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ABBREVIATIONS  

 

ABCB1 = ATP-binding cassette sub-family B member 1 

APOL1 = Apolipoprotein L1 

AUC =Area Under the Curve 

BMI = Body Mass Index  

Cav-1 = caveolin-1  

Cav-2 = caveolin-2  

Cnb1 = calcinerin phosphatase regulators subunit  

CNV = copy number variation  

CRM = common rejection model  

CYP3A = cytochrome P450 3A 

FSGS = focal segmental glomerulosclerosis  

GWAS = genome wide association study 

HDL = High-density lipoprotein 

HIVAN = HIV associated nephropathy (HIVAN)  

HLA = Human Leukocyte Antigen 

HR = hazard ratio 

KIR = killer immunoglobulin-like receptors  

mRNA = messenger RNA 

NF-κB = nuclear factor kappa-light-chain-enhancer of activated B cells 

NFAT = nuclear factor of activated T-cells  

NFSE = nifedipine-specific element  

NK = natural killer  

NODAT = new onset of diabetes after transplant  

OPTN = Organ Procurement and Transplantation Network  

PCR = polymerase chain reaction 

SNP = single nucleotide polymorphism  

STAT1 = Signal transducer and activator of transcription 1  

T1D = Type 1 diabetes  
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T2D = Type 2 diabetes  

TGF-β1 = Transforming growth factor beta 1 

UNOS = United Network for Organ Sharing  

XCI = X chromosome inactivation 
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ABSTRACT (250 out of 250 words maximum)  

 

Renal transplantation has transformed the life of patients with end-stage renal disease and other 

chronic kidney disorders by returning endogenous kidney function and enabling patients to 

cease dialysis.  Several clinical indicators of graft outcome and long-term function have been 

established. Whilst rising creatinine levels and graft biopsy can be used to determine graft loss, 

identifying early predictors of graft function will not only improve our ability to predict long-

term graft outcome but importantly provide a window of opportunity to therapeutically 

intervene to preserve graft function before graft failure has occurred.  Since understanding the 

importance of matching genetic variation at the HLA region between donors and recipients and 

translating this into clinical practise to improve transplant outcome, much focus has been 

placed on trying to identify additional genetic predictors of transplant outcome/function. This 

review will focus on how candidate gene studies have identified variants within 

immunosuppression, immune response, fibrotic pathways and specific ethnic groups which 

correlate with graft outcome. We will also discuss the challenges faced by candidate gene 

studies, such as differences in donor and recipient selection criteria and use of small datasets, 

which have led to many genes failing to be consistently associated with transplant outcome. 

This review will also look at how recent advances in our understanding of and ability to screen 

the genome are starting to provide new insights into the mechanisms behind long-term graft 

loss and with it the opportunity to target these pathways therapeutically to ultimately increase 

graft lifespan and the associated benefits to patients. 
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OVERVIEW (6500 words including Abstract and Figure/Table legends) 

 

Kidney Transplantation in Action 

 

Improvements in induction/immunosuppressant regimes, sharing of technical expertise 

between centres, establishment of organ allocation networks and increased numbers of 

transplant centres have enabled kidney transplantation to become a successful treatment for 

patients with end-stage renal failure. Establishment of the Organ Procurement and 

Transplantation Network (OPTN)/United Network for Organ Sharing (UNOS), Eurotransplant 

and others databases have lead the way in identifying donor and recipient features and measures 

of renal function which act as indicators of long-term transplant success including cold 

ischemia time, deceased vs living donor and BMI (1, 2).  Whilst donors and recipients are 

matched for clinical features shown to maximise transplant success, some immediate and early 

complications can occur after transplantation including haemorrhage, thrombosis, intra-

abdominal infection and acute rejection (1, 3).  Many of these are treatable with surgery or 

changes in immunosuppressant/induction regimes, leading to 90-95% of cadaveric donor 

organs and ~100% of living donor organs still functioning one year post transplant.  Over time 

however kidney graft function declines, with >50% of deceased donor transplanted kidneys 

failing within 10 years and >50% of living related donor transplant kidneys failing within 17-

18 years (4). Whilst kidney biopsy and creatinine levels can determine graft failure, usually 

this is after substantial graft damage has occurred. 

 

Due to the importance of providing equity of access to kidney transplants across different 

ethnic and social-economical groups and with waiting lists outstripping organ supply, it is not 

always possible to match purely on the best clinical indicators of long-term graft survival. It is 

also important to bear in mind that whilst clinical features provide indicators of transplant 
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survival and long-term function, they are not definitive predictors of transplant longevity. One 

key feature of transplantation is that the donor and recipient, except between identical twins, 

differ in their genetic makeup. Utilisation of HLA matching has enabled transplantation to 

become one of the first fields to translate genetic information into improved graft outcome (3).  

The use of genetic markers to predict disease outcome in common diseases has however been 

questioned as whilst genetic factors can predict disease outcome as well as clinical features, 

when added to well-established clinical predictors in common autoimmune and metabolic 

diseases they do not improve disease prediction (5, 6). In transplantation where we do not have 

good clinical predictors of long-term graft survival/function, identifying genetic predictors of 

graft dysfunction could provide a window of opportunity to intervene therapeutically to prevent 

organ loss early on extending the benefits to patients of having a functioning graft.  

 

The next section of this review is going to focus on the role of HLA mismatching in transplant 

outcome and the use of candidate gene studies to search for additional genetic predictors of 

graft outcome including variants involved in immunosuppressant metabolism, immune 

response, fibrosis and factors that contribute to transplant loss in different ethnicities (see 

Figure 1).  

 

HLA Matching – The Original Genetic Predictor of Transplant Outcome 

 

HLA antibodies represent a significant risk factor for hyper-acute rejection and can contribute 

to chronic rejection (3, 7).  The HLA region encodes numerous molecules involved in 

presentation of exogenous and endogenous antigens for recognition by the immune system (8). 

The immune system determines if antigens presented are self, triggering no response, or non-

self, causing an immune response to be triggered. If the donor organ encodes different HLA 
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molecules to those recognised by the recipient’s immune system, when encountered by the 

immune system alloantibodies against the donor organ will be generated.  Understanding that 

matching donors and recipients for HLA-DRB1, HLA-A and HLA-B would lead to reduced 

alloantibody production and improved transplant outcome is a keystone of most clinical 

transplant protocols.    

 

HLA typing was initially undertaken looking at broad level (first field) matching between 

donors and recipients, based on HLA categorisation due to overarching structural similarities. 

Whilst it was well established that zero HLA mismatches have the highest success rate, other 

non-matched HLA donor-recipient pairings also did well (7).  Split HLA specificities (second 

field) can further sub-divide the broad level typing by assigning the exact amino acid content 

at each broad HLA type. Both broad and split HLA typing give all mismatches the same 

weighting but does not reflect how each molecule presents antigens or how antibodies bind. 

This led to development of the HLAMatchmaker algorithm which rather than viewing HLA 

molecules as whole molecules it views them as a series of short linear sequences (triplets) of 

polymorphic amino acid residues in antibody-accessible positions (9-11).  HLAMatchmaker 

assumes strings of amino acid form epitopes against which antibodies are created and patients 

cannot make antibodies against epitopes expressed by their own HLA molecules (12, 13).  

Revision to the original HLAMatchmaker was undertaken to take into account the three 

dimensional structure of HLA molecules with triplets expanded to include eplets, derived of 

longer discontinuous sequences of amino acids which form part of a given epitope (13). This 

algorithm was particularly useful in interpreting sera antibody reactivity patterns against HLA 

panels in highly sensitized patients to determine donors with acceptable mismatches and has 

been incorporated into Eurotransplant’s clinical protocol for highly sensitised patients, 
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resulting in shorter waiting times for donor kidneys and graft survival rates comparable to those 

seen in non-sensitized patients (14-18).  

 

There is debate, however, over whether using split HLA matching or HLAMatchmaker 

provides improvements over broad HLA matching in clinical practise. Kidney transplant 

outcome data reported to UNOS and Eurotransplant registries, suggested HLA matching of 

amino acid triplets improved graft survival compared to serologically define broad level HLA 

typing (19).  However, it was suggested any benefit of triplet matching may be due to 

underlying differences in number of mismatched HLA specificities (20). The UK Transplant 

Registry evaluated serologically defined broad vs split typing and amino acid based HLA 

analysis (looking at number and physiochemical properties of amino acid mismatches) in 5247 

adult recipients receiving deceased donor kidney transplants (21). Transplants with zero broad 

HLA mismatches showed a small significant improvement in graft survival compared to those 

with one HLA-A or HLA-B mismatch. HLA matching based on split HLA specificities, 

however, provided little additional discrimination in graft survival. Transplants with a single 

split HLA-A or HLA-B mismatch were assessed to determine the impact of a number of 

mismatched amino acids on graft survival and after adjusting for broad HLA specificities, a 

significant increase in graft failure was found for those with two or more amino acid 

mismatches (P=0.015) (21). Taken together, this suggests split HLA matching does not provide 

additional benefits over broad HLA mismatch but analysing amino acid mismatches has greater 

predictive value for transplant outcome over traditional broad level typing (21). This 

demonstrates how refining HLA matching is providing additional insights into the role of the 

HLA region in transplant outcome. 

 

Immunosuppressant Metabolism 
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Immunosuppression is essential for graft accommodation and is achieved by use of induction 

regimes along with maintenance drugs throughout life. Calcineurin inhibitors, including 

cyclosporine and tacrolimus, are the main forms of immunosuppressant. Calcineurin is 

activated by calcium signalling, causing dephosphorylation of its substrates, including nuclear 

factor of activated T-cells (NFAT) complexes, which translocate to the nucleus and alter gene 

expression (22-24) (Figure 2).  Inhibition of calcineurin and downstream NFAT proteins is key 

to inhibiting T cell activation. Initial drug dosing is based on body weight, with therapeutic 

drug monitoring (TDM) of whole blood concentrations undertaken to titrate levels (25, 26). 

Achieving a balance between under and over immunosuppression is key to enabling long-term 

graft accommodation whilst preventing immunosuppressant side effects including 

nephrotoxicity, new onset of diabetes after transplant (NODAT), hypertension, infection and 

malignancies (3, 27, 28). Inter-individual genetic variation which alters/ablates expression of 

genes involved in drug metabolism pathways can impact on both drug titration in the short term 

and in the longer term potentially contributes to immunosuppressant side effects, suggesting 

that harnessing this variation could improve drug dosing (29).  

 

Cyclosporine and tacrolimus are metabolic substrates of cytochrome P450 3A (CYP3A) 

enzymes, CYP3A4 and CYP3A5 (30, 31).  CYP3A4 and CYP3A5 are expressed in the liver 

and small intestines, with only CYP3A5 expressed in kidneys (32, 33). Expression of CYP3A5 

is controlled by presence of the 6986A>G (rs776746) SNP in intron 3.  Whilst those with the 

CYP3A5 AA or AG genotype (also known as CYP3A5*1/*1 or CYP3A5*1/*3, respectively) 

express functional CYP3A5, CYP3A5 GG homozygous carriers (CYP3A5*3/*3) do not 

express functional CYP3A5. CYP3A5 non-expressers require less tacrolimus to reach target 

drug concentrations, compared to CYP3A5 expressers and whilst rejection occurred earlier in 
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CYP3A5 expressors (7 days vs 14 days, p=0.005), no difference in biopsy confirmed acute 

rejection was seen (34).  A randomized controlled trial comparing tacrolimus dosing using 

CYP3A5 genotype vs standard dosing showed target tacrolimus concentrations were reached 

quicker within the genotype-based group, however there were no differences in clinical 

outcome between groups, suggesting clinical utility of CYP3A5 genotype may be limited to 

reducing initial drug overexposure (35). 

 

Variation in both CYP3A4 and ABCB1, encoding p-glycoprotein efflux pump transporter which 

transports drug metabolites out of the intestine, liver and kidneys, have also been extensively 

screened (30, 31).  Unlike CYP3A5, no variants in CYP3A4 or ABCB1 cause total loss of 

function. The CYP3A4 -392A-G SNP (rs2740754), present within nifedipine-specific element 

(NFSE) within the 5’ promoter region, has been extensively studied.  Functional analysis of 

the -392 G allele (also referred to as CYP3A4*1B) showed increased CYP3A4 transcriptional 

activity, although these results are controversial (30, 31).  More recent investigation of the 

CYP3A4 15389C-T (rs35599367) SNP in intron 6, showed the TT or CT genotypes (also 

known as CYP3A4*22/*22 and CYP3A4*1/*22 genotypes, respectively) was associated with 

lower CYP3A4 mRNA and protein expression in the liver compared to the CC genotype 

(CYP3A4*1/*1), and was proposed to impact on CYP3A4 function and in turn tacrolimus 

clearance (36-38).  Renal transplant recipients carrying the CYP3A4*22 allele required 30% 

less tacrolimus than those with the CYP3A4*1/*1 genotype (39).  Interestingly, the 

CYP3A4*22 genotype was mainly found in CYP3A5 non-expressers.  CYP3A5 non-expressers 

recipients with CYP3A4*1/*22 genotype required a further 30% less tacrolimus than CYP3A5 

non-expresser recipients with the CYP3A4*1/*1 genotype (39), suggesting that implementing 

personalised drug dosing based on the individuals genetic drug metabolism profile should be 

incorporated into clinical protocols. 



12 
 

 

Within ABCB1 the 1236C-T SNP in exon 12 (rs1128503), 2677G-T/A SNP in exon 21 

(rs2032582) and 3435C-T SNP in exon 26 (rs1045642) have been extensively studied (30, 31). 

The non-synonymous 2677 SNP results in a change at amino acid position 893 from an Alanine 

to a Serine or Threonine whereas the 1236 and 3455 SNPs are synonymous, causing no amino 

acid change. Whilst functional studies have revealed some evidence for the 3435 TT genotype 

in reducing p-glyocprotein expression and a role for 2677 and 1236 in altering p-glycoprotein 

expression, conflicting reports on their effect on p-glycoprotein expression make it difficult to 

draw conclusions on their role in immunosuppressant metabolism (30, 31).  Screening of all 

common ABCB1 variation in 811 Caucasian kidney donors and recipients showed that donor 

3435 non-CC genotypes were associated with increased risk of long-term graft failure 

(HR=1.69; 95% CI=1.20-2.40; P=0.003). This result was validated in two independent cohorts, 

675 donors from Belfast, UK (HR=1.68; 95% CI=1.21-2.32; P=0.002), and 2985 donors from 

the Collaborative Transplant Study (HR=1.84; 95% CI=1.08-3.13; P=0.006), suggesting that 

variation in drug metabolism is likely to impact upon transplant outcome (40). 

 

Whilst further work is required to realise drug dosing based on genetic variation, it could also 

play a role in predicting NODAT onset which occurs in 20% of patients on calcineurin 

inhibitors within the first six months after transplantation (41).  Calcineurin not only controls 

T cell signalling but in normal adult beta cells leads to NFAT activation, which promotes 

expression of numerous genes critical for beta cell function, proliferation and mass (42, 43).  

Mice with a beta cell specific calcineurin phosphatase regulatory subunit, calcineurin b1 

(Cnb1) deletion develop age-dependent diabetes characterised by decreased beta cell 

proliferation and mass, reduced pancreatic insulin content and hypoinsulinemia (42). Greater 

understanding of how variation in initial immunosuppressant dosing and metabolism could 
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provide important insights into NODAT onset and have implications for pancreas transplant 

function in simultaneous pancreas-kidney transplants. 

 

Immune Response Genes  

 

The potential impact of immune system variation on rejection and long-term graft 

accommodation led to numerous immune genes being screened for a role in transplant 

outcome, with particular focus on screening other parts of the HLA region, complement, 

autoimmune genes and other immune response genes as detailed below:  

 

Additional HLA associations 

 

Due to the success of HLA matching in transplantation and the high density of immune 

response genes encoded within the HLA region, additional HLA genes have been screened 

including TNF-α (extensively reviewed in (44)). Presence of strong linkage disequilibrium 

across the region, where variants within different HLA genes are inherited together in a non-

random manner (8), has hampered efforts to determine additional effects independent of HLA 

class I and class II matching, with work ongoing to tease these out. 

 

HLA class I molecules not only present endogenous antigens for recognition by the immune 

system but are also involved in inhibition of natural killer (NK) cells.  NK cells form part of 

the innate immune response against intracellular infections and tumour cells and secrete pro-

inflammatory cytokines causing cell lysis.  NK cell cytotoxic activity is regulated through a 

balance between activating and inhibitory receptors present on their surface known as killer 

immunoglobulin-like receptors (KIR) (45). Activating KIR recognise ligands expressed by 
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cells undergoing stress and inhibitory KIR bind to HLA class I molecules (45-47).  If donors 

express different HLA class I molecules to the recipient, this could affect NK cell inhibition, 

with recipient NK cell alloreactivity suggested to influence organ transplant outcome. Some 

preliminary evidence for a role of KIRs in renal transplant has been found (48), suggesting 

further investigation of genes associated with the HLA region is warranted. 

 

Complement  

 

The complement cascade is a set of soluble and cell-bound components triggered by immune 

complexes (classical pathway), mannose-binding lectin and ficolins receptors (leptin pathway) 

or direct binding of C3b to the activated surface (alternative pathway) in response to pathogens, 

autoantibodies, apoptosis or ischemic cells (49, 50). All three pathways lead to C3 activation, 

C3a and C5a release and formation of C5b-9 membrane attack complex resulting in cell 

disruption and lysis. Complement mediated injury can lead to hyper-acute and acute antibody 

mediated rejection and also plays a potential role in ischemic-reperfusion injury and cell 

mediated rejection (49). The C4d component of the complement system has already been 

harnessed as a predictor of classical complement pathway activation and donor specific 

alloantibody production.  Within the classical pathway, C3 production activates C4, causing 

cleavage of C4b from C4d (51). C4b is quickly degraded, whilst C4d remains attached to the 

cell membrane close to the site of antibody attachment providing a ‘footprint’ of antibody-

mediated tissue injury, with C4d staining incorporated into the BANFF grading scheme as a 

marker of acute humoral rejection (50-52). The obvious role of complement in organ rejection 

has made it a target for genetic studies. Analysis of C3 in 622 kidney donor-recipient pairs for 

variants associated with fast (F) or slow (S) C3 production, demonstrated that C3 S/S recipients 

with a C3 F/F or C3 F/S donor had better long-term outcomes than those with a donor with C3 
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S/S genotype (53). These preliminary results suggest a potential opportunity to therapeutically 

target the complement pathways to improve transplant survival (49), with further genetic 

screening of a role for variation in the complement system warranted. 

 

Autoimmunity Variants 

 

Variation in key regulators of T cell activation and function, including CTLA-4, PTPN22 and 

foxp3, has been associated with numerous autoimmune diseases (54). Much work has been 

undertaken to look at autoimmune genes in transplant outcome, producing conflicting reports 

(55, 56).  Even meta-analysis of studies up to 2013 looking at selected variants within CTLA-

4, CD86, CD28 and PDCD1 for a role in acute rejection only showed association of CD28 ivs3 

+17 C allele with acute renal rejection (OR=1.74; 95% CI= 1.11-2.75, P=0.02) (55).  However, 

this meta-analysis, like most other studies, only screened selected variants within these gene 

regions, suggesting that until further screening of these autoimmune genes in larger, more 

statistically powerful transplantation datasets is undertaken it is impossible to rule out a role 

for these variants. 

 

Cytokines and Other Immune Response Genes 

 

Cytokines are produced by macrophages, T cells and B cells and play a key role in initiating 

and regulating the immune response.  This has made these genes obvious potential triggers of 

acute and long-term rejection in transplantation, and after the HLA region are the most studied 

genes for a role in transplantation.  Over the years various cytokines and other immune response 

genes (see Table 1), have been investigated, however a lack of consistent association of these 
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genes with transplant survival has cast doubt over their potential role (as reviewed in (3, 7, 44, 

57, 58)).  

 

Incomplete screening of all common variation within these genes, combined with small 

datasets may, in part, explain the lack of consistent association (see Table 2).  As the immune 

response is dynamic and varies significantly across the lifetime of the graft, this makes it 

inherently difficult to measure the impact of cytokines on transplant outcome.  However, 

improvement in screening the genome and the use of larger datasets has enabled some evidence 

for a role of cytokines in transplant outcome to emerge.  Meta-analysis of variants within 

transforming growth factor-beta 1 (TGF-β1), which is produced by all leukocytes and plays a 

key role in controlling inflammation (59, 60), from five different studies showed some evidence 

for association of a TGF-β1 codon 10 polymorphism (OR=1.51, [95% CI=1.03-2.22]) with 

poor graft outcomes (57).  Interestingly, GWAS screening for new susceptibility loci for 

diabetic nephrology in type 1 diabetics revealed genome wide significance for AFF3, which 

play a role in TGF-β1 induced fibrosis in renal epithelial cells, providing further evidence for 

TGF-β1 pathways in renal dysfunction (61). This suggests that whilst currently the role of 

cytokines in transplant outcomes remain uncertain, without further work we cannot rule out a 

role for these variants in transplant survival. 

 

Fibrosis  

 

Fibrosis is a key hallmark of graft rejection and is caused by dysregulated tissue repair and 

remodelling.  Unlike normal wound healing, during fibrosis active scaring does not cease once 

the initial insult is contained, with connective tissue formation and wound contraction 

persisting, leading to disrupted tissue formation.  Mechanisms behind fibrosis are unknown but 
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have been proposed to be due to excess TGF-β1 and/or increased susceptibility of fibroblasts 

to persistent tissue re-modelling (62, 63).  TGF-β1 became an obvious target for genetic 

screening, with some evidence for a role in transplant loss found (see earlier). This opened the 

door for screening of other genes involved in fibrosis which may play a role in transplant 

survival.  

 

Caveolin-1 (Cav-1) encodes part of caveolae, which form small invagination within the plasma 

membrane that act as specialized lipid rafts involved in signal transduction (64, 65). Caveolae 

play a role within numerous tissue remodelling and fibrotic pathways, including TGF-β1 

signalling and turn over, cell matrix interactions, fibroblast adhesion/migration, cell stretching 

and apoptosis (66).  Decreased Cav1 expression has been reported in affected tissues from 

several human fibrotic diseases including idiopathic pulmonary fibrosis, scleroderma and 

systemic sclerosis, with re-introduction of Cav1 function shown to rescue these phenotypes 

(66, 67).  Screening all common Cav1 variation in two independent UK kidney transplant 

cohorts showed presence of Cav1 rs4730751 single nucleotide polymorphism (SNP) AA 

genotype in kidney donors was associated with increased risk of allograft failure, HR=1.56-

1.97 (67).  Importantly, the effect size of this variant is comparable with that of female donor 

gender and donor hypertension, both relevant clinical indicators of transplant success.  Upon 

histological assessment of kidney graft failure, recipients who received grafts with the 

rs4730751 AA genotype had a predominant increase in interstitial fibrosis compared to donors 

with non-AA genotypes (67). Variation in Cav1 has also been linked to decreased pancreas and 

lung transplant survival providing additional evidence for a role of fibrosis in long-term graft 

function (68-70). Interestingly, Cav1 knockout mice not only show impaired fibrosis but also 

exhibit lipid and metabolic disorders including insulin resistance (64, 71).  Caveolin-1 is an 

essential scaffolding protein required for correct folding of the insulin receptor, with incorrect 
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insulin receptor formation leading to insulin resistance (64, 72), suggesting Cav1 could 

contribute to reduced long-term graft function through other mechanisms in addition to fibrosis.   

 

Whilst caveolin-1 is essential for caveolae formation, caveolin-2 is also involved in caveolae 

assembly in certain tissues (73). Screening common Cav2 variation in 575 kidney donors and 

recipients revealed association of two SNPs in the recipients with graft function however these 

effects did not remain associated upon multivariate analysis (74).  Whilst no role for Cav2 was 

seen, screening other genes involved in caveolae formation/function could shed further light 

on the role of fibrosis in long-term graft function. 

 

Ethnic Differences in Transplant Outcome 

 

Analysis of 72,495 recipients of deceased and living donor kidneys undertaken in the USA 

between 2001-2005 showed both black and white recipients have decreased graft survival when 

transplanted with kidneys from black donors (HR=1.40 and HR=1.35, respectively, compared 

to white donor to white recipient) (75).  Hispanic and Asian recipients showed no increased 

graft loss with kidneys from black donors (HR=0.87 and HR=0.69, respectively).  Five year 

graft loss data showed white and black recipients have higher graft loss compared to Hispanic 

and Asian recipients, regardless of donor ethnicity (75).  Differences in genetic variation across 

ethnic groups has been proposed to partly explain this difference in transplant survival. 

 

In Apolipoprotein L1 (APOL1), which encodes a protein associated with plasma HDL 

cholesterol, two coding variants; a Serine to Glycine change at amino acid 342 (rs73885319) 

termed G1 and a six base pair deletion (rs71785313) termed G2, present in 30% of African-

Americans and only 0.3%-0.1% of Europeans, are strongly associated with hypertension 
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attributed end-stage renal disease in African-Americans (76, 77).  When looking at 136 African 

Americans donor organ survival over 2 years, shorter graft survival rates were observed in 

recipients of donor kidneys with two APOL1 risk variants (HR=2.95, P=0.01) and in a fully 

adjusted model, two APOL1 risk alleles independently predicted graft failure (HR=3.84, 

P=0.008) (78). In African-Americans receiving deceased donors lacking two APOL1 risk 

variants, long-term survival rates were equivalent to those seen in non-African-American 

deceased kidney donor recipients in the US renal data systems between 1994-1998 (78).  

 

APOL1 is expressed not only in the kidney but also in other organs including the liver, lung 

and placenta and is the only member of the apolipoprotein family that produces a soluble form 

(79).  This has led to questions over whether APOL1 variants contribute to transplant outcome 

by causing increased APOL1 in the kidneys leading to nephrotoxicity or through the soluble 

form of APOL1 causing altered binding/reabsorption of HDL (as reviewed in (79)). 

Differences in APOL1 expression in normal kidneys compared to those from patients with HIV 

associated nephropathy (HIVAN) and focal segmental glomerulosclerosis (FSGS) has been 

found.  In normal kidneys APOL1 expression was seen in podocytes, proximal tubules and 

arterial and arterior endothelial cells, whereas in HIVAN and FSGS APOL1 expression was 

reduced in the podocytes and tubules, with new expression seen in smooth muscles cells of the 

arterial walls (80).  When looking at APOL1 genotype in African-American kidney transplant 

recipients (those who had two APOL1 variants compared to those with one or no APOL1 

variants) no differences in graft survival was seen over 5 years of follow up, adding further 

support that it is donor kidney APOL1 expression, not soluble APOL1, that contributes to 

decreased graft survival (81). In vitro functional studies have also showed APOL1 risk variants 

cause podocyte swelling and reduced cellular viability at lower concentrations than wild-type 

APOL1 (82).  Whilst further work is required to confirm these observations, this work suggests 
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that identifying ethnic specific pathways will provide greater insights into graft survival in 

different ethnicities. 

 

Limitations of Candidate Gene Approach 

 

Whilst progress has been made in identifying genetic predictors of kidney transplant function, 

for every gene identified, numerous others genes investigated showed no association or 

inconclusive results (3, 7)  Several challenges have faced candidate gene studies which may 

explain this including sample size, incomplete gene screening, cohort differences and lack of 

multivariate analysis (see Table 2). 

 

Combined with these issues, investigating genes based purely on their potential or perceived 

function, could miss novel gene pathways that could be targeted therapeutically to improve 

transplant outcome. Employing non-bias genome screening techniques is one way of 

overcoming this. Recent advances in genetic screening methodology, including microarrays, 

Genome Wide Association Studies (GWAS) and next generation sequencing, combined with 

greater collaboration between centres enabling establishment of larger kidney transplant 

datasets, with greater statistical power, are enabling many of these problems to be overcome. 

With breakthroughs in these areas starting to emerge, the remainder of this review will focus 

on how these new advances are being utilised in transplantation.  

 

Genome Screening in Renal Transplant 

 

Non-bias monitoring of gene expression changes has been suggested as a way of identifying 

markers that could be used to predict graft rejection. Highly sensitive methods for quantifying 
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gene transcripts, including real-time PCR, and large scale approaches such as microarrays have 

been employed to undertake transcriptional profiling of whole blood or graft biopsies.  Whilst 

initially producing interesting results, microarray data in transplantation has suffered from lack 

of reproducibility across centres partially due to differences in cohort selection, treatment 

protocol and microarray technology (83). To address this, meta-analysis was undertaken on 8 

independent microarray datasets, 236 samples, using graft loss data from four commonly 

transplanted organs (kidney, liver, heart and lung) obtained at time of biopsies to identify gene 

transcripts common to acute rejection across multiple graft types (84). Twelve gene transcripts, 

many of which were linked to NF-KB and STAT1 signalling pathways, were overexpressed 

during acute rejection across all tissues, termed the common rejection model (CRM). Six of 

these genes target drugs that modulate immunosuppression or immune/inflammatory 

pathways. Validation in 794 renal allograft biopsies from three independent datasets, confirmed 

11 of these genes transcripts were crucial to the CRM.  Over time both progressors and non-

progressors to transplant loss showed increased CRM scores but progressors CRM scores 

increased more rapidly (84).    

 

GWAS have also provided a new way of screening all common variation across the human 

genome (represented by >500,000 SNPs) for association with disease traits using high 

throughput chip genotyping technology.  GWAS has revolutionised the search for genetic 

components to complex disease such as T1D and T2D, where within the space of a decade we 

have gone from a handful of known genes to >50 independent loci (85-88).  Whilst GWAS has 

been undertaken in chronic kidney disease and other kidney traits, only limited GWAS in renal 

transplant have reported to date.  O’Brien et al undertook GWAS to look at the role of recipient 

genotype on medium long-term kidney function measured by serum creatinine at five years 

post-transplant in 326 first time kidney transplant recipients. Regression analysis, incorporating 
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clinical covariates, and principle component analysis identified one variant on chromosome 18 

rs6565887 (P=4.05x10-8) that showed genome wide significance and another on chromosome 

14 rs3811321 showing borderline genome wide significance (P=7.61x10-8) (89). Modelling 

rs3811321 and rs656587 SNP effects explained 11.29% and 8.8% of five year creatinine 

variance, respectively, and together accounted for 17.4% of variance at this trait (89).  

Interestingly, rs3811321 and rs6565887 also correlated with allograft failure (P=0.004 and 

P=0.03, respectively). Both SNPs came up in regions not previously associated with kidney 

transplant function, with rs3811321 located within the T cell receptor alpha which forms part 

of the T cell receptor complex and rs6565887 present in a non-coding intron of zinc finger 

protein 516, a member of C2H2-type zinc finger protein family located in nucleus cytoplasm, 

expressed in kidneys, spleen and lung (89).  Whilst further work is required to confirm these 

associations, this highlights the strength of GWAS to identify new genes and disease pathways 

that will inevitably provide novel insights into transplant function as more GWAS are reported 

over the next few years.  

 

Insights from Related Diseases 

 

Sharing of susceptibility loci between related diseases is well established. This suggests that 

screening of GWAS hits from related kidney traits, such as chronic kidney function, and genes 

involved in survival of other transplanted organs, on customised genotyping chips for a role in 

renal transplant survival would show whether long-term kidney graft survival is driven by any 

general transplant loss or kidney disease specific pathways and whether the same variants are 

driving these effects across different diseases.  

 

Rare Variants 
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Whilst rare variants and copy number variation (CNVs) within the genome were originally 

believed to only contribute to monogenic forms of kidney disease, there is growing evidence 

that these variants may also impact upon complex disease. Advances in next generation 

sequencing technologies have enabled screening for rare variants and CNVs to become easier, 

with the genetic component to at least 160 different rare kidney diseases already identified (90).  

In the future, these technologies will enable us to determine if rare variants or CNVs also play 

a role in transplant outcome. 

 

Translating Genetic Signals into Disease Pathways  

 

One of the challenges this new influx of genetic data brings is how to determine the 

mechanisms driving these associations.  Whilst association is assigned to a given gene, until 

fine mapping of the surrounding region, it is difficult to determine whether variation within 

that gene or a neighbouring gene region is truly driving the association detected.  Even once 

fine mapping has been achieved, many of the variants driving association may be intronic or 

in gene deserts, requiring integration of information on gene expression, tissue specific 

expression, systems biology and animals models to determine how these variants impact upon 

transplant survival (91). Several initiatives have been set up to aid this process including the 

ENCODE project which has published extensive information on regions of transcription, 

transcription factor association, chromatin structure and histone modification in the human 

genome and the European Renal cDNA bank which is collecting gene expression data from 

renal biopsies enabling determination of gene expression in renal tissue (92-96). 
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Some studies have already started to harness variation in gene expression for a role in transplant 

survival. Gene specific translational silencing by miRNAs regulates carcinogenic, immune and 

fibrotic pathways. A multicentre clinical trial investigated mRNA levels of CD3ϵ chain, 

perforin, granzyme B, proteinase inhibitor 9, CD103, interferon-inducible protein 10 (IP-10) 

within sequential urine specimens obtained at clinically stable points up to one year post 

transplant to determine if they predict acute rejection (97). Comparing mRNA in 43 urine 

samples from patients with acute rejection matched to urine samples from 163 patients showing 

no rejection (confirmed by BANFF biopsy grading) and 201 patients with stable graft function 

(no biopsy taken), showed that urinary cell levels of CD3, perforin, granzyme B and IP-10 

normalised mRNA levels differed significantly amongst the three groups (P<0.001) (97).  This 

enabled creation of a diagnosis signature using these three measures to distinguish biopsy 

samples showing acute rejection with AUC=0.85 [95% CI=0.78-0.91], with 79% sensitivity 

and 78% specificity (P<0.001).  External validation in 71 complementary DNA samples, 

showed the three gene signature discriminated between acute cellular rejection and no rejection 

with AUC=0.74, with 72% specificity and 71% sensitivity (97).  This suggests understanding 

how gene variation affects gene transcription and silencing can be utilised in the transplant 

setting. 

 

Epigenetic Changes 

 

Temporal and reversible epigenetic alterations enable the body to silence or activate key genes 

in response to challenges encountered.  Gene silencing via DNA methylation is one of the main 

epigenetic modifications within the body and whilst intrinsically difficult to monitor, some 

progress has been made accessing this.  

 



25 
 

Differences in hypermethylated gene regions between primary human fibroblasts from fibrotic 

kidneys compared to non-fibrotic kidneys were assessed by genome wide methylation 

screening (98).  Twelve genes including RASAL1, which has been associated with fibroblast 

activation and kidney fibrogenesis, were methylated in all 7 fibrotic fibroblast samples and 

non-methylated in all non-fibrotic fibroblasts, suggesting knockdown of these genes may be 

involved in onset of fibrosis (98). Random inactivation of one X chromosome in females is 

also undertaken via methylation to enable dosage compensation with males who only have one 

copy of the X chromosome.  This leads to random inactivation of either the paternal or maternal 

X chromosome (XCI), with females being a mosaic of the maternally and paternally derived X 

chromosome with an inactivation ratio of 50:50.  In some cases one X chromosome is 

preferentially inactivated. A female with >80% of one X chromosome inactivated are known 

as skewed, and those with >90% of one X chromosome inactivated are known as extremely 

skewed. Investigating XCI levels in 212 white female recipients and 186 white donors, 8% of 

recipients with skewed XCI (2 of 25) developed biopsy proven acute rejection compared to 

28.3% of non-skewed XCI recipients (53 of 187) HR=0.26, P=0.02 (99).  In donors, 66.6% 

with XCI skewing (4 of 6) (66.6%) developed acute rejection, compared with 20.5% of non-

skewed donors without XCI skewing HR=3.30, P=0.03 (99).  XCI skewing in recipients has 

been suggested to lead to immunological senescence within the recipient resulting in less 

rejection and in donors XCI skewing could lead to stem cell senescence resulting in reduced 

graft survival, explaining the protective and predisposing of XCI skewing respectively (99).  

Taken together these studies show that whilst tricky to access, understanding epigenetic 

modifications will provide insights into long-term transplant function. 

 

Relative Organ Age  
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Older donor kidneys have faster progression to tubular atrophy and are more susceptibility to 

chronic graft dysfunction and failure (100-102).  Kidney aging and decreased glomerular 

filtration rate becomes apparent after 40 years of age, however kidney function decline varies 

amongst individuals. Due to limited donor organ availability older organs are now being 

transplanted and, as such, markers that measure biological organ age could help optimize organ 

allocation. Telomeres, consisting of multiple copies of short nucleotide repeats at the end of all 

chromosomes, protect against chromosome deterioration. With each round of DNA replication, 

telomere length is reduced, which is believed to play a role in cell senescence and acts as a 

marker of organ ‘age’ (103, 104).  In primates, ischemia–reperfusion was associated with rapid 

decrease in telomere length, suggesting that changes in relative organ age caused by 

transplantation could impact upon long-term outcome (105). To date, only limited studies have 

looked at telomere length and transplant outcome (106) to determine if relative graft ‘age’ 

impacts upon long-term function. 

 

Recipient-Donor Genetic Interactions  

 

With an increased number of genetic variants being associated with transplant survival and 

appreciation that both donor and recipient specific mechanisms could impact on graft outcome, 

one of the next challenges is to access how donor and recipient variants interact within a given 

individual and whether these pathways work synergistically or if one pathway plays a larger 

than others in long-term graft survival.   

 

Conclusion 
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Advances in our ability to screen the genome, combined with greater understanding of how 

variants are linked to transplant outcome is providing new opportunities to learn more about 

the pathways behind graft survival and long-term function.  The obvious next question is how 

do we use these new advances clinically to improve long-term transplant survival? Whilst it is 

important to bear in mind that clinical adaption of scientific discoveries is estimated to take up 

to 17 years (107), there are some more immediate ways in which genetic variation can impact 

upon long-term graft survival. Improved understanding of the disease pathways involved in 

transplant survival and loss can provide an opportunity to identify early on those at greater risk 

of graft failure and/or inform the selection of more appropriate donor organs for 

transplantation. Some genetic variants, such as those within CYP3A4 and CYP3A5 which affect 

immunosuppressant metabolism, have more immediate potential to be translated into clinical 

practice and debate is already underway over whether initial drug dosing based on genotype 

should be implemented into immunosuppressant regimes (35, 39).  

 

Decreased costs and increased reproducibility of whole genome sequencing is opening the 

doors to enable personalised medicine to become a reality and information on genetic variation 

that can affect long-term transplant outcome will be vital to tailoring therapeutic regimes and 

treatment options for transplant recipients (108, 109). In a time when drug design is becoming 

more expensive, the ability of genetics to identify new mechanisms involved in transplant loss 

could prove vital in identifying already approved drugs that could be re-purposed for use in 

transplant recipients to improve long-term graft function.  Whilst it would be naive to say there 

are not challenges to face in both detecting genetic variation and translating the underlying 

mechanism (108, 109), ongoing advances in our understanding of the genetic variation behind 

transplant organ survival will undoubtedly continue to translate into improvements in patient 
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care with the ultimate goal of making kidney transplantation a lifelong treatment for renal 

failure. 
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FIGURE & TABLE LEGENDS 

Figure 1: Timeline of Different Genetic Techniques used to Identify Predictors of Renal 
Transplant Outcome 
 
Figure 2: Role of Calcineurin in T cell Activation 
Binding of the T cell receptor (TCR) to HLA class II molecules presenting non-self antigens 
triggers TCR activation. This leads to calcium signalling, which intern activates calcineurin. 
Calcineurin activation leads to dephosphorylation of its substrates, including nuclear factor of 
activated T-cells (NFAT) complexes, which translocate to the nucleus and alter gene 
expression. Inhibition of calcineurin and downstream NFAT proteins by calcineurin inhibitors 
is key to inhibiting T cell activation, enabling graft accommodation. 
 
Table 1: Immune Response Genes Investigated for a Role in Predicting Transplant 
Survival and Long-Term Function   
This table represents some of the most widely investigated immune response genes screened 
for a role in predicting transplant survival and long-term outcome. Conflicting results on their 
role in transplant outcome has made it difficult to determine if they play a role in transplant 
survival. 
 
Table 2: Factors which Impacted Upon the Success of Candidate Gene Studies to Identify 
Predictors of Transplant Survival and Long-Term Function 
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Figure 1: Timeline of Different Genetic Techniques used to Identify
Predictors of Renal Transplant Outcome
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Figure 2: Role of Calcineurin in T cell Activation

Binding of the T cell receptor (TCR) to HLA class II molecules presenting non-
self antigens triggers TCR activation. This leads to calcium signalling, which
intern activates calcineurin. Calcineurin activation leads to dephosphorylation of
its substrates, including nuclear factor of activated T-cells (NFAT) complexes,
which translocate to the nucleus and alter gene expression. Inhibition of
calcineurin and downstream NFAT proteins by calcineurin inhibitors is key to
inhibiting T cell activation, enabling graft accommodation.



Gene Function Role in Immune System 
   
ICAM-1 
 

Adhesion 
molecule 

Is an intracellular adhesion molecule and is involved in 
facilitating antigen presentation to T cells and mediating cell 
trafficking to sites of tissue injury. 

MCP-1 
 

Chemokine Involved in recruiting immune cells to sight of inflammation 
triggered by tissue injury or infection. 

CCR2 Chemokine Encodes the receptor of MCP-1 and is involved in 
inflammation. 

CCR5 Chemokine Functions as a chemokine receptor for RANTES and MIP 
and is proposed to play a role in the inflammatory response 
triggered after infection. 

IL-1 Cytokine Leads to activation of pro-inflammatory cytokines and is 
involved in regulating inflammation. 

IL-2 Cytokine Involved in regulating the body’s response to infection and in 
discriminating between self and non-self antigens within the 
body. 

IL-6 Cytokine Secreted by T cells and macrophages and is involved in 
controlling inflammation through both pro-inflammatory and 
anti-inflammatory functions. 

IL-10 Cytokine An anti-inflammatory cytokine involved in immune 
regulation. 

TNF-a Cytokine Plays a role in controlling inflammation through regulation 
of immune cell function.  

TGF-β1 
 

Growth 
factor 

Produced by numerous immune cells and plays a role in 
regulating the inflammatory response. 

HMOX1 
 

Anti-
inflammatory 
molecule 

Is upregulated in response to numerous noxious stimuli and 
is part of cytoprotective mechanisms crucial for defence of 
cells and tissues against internal stressors. 

   
 

 

 

 

 

 

 

 

 

 

 

 



Table 1: Immune Response Genes Investigated for a Role in Predicting Transplant 
Survival and Long-Term Function   

This table represents some of the most widely investigated immune response genes screened 
for a role in predicting transplant survival and long-term outcome. Conflicting results on their 
role in transplant outcome has made it difficult to determine if they play a role in transplant 
survival. 
 



Factor How this impacted upon the ability of candidate gene studies to 
identify genetic predictors of transplant outcome 

  
Sample size  Transplant outcome is likely governed by numerous genetic effects with 

small HRs on transplant outcome.  Sample sizes of <1000 recipients and 
donors, restricts the power these studies have to detect smaller HRs.  This 
could particularly impact upon replication of new findings which might 
be overinflated initially due to ‘winner curse’ and then not be picked up in 
similarly sized replication datasets which are underpowered to detect the 
true smaller HR. 

Incomplete 
gene 
screening  

Many studies only screened selected variants within the gene promoter 
and exons. Greater understanding of the importance of intronic and other 
non-coding genomic variation on gene expression, suggests that 
incomplete screening of genes could lead to associations being missed. 

Cohort 
differences 

Recipient and donor selection criteria, immunosuppressant regime and 
ethnic differences could impact upon genetic associations.   

Multivariate 
analysis 

Variation in clinical features known to influence transplant outcome need 
to be adjusted for to ensure they are not impacting upon genetic 
associations. 

Recipient only 
analysis 

Genetic associations may be present in both donor and recipients 
genomes. Since appreciation of this within the mid-2000s this issue has 
been somewhat addressed with more studies looking at genetic predictors 
in both kidney donors and kidney transplant recipients genomes where 
DNA is available to undertake such analysis. 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Factors which Impact Upon the Success of Candidate Gene Studies to Identify 
Predictors of Transplant Survival and Long-Term Function 
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