study, which are representative of
the whole retinal vasculature. Measuring these geometric features means that many
different methods and tools have to be used in all the stages. The main investigated
features are the following: a)Vessels’ widths, b) Vessels’ angles, c)Tortuosity, d)
Fractal dimension, e)Lacunarity and f) Central retinal artery and vein equivalents
for calculating the arteriovenous ratio as well.

3.1.1 Widths & Angles

Using the tool that was implemented and described in details in a previous study [1],
1200 vessels widths (600 arteries and 600 veins in total for both groups in pixels)
and 400 branching angles (in degrees) in the corresponding junctions (200 for ar-
teries and 200 for veins in total for both groups) were measured. Although many
state-of-the-art automated tools have been proposed in literature, utilizing many
different methods e.g. wavelets and edge location refinement both to segment and
measure retinal vessels using image profiles, computed across a spline fit of each
detected centerline [5], an infinite active contour model, using an infinite perimeter
regularizer and multiple region information [29] or using neighbourhood estimator
before filling filter [2], still they cannot be used in large studies for evaluating the
progression of the disease. Their consistency and accuracy/precision as well as the
measurement errors across datasets with different image quality , do not allow us
to find these subtle changes that occur inside the vasculature over time, and which
we are trying to identify in the same retinas. Both widths and angles were measured
twice by the same observer, yielding an intra-rater reliability of over 90% for the
absolute agreement. Therefore both groups of measurements were kept by taking
their average.

Empirically, the changes that we are trying to identify as a consequence of the
proliferation of diabetes can be as small as 1% of change pre- to post- DR, and in
the most extreme cases they can reach up to 7-10 %. Therefore the semi-automated
approaches are still preferred, because they let us measure the same junctions over
time and be consistent to the accuracy of our measurements. From each junction’s
vessels’ widths, the branching coefficient (BC) is derived and calculated by eq. 1,
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Branch.Coe f .=
W 2

1 +W 2
2

W 2
0

, (1)

Where w1, w2, w0 are the widths of the larger child vessel, smaller child vessel and
parent vessel respectively. Furthermore another derivative feature was introduced,
as the ratio between the junction angle and the corresponding BC (eq.2).

(Angle/BC)i =
Anglei

BCi
, (2)

3.1.2 Tortuosity

In addition to these, tortuosity of the vessels, which is a property of a curve be-
ing tortuous i.e twisted, was also included and calculated by the method proposed
in[13]. For this purpose the images were segmented, using an algorithm described
in [14], and the coordinates of each segment were also extracted (fig. 2), in order to
calculate the local tortuosity. The global, image-level tortuosity was then derived by
using the mean, median, standard deviation and the third quartile, in a similar way
like in a previous study [22].

Fig. 2 Segmented images
from the same patients be-
fore (left) and after diabetic
retinopathy (right), used for
the evaluation of tortuosity.
Vessels edges and centerlines
are highlighted.

3.1.3 Fractal Dimension & Lacunarity

Fractal dimension (FD) and lacunarity are another two important features that are
included in this study. The former can give us a measure of complexity of a structure,
as long as it can be considered a fractal. The latter is a measure of heterogeneity of
a fractal structure.

Fractality

Fractals present various degrees of self-similarity in different scales. Human retina
has been found to almost be a self-similar structure, thus being possible to be ana-
lyzed as such, giving us a measure of complexity, letting us also investigate, whether



6 G. Leontidis, B. Al-Diri and A. Hunter

it changes during different periods[9]. Its discriminatory power was evaluated within
the classification system in conjunction with the other features. Higher values of FD
indicate more complex structure.

Lacunarity

Complimentary to the FD, lacunarity was also evaluated, which is a counterpart
of FD, describing the gappiness between the structures, or alternatively how the
fractals fill the space.

For FD, the well established method of box-counting algorithm (Minkowski - Bouli-
gand dimension) was used [24], based on eq. 3. For this purpose, all the images
were segmented [14], obtaining the binary vascular trees, in order to apply the box-
counting and gliding box methods. Each image of the same patient was processed,
in order to include the same vessels, making sure that any identified differences are
due to the proliferation of diabetes and not an error from the algorithm.

FractalDim.= lim
r→0

LogN(r)
Log1/r

, (3)

in which N(r) refers to the number of boxes of side length r that has to be used
to cover a given area in the Euclidean n-space, by using a sequential number of
descending size boxes. This occurs in multiple orientations. The final dimension in
the 2D space is between 1 and 2 (1 ≤ D≤ 2)[23].

Lacunarity was estimated using the gliding-box algorithm, for different grid ori-
entations [28]. A unit box of size r is chosen randomly and the number of set points p
are counted i.e. the mass. The procedure is repeated with the box centered consecu-
tively for each point within the set, creating a distribution of masses B(p,r). Finally,
we get the probability, by converting the distribution into probability distribution
Q(p,r), dividing by the total number of boxes (B) of size r (eq.4).

Qp,r =
B(p,r)
B(p)

, (4)

Finally, after several transformations, the gliding box equation can be written in
terms of the accumulated sum of the mean and the second moments of all boxes
(eq.5).

LGB(r) =
B(r) ∑

B(r)
i=1 p(i,r)2

[∑
B(r)
i=1 p(i,r)]2

, (5)

where the denominator is the square of the total number of elements in the data
set[28].
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3.1.4 Arterio-Venous Ratio

Central retinal vein (CRV) and artery (CRA) are the two major vessels of the retina.
CRV leaves the optic nerve head 10mm from the eyeball, draining the blood from
the capillaries into the superior ophthalmic vein or to the cavernous sinus directly,
depending on the individual [7]. On the other side, the CRA branches off the oph-
thalmic artery, crossing inferior to the optic nerve head within its dural sheath to the
eyeball. Since these two vessels cannot be seen in the retinal fundus images, it has
been proposed, initially by Parr [26] and then revised by Knudtson [16], a method
to estimate the central retinal vein and artery equivalent, CRVE and CRAE respec-
tively, based on the eq.6 and eq.7, derived partly by the branching coefficient that
they estimated in normotensive subjects. The region of interest is defined as shown
in fig.3, and includes the region where the edges of the vessels course through at
0.5 to 1.0 disc diameters from the optic disc margin. The region between this area

Fig. 3 On the left, the mask
as created by our algorithm is
shown, after defining the optic
disc diameter, and on the right
the region of interest, with
the veins and arteries labeled,
from which the CRVE,CRAE
and AVR are calculated.

and the optic disc is excluded, as not having the vessels attained their status inside
the retina yet. Within this area, the six largest veins and the six largest arteries are
measured, following an iterative procedure of pairing up the largest vessels with the
smallest ones, until a final single number is obtained. All the values are entered in
eq.6 and eq.7 for arterioles and venules respectively.

The final value for the vein is termed central retinal vein equivalent (CRVE) and
the respective final value for the artery is termed central retinal artery equivalent
(CRAE). The ratio CRAE/CRVE is known as arterio-venous ratio.

Arterioles : Ŵ = 0.88∗
√
(W 2

1 +W 2
2 ) (6)

Veins : Ŵ = 0.95∗
√
(W 2

1 +W 2
2 ) (7)

where ŵ is the estimate of the parent trunk arteriole or venule and w1,w2 are the two
branches (children).
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3.2 Design & Analysis

All of the above features were evaluated separately, using a mixed model design
filter, as described in the next subsection [20]. Based on this design, repeated mea-
sures analysis of variance (ANOVA) was used, in order to calculate the F-statistic
and finally the p-value for each feature. In that way, we try to evaluate whether any
observed differences between the two groups, for each feature, are just random ob-
servations, or whether they can be attributed to the disease’s proliferation. This is
also a way of defining the importance of these features and thus make an initial fea-
ture selection. It is worth mentioning that, when dealing with features that have a
biological meaning, it has to more deeply be investigated, whether they should be
included in a classification system, regardless of the result of the statistical anal-
ysis. The mixed model based on the repeated measures nature of the analysis, in-
creases the statistical power, requiring fewer subjects to be analyzed [11]. Including
matched junctions and the same groups of patients, could lead to the decrease of
both the statistical error (difference from the unobserved population mean) and the
residuals (difference from the sample mean). In order to make sure that this para-
metric test is the correct one for the analysis of our data, normality and sphericity
tests were run for each feature. For the former, the Shapiro-Wilk test was used, and
the null hypothesis that the data are normally distributed was not rejected, regardless
of the feature under investigation (p-values ranging from 0.30 to 0.56). Similarly for
the sphericity, the Mauchlys test was used, which again failed to reject the null hy-
pothesis that the assumption of sphericity is met (p-values ranged from 0.16-0.39).

Although ANOVA is robust in marginal violations of normality, it still suffers
from sphericity, which if present, causes the test to become unstable i.e. leads to an
increase of Type I error;that is, the likelihood of detecting a statistically significant
result when there is not one.

3.2.1 Mixed Model Filter

As mentioned above, in order to account for the different way that the features are
measured, a mixed model factorial/nested design has been developed in MATLAB
2015b version, in which all the local measurements are used in the statistical anal-
ysis. As can be seen in fig. 4, in the case of widths and angles, we have multiple
measurements within each subject, in a nested formation. That means that all these
observations are not independent, and thus that needs to be taken into account. Us-
ing this design, each measurement in P1jM1k, where 1 is the first case, e.g. pre-DR
group, j the corresponding patient and k the specific measurement, is related only to
the corresponding measurement at the same exact junction in P2jM2k. This logic is
applied in this model,which is then analyzed by ANOVA.
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Fig. 4 Mixed model design
filter used for the statistical
analysis of each feature and
for the initial feature selec-
tion.

3.3 Classifiers

In order to test the discriminative power of these features, two different approaches
were followed. Firstly, a regularized random forests classifier was used, slightly
adjusted for the feature selection process, as proposed in [8]. Secondly, a logistic re-
gression model was developed, using both Least Absolute Shrinkage and Selection
Operator(Lasso) and ridge regression, as a hybrid penalty for the coefficients of the
features (L1- and L2- norms), which is called elastic net regularization described in
[10] .

3.3.1 Regularized Random Forests

Random forests is a well-established supervised classifier and very popular in ma-
chine learning. It was proposed by Breiman as an improvement to the decision trees’
bagging method [6]. It consists of multiple decision trees, each of which is grown on
a bootstrap sample, taken from the original training data. The Gini index (Gini(u))
at node u, is defined as

Gini(u) =
c

∑
c=1

p̂u
c(1− p̂u

c) (8)

where p̂c
u,is the proportion of class-c observation at node u. Subsequently, the

Gini information gain of Xi for splitting node u,is the difference between the impu-
rity at node u and the weighted average of impurities at each child node of u. This
can be seen in eq.9[8].

Gain(Xi,u) = Gini(Xi,u)−wLGini(Xi,uL)−wRGini(Xi,uR) (9)

where uL and uR are the left and right children nodes of u respectively.Similarly wL
and wR are the proportions of instances assigned to the left and right children nodes.
The most important part of random forests is the mtry function, in which a random
set of features out of P is evaluated. The feature with the highest Gain(Xi,u) is used
for splitting the node u. The importance score for variable Xi is then calculated,
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Importancei =
1

ntree ∑
u∈SX i

Gain(Xi,u) (10)

where SX i refers to the set of nodes split by Xi in random forests with ntree number of
tree. In short, the regularized version of random forests (RRF) can select a compact
feature subset, by including an additional penalty coefficient, creating a regularized
information gain (eq.11) [8]

GainR(Xi,u) =
{

λ · Gain(Xi,u) i 6∈ F
Gain(Xi,u) i ∈ F (11)

in which F refers to the set of indices of features used for splitting in the previous
nodes. The parameter λ ∈(0,1] is the penalty coefficient. When i 6∈ F the coefficient
penalizes the ith feature for splitting node u. Smaller leads to a larger penalty. Reg-
ularized random forests uses GainR(Xi,u) at each node, and adds the index of a new
feature to F. For instance a RRF with λ = 1, has the minimum regularization, how-
ever a new feature has to be more informative at a given node than the features
that have already been included to the feature subset. The feature subset selected by
RRF(λ = 1) is termed the least regularized subset, as it offers minimum regulariza-
tion. Apart from the feature selection process, the rest of the algorithm is exactly the
same as the initially proposed random forests classifier [8].

For the evaluation of the performance of RRF, the Out of Bag error (OOB) was
used, which is the internal way of validating the performance of random forests
classifier[6]. In addition, ten-fold cross validation was utilized.

3.3.2 Logistic regression with elastic net penalty

In this study, where the response variable is binary, a regularized logistic regression
model is used[10]. The difference with the ordinary logistic regression has to do with
the penalty parameter applied to the coefficients. In the case of ridge regression, the
coefficients of correlated predictors are shrunk towards each other, allowing them to
work together. From a Bayesian point of view, the ridge regression works better, if
there are many predictors and all have non-zero coefficients.

On the other side the least absolute shrinkage selector operator (Lasso) is to some
extend indifferent to very correlated predictors, tending to pick one and discard the
rest. The Lasso penalty corresponds to a Laplace prior, which expects many coeffi-
cients to be zero or close to zero and a small subset of non-zero coefficients. In the
middle of this, elastic net with =1 - ε for small ε > 0, performs similarly to Lasso,
removing however any extreme behavior caused by highly correlated predictors.
The general formula Pa of elastic net, as seen in eq.13, introduces a compromise
between ridge and Lasso. As α increases from 0 to 1 for a specific value of pa-
rameter λ , the sparsity of the solution in eq.15 (referring to the coefficients equal
to zero), increases monotonically from 0 to the sparsity of the Lasso solution. More
specifically, assuming that the response variable G = 1,2, then the logistic regression
model represents the class-conditional probabilities, through a linear function of the
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predictors, which in the logarithmic form is given by eq. 12[10].

log
Pr(G = 1|x)
Pr(G = 2|x)

= β0 + xT
β (12)

Where in this case the model is fit by regularized maximum binomial likelihood.

Pα(β ) =
p

∑
j=1

[1
2
(1−α)β 2

j +α|β j|
]

(13)

Let p(xi) = Pr(G = 1|x) be the probability according to eq.14.

Pr(G = 1|x) = 1
1+ e−(β0+xT β )]

(14)

For an observation i at specific values for the parameters (β0,β ), the penalized
log likelihood is maximized (eq.15).

max
(β0 ,β )∈R(p+1)

[
1
N

N

∑
i=1

{
I(gi = 1)logp(xi)+I(gi = 2)log(1− p(xi))

}
−λPα(β )

]
(15)

Replacing , the log-likelihood part of eq.15 takes the form,

l(β0,β ) =
1
N

N

∑
i=1

yi · (β0 + xT
i β )− log(1+ e(β0+xT

i β )) (16)

a concave function of the parameters. In this approach, for every value of λ , an outer
loop is created for the computation of the quadratic approximation lQ of eq.16 about
the current parameters (β̃0,β̃ ).

lQ(β0,β ) =−
1

2N

N

∑
i=1

wi(zi−β0− xT
i β )2 +C(β̃0,β̃ )

2 (17)

where

zi = β̃0 + xT
i β̃ +

yi− p̃(xi)

p̃(xi)(1− p̃(xi))
(18)

wi = p̃(xi)(1− p̃(xi)),(weights) (19)

Finally, the penalized weighted least-squares problem can be solved by eq.20, using
the coordinate descent approach[10].

min
(β0 ,β )∈R(p+1)

[
− lQ(β0,β )+λPα(β )

]
. (20)

A number of sequential nested loops are created :

• Outer loop: Decrement λ .
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•Middle loop: New quadratic approximation lQ for the current parameters (β̃0,β̃ ).
• Inner loop: Execute the coordinate descent algorithm on the penalized

weighted least-squares problem (eq.20).

Further information of the above method is given by Friedman et al. [10].
In the same way as RRF, ten-fold cross-validation was used to evaluate the clas-

sifier.

4 Results

This section will present the results of the three different approaches that were pre-
viously addressed .

MMF: In which the results of the analysis of every feature are presented, together
with some more information about the data.

RRF: In the first part the results of the feature selection process, according
to their importance will be shown, followed by the classification results
based on the feature subset.

LOG: Similarly to the RRF, in the elastic net logistic regression the first part will
be devoted to the selection of α and λ parameters and subsequently the
feature subset, and then at the last part, the results of the classification will
be shown.

All of the features were scaled (normalized), by centering the data. This was done
by subtracting the mean and normalizing it dividing by the standard deviation. Es-
pecially with the gradient descent algorithms, like logistic regression, this can be
beneficial, as we can achieve better numerical stability and quicker convergence.

The open source software ”R” was used both for the RRF and Elastic net logistic
regression classifiers, as well as for all the evaluation steps and feature selections.

4.1 Evaluation of features with MMF

In table 1, we can find the results of the analysis using the MMF. As can be seen,
some of the features significantly differed across the groups, whereas some others
not. In addition to that, no significant results (thus excluded from table 1) were ob-
served in almost any combination of features, when using the mean values, medians
or standard deviations (although p-values were between 0.15-0.28), which high-
lights the superiority of the MMF, in which all the measurements are accounted for
as measured.

As can be seen in table 1, arteries’ widths and angles, veins’ widths, arteries’
angles, fractal dimension and tortuosity (standard deviation) are found to differ sig-
nificantly between the two groups. The rest of them did not appear to do so, however,
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Table 1 Mixed Model Analysis of Variance Results

Feature Name p-value
(α = 0.05)

F-value
(dfn,dfe)a

Group Means (SD)
(pre-/post- DR)

Arteries Widths 0.01 6.53 (1,299) 11.14 (2.20), 10.45 (1.93)
Arteries Angles 0.022 5.24(1,99) 88.45 (8.74), 85.63 (6.93)
Arteries BC 0.30 1.3 (1,99) 1.24(0.11),1.29(0.12)
Veins Widths 0.0005 16.95(1,299) 13.23(2.81),12.17(2.28)
Veins Angles 0.62 0.24(1,99) 81.72(6.9),81.52(6.62)
Veins BC 0.45 0.85(1,99) 1.12(0.10),1.12(0.11)
Fractal Dim. 0.024 6(1,24) 1.628(0.06),1.594(0.06)
Lacunarity 0.65 0.45(1,24) 0.22(0.04),0.22(0.05)
Tortuosity(SD) 0.021 5.79(1,24) 0.074(0.013),0.089(0.02)
CRVE 0.76 0.10(1,24) 29.13(4.39),28.01(5.53)
CRAE 0.37 0.83(1,24) 20.21(2.87), 19.74(3)
AVR 0.81 0.07(1,24) 0.697(0.10),0.704(0.14)

a dfn:degree of freedom numerator, dfe:degree of freedom error term

since all these features reflect functional changes, still remain useful for further in-
vestigation and possible inclusion in a classification system.

Interestingly enough, the arteries’ widths have been decreased at the first year of
DR by almost 6.5% and the angles by 3.5%. Similarly, but only for the widths, veins
showed a decrease at the first year of DR by almost 8%.

In fig.5, we can see two examples of how the differences between the post-DR
and pre-DR measurements are correlated with the age of the patients, despite the
fact that the data are limited for giving us a reliable result. However they can just be
used as an indication or a trend of the data.

Fig. 5 The plot on the top,
shows the differences between
the measurements post-DR
with the corresponding pre-
DR measurements for the
arteries. x axis:age, y axis:
the individual differences. On
the bottom, we find the same
plot but for the veins. On
top of them is the correlation
coefficient parameter R.

4.2 Classification with RRF

All the available features were initially included in the classifier, in order to evaluate
their importance. In addition to the features that appear in table 1, for selecting the
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feature subset, we included all the original features, including fractal-to-lacunarity
ratio and Angle-to-BC ratio, as well as the descriptive statistics of them. In total
20 features were included, with 50 observations in total (25 for each class-balanced
design), however fourteen of them were negatively affecting the performance .The
classifier had a similar performance when all the initial values for arteries and veins
were used, instead of the descriptive statistics, thus the aforementioned balanced
structure was chosen.

The final six selected features of our feature subset are a) the mean of arteries’
BCs, b) Angle-to-BC ratio of veins, c) Tortuosity, d) Fractal dimension, e) Vein SD
and f) Angle-to-BC ratio of arteries. In fig.6 we can see the importance for each
of these features. The number of decision trees used for training the classifier was
chosen at 5000, although it converged earlier. Choosing more trees than needed,
does not affect the performance of the classifier. Larger number of trees produce
more stable models and covariate importance estimates, but require more memory
and a longer run time. The mtry parameter refers to the number of features available
for splitting at each tree node and by default is set as the square root of the total
number of features(rounded down).

Fig. 6 Mean decrease accu-
racy shows how much the
performance of the classifier
will be affected if this feature
is removed. A similar mea-
sure is the Gini index which
is a measure of each feature’s
importance based on the Gini
impurity index, used for the
calculation of splits during
training.

Finally the performance of the classifier can be seen in fig.7 for the out of bag
error and area under the ROC curve. As can be seen, the regularized random forests
classifier achieved an OOB error of 22.5% and AUC 0.7925 (Average over all the
iterations of the cross-validation). Regarding accuracy, this was at 79.5%.

Fig. 7 On the left the ROC
curve and the corresponding
AUC value can be found.
On the right the Out of Bag
error for the whole training
phase can be seen. The red
and green line are the two
classes and the black one is
the average of them i.e. the
final OBB error.
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4.3 Penalized logistic regression

As described in the previous section, when running a logistic regression model with
elastic net penalty, a few factors have to be taken into account.

• Like in RRF the feature subset has to be selected. This occurs in two steps. The
first step includes all the features under investigation. The second step is the final
selection between the variables that had the best performance in the first step. In
both cases, a ten-fold cross-validation was used in order to calculate the mean
square error for the variables for different values of λ , and also of the penalty
parameter α , as the compromise between Lasso and ridge regression.

• Secondly, for the selected feature subset and the tuning parameter λ , we run the
regression for varying penalties α , ranging from 0 to 1 with 0.1 step.

• After running the cross-validation for all the models, we evaluate which one fits
best our data, and therefore define the optimum parameters for λ and α . Having
these values set, we validate the performance by reporting the AUC, the accuracy
and the ROC curve .

After running the relevant feature selection with the RRF, it was anticipated to ob-
tain a similar feature subset with the logistic regression, since the six selected fea-
tures were performing quite well. indeed the same six features had the best score.
In contrast, the rest fourteen were all together deteriorating the performance of the
classifier by about 0.10 of the AUC, having extensive negative impact to the clas-
sifier.In fig.8, the cross validation of the different features can be seen, which ini-
tially helps us decide which features to discard and then work with the final ones.
Secondly it can be inferred how strong should the penalty be, after controlling for

Fig. 8 On the left we can see
the feature selection process
for all the features, which
leads us to the right one,
where we can see the final
six features based on the their
performance according to
the mean square error and
for different values of λ .The
red dotted line is the cross-
validation curve, together
with the upper and lower
standard deviation curves
along the λ sequence.

the λ parameter. The best results were obtained for a penalty α=0.2.
Additionally, in fig.9, there is an informative illustration of how the coefficient

of each predictor changes along the different λ values. The optimum results were
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obtained with λ=0.03 as the tuning parameter that controls the overall strength of
the penalty.

Fig. 9 Plot showing how the
coefficients of all the features
are adjusted according to the
different values of λ that have
been applied to each of them.
For higher values of λ the
predictors are starting moving
towards zero. The x axis is the
logarithm of λ .

Finally the logistic regression classifier had a similar performance with RRF, as
can be seen in fig.10, having an AUC=0.785 and accuracy of 78%.

Fig. 10 ROC plot showing
the Area under the ROC
curve after a ten-fold cross
validation. AUC in this case
is 0.785. This value is the
average over all the iterations
of the cross validation.

4.4 Discussion

Taking into account the limited amount of data, as well as the nature of the features,
which represent the geometry of the retina and not any other image information, the
performance of both classifiers is good enough to let us keep investigating those as
well as additional features even further.

Another useful metric of the performance of the classifier is the precision/recall
plot (fig.11). Precision is a metric that gives us the positive predictive value of the
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classifier, while recall give us the true positive rate. Both these metrics are useful for
evaluating a classifier, together with accuracy, AUC and ROC plot.

Fig. 11 Precision-Recall
plot for both logistic regres-
sion (black line) and the
RRF classifier (red line).
Precision is defined as
the TruePositive

TruePositive+FalsePositive ,
whereas recall is the

TruePositive
TruePositive+FalseNegative .

5 Conclussion & Discussion

Diabetes is a major disease, with millions of people being under medication in or-
der to minimize its consequences. Identifying the changes in the vasculature during
the progression of diabetes and measuring them is of paramount importance. Ro-
bust and reliable tools are needed for long term studies as well as properly designed
experiments, in order to be able to discriminate over the different stages of progres-
sion. The alterations are so minor and in such a small scale that sometimes is very
hard to measure and identify them. Hence novel tools for extracting information and
analyzing data in a larger scale, are crucial for identifying the progression and also
create reliable models with valid and robust biomarkers.

In this study, a comprehensive analysis was presented, using many different reti-
nal geometric features and methods. To our best of knowledge, it is the first time that
all these features together like CRVE/CRAE, tortuosity, fractal dimension, BC etc.
were evaluated and/or utilized inside a classification system, yielding that perfor-
mance, which is an improvement of approximately 2% from the previous study[20].

As aforementioned, it is a challenging task to extract all these features accurately,
evaluate them and more importantly, associate any changes with the progression of
diabetes. More data are always needed, in order to identify and investigate all of the
possible underlying conditions and variations that occur as the disease progresses.
The results of this study give us the boost to extend our investigation in more in-
tervals of diabetes, by including even more data and features. Our immediate next
work will include but not limited to building a multiclass system beyond the binary
level for different periods of diabetes. Moreover, specific regions inside the retina
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will be investigated, focusing also on the bifurcations and the branching patterns of
the vasculature.
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