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This special issue highlights research articles that apply machine learning to robots and other systems that interact with users
through more than one modality, such as speech, gestures, and vision. For example, a robot may coordinate its speech with its
actions, taking into account (audio-) visual feedback during their execution. Machine learning provides interactive systems
with opportunities to improve performance not only of individual components but also of the system as a whole. However,
machine learning methods that encompass multiple modalities of an interactive system are still relatively hard to find. The
articles in this special issue represent examples that contribute to filling this gap.
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1. AIM AND SCOPE

Interactions between humans and artificial systems, may they be robots, virtual agents, machines,
or simply computer interfaces, have become increasingly complex and ubiquitous in recent years.
The users do not only operate them, instead they are in interactive contact and communication with
them. As complexity of the systems increases, this communication may employ different modalities,
such as speech, touch, gestures, and vision. Modern interactive systems often use a combination of
these modalities to communicate meaningfully. For example, a robot may coordinate its speech with
its actions, taking into account visual feedback during their execution. Alternatively, a multimodal
system can adapt its input and output modalities to the user’s goals, workload, and surroundings.
Machine learning methods provide interactive systems with opportunities to improve performance
not only of individual components but also of the system as a whole. At the same time, interactive
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systems provide machine learning with opportunities to develop new theories and algorithms driven
by challenging tasks that involve interaction with humans and their environments. This special issue
highlights some advances and challenges in the field of machine learning for multiple modalities in
interactive systems.

2. MULTIMODAL INTERACTIVE LEARNING SYSTEMS: WHAT AND WHY?

An interactive learning system is an entity that learns through continuous interaction with the
physical world, humans and/or other systems [Cuayéhuitl et al. 2013]. These kinds of systems can
perceive the other end of the interaction, such as a human or another interactive system, (e.g. via
speech and vision), and can act and communicate as part of the interaction (e.g. via speech and ges-
tures). While many interactive systems and robots can be scripted or programmed to behave just as
expected, the rich nature of interaction with the physical world and humans demands systems to deal
with dynamic and partially known environments. Such systems therefore require some adaptation to
dynamic environments (e.g., different degrees of noise or objects in constantly changing locations),
and some learning due to partially known environments (e.g., unseen conversational behaviors or
unseen objects/gestures).

A typical machine learning system learns a scoring function from inputs (e.g., features represent-
ing the state of the environment) to outputs (e.g., actions, class labels, or preferences). Important
aspects of such a system include the task to be supported (e.g., object or gesture recognition—
possibly combined with verbal interpretation), and the type and source of feedback given to the
system (e.g., correct answers, or delayed rewards). Traditionally in the research community, ma-
chine learning has been applied on inputs and outputs from isolated datasets, which can have weak
relationships to real world problems [Wagstaff 2012]. On the other hand, a system learning from
interaction requires inputs and outputs from datasets that match the targeted real environment (often
based on multiple modalities).

Machine learning frameworks differ in the way they treat data and the way they process feedback.
Some machine learning frameworks addressed in this special issue are briefly described as follows:

— Supervised learning can be used whenever it comes to the task of classifying data, where the
data consists of instances (pairs of features and class labels). The task of a supervised learning
algorithm is to induce a function that maps the unlabelled instances to labels. This function is
known as a classifier when the labels are discrete and as a regressor when the labels are continuous.
All articles in this special issue make use of classifiers to predict events during human-machine
interactions [Ngo et al. 2014; Benotti et al. 2014; Keizer et al. 2014; Cuayéhuitl et al. 2014].

— In contrast to supervised learning that makes use of direct feedback, reinforcement learning
makes use of indirect feedback typically based on numerical rewards given during the interaction,
and the goal is to maximize them in the long run. A policy is defined by the behaviour of the
learning agent for a given domain, and can be found through a trial and error search in which the
agent explores different action strategies. Each strategy is evaluated by the cumulative rewards
that it yields over time. This framework can be seen as a very weak form of supervised learning,
where the instances themselves are not rated, but the impact of actions that lead to the overall goal
(e.g. fetching and delivering an object or playing a game). This form of learning is applied in this
special issue to guide the behaviour of interactive robots as described in [Keizer et al. 2014] and
[Cuaydhuitl et al. 2014].

— While both supervised and reinforcement learning assume some supervision at learning time,
either in the form of labels or rewards, unsupervised learning does not require such information.
Since an unsupervised learner does not receive any form of feedback, it has to find patterns in
the data solely based on its observable features. The task of an unsupervised learning algorithm
is thus to uncover hidden structure in unlabelled data. Examples of this form of learning include
clustering and non-parametric Bayesian learning, which are applied to multimodal interaction in
this special issue by [Keizer et al. 2014].
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— Compared to the types of learning described above, active learning includes a human directly
within the learning procedure. An active learner assumes three data sets: labelled examples, unla-
belled examples, and chosen examples. The latter are built in an interactive fashion by an active
learning algorithm who queries a human annotator for labels of specific examples, e.g. those it
is most uncertain of. The learner can therefore actively ask the teacher for the knowledge that
would help it learn the fastest rather than acting as a passive recipient of knowledge. This form of
learning is applied in this special issue to a human-robot interaction scenario by [Ngo et al. 2014].

While a single form of learning can be integrated and evaluated in interactive systems and robots,
combining multiple forms of machine learning can be used to address perception, action and com-
munication as a whole. The next section describes concrete examples of these kinds of systems.

3. ARTICLES IN THIS SPECIAL ISSUE
3.1. Efficient Interactive Multiclass Learning from Binary Feedback

In this article, Ngo, Luciw, Nagi, Forster, Schmidhuber, and Vien [2014] present a new algorithm for
interactive learning that only requires binary (correct/incorrect) feedback instead of full (class label)
feedback. Their approach, upper confidence weighted learning, adds a multi-class classifier to an
online learning framework. The model updates whenever it receives feedback. Unlike the traditional
machine learning paradigm, training and testing phases are entwined. In this approach, the best class
prediction is not always selected. Instead, the model can select suboptimal responses that can ulti-
mately be more informative — the authors label this a type of “artificial curiosity” that can improve
learning. Upper confidence weighted learning strikes a balance between collecting binary feedback
and conducting interactive learning. Since the model only receives binary feedback, teachers simply
label observations as either “right” or “wrong”. However, in the human-robot domain, this sort of
feedback can be intuitive for a human teacher to provide. Ngo et al. evaluate the algorithm over
three multi-class datasets, one with direct application to the human-robot domain and two others
that assess generalizability. They report that their framework outperforms the existing state-of-the-
art without increasing computational complexity. In fact, their method outperforms some multi-class
models that use class label feedback. They suggest extending their model to incorporate a mix of
binary and class label feedback in future work.

3.2. Interpreting Natural Language Instructions Using Language, Vision, and Behavior

In this article, Benotti, Lau, and Villalba [2014] present an interactive system that learns to interpret
natural language in the context of action sequences uttered between humans in a virtual 3D world.
The system learns in a minimally supervised fashion in that it draws feedback directly from observ-
able cues, such as a human user’s reaction to an instruction or a visible change of the environment.
The domain knowledge gained in this way is subsequently utilized as an automatically annotated
dataset for training classifiers that predict reactions to unseen instruction sequences. In a fully au-
tomated way, this system attains a prediction accuracy of 77%, which increases to over 90% when
human feedback is allowed.

As a representative of an interactive system that learns from the environment and the humans
within it, this research promises to alleviate our dependence on large sets of human-designed rules
or manually annotated corpora to build sophisticated systems. Instead, the learner observes human
behavior, imitates and iteratively improves it over time to reach near-human performance. Future
work in the field will need to take an ambitious step forward and abandon the controlled conditions
of virtual or artificial environments. Instead, systems will need to be deployed into the wild, where
learning is driven through observation, imitation and adaptation to new users, environments and
circumstances. To learn natural language, this requires a holistic interactive system that learns from
visual and haptic real-world signals from humans that communicate genuine actions and plans.
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3.3. Machine Learning for Social Multi-Party Human-Robot Interaction

In this article, Keizer, Foster, Wang, and Lemon [2014] identify socially appropriate robot behavior
as an important prerequisite to successful human-robot interaction (HRI). In HRI it is typically not
sufficient for a robot to achieve only its fask-based goals; it is equally important to take the human
and the social implications of human behavior into account when deciding how and when to act
in order to achieve such goals. To this end, any intelligent machine interacting with human users
needs to be able to recognize the user’s intentions through continuous sensor-based observations,
which, in the real world, are inherently noisy and uncertain. Keizer et al. refer to this as social
state recognition. And, furthermore, it needs to be able to adapt its own decision making and action
execution based on these observations, which the authors refer to as social skills execution.

The article discusses several machine-learning based approaches to dealing with social signals
for robust (inter-)action planning and execution in multimodal, multi-party HRI. First, the authors
present a data-driven, supervised-learning based approach to social state recognition, followed by a
reinforcement-learning based approach to social skills execution. The approaches have been imple-
mented and combined into an integrated robotic system, and evaluated in a bartender scenario with
human customers. After that, the authors describe an alternative approach that combines social state
recognition and social skills execution in an unsupervised-learning based framework. The approach
makes use of hierarchical Dirichlet processes and infinite POMDPs. The models have been trained
from realistic human-human as well as human-robot interaction data.

3.4. Non-Strict Hierarchical Reinforcement Learning for Interactive Systems and Robots

In this article, Cuayahuitl, Kruijff-Korbayova, and Dethlefs [2014] present an interactive robot that
learns dialogue policies for playing a quiz game. The humanoid robot achieves a balance between
learning a scalable and flexible policy—which represents a trade-off in reinforcement learning (RL)
interactive systems. Systems are usually either flexible (using flat RL) or scalable (using hierarchi-
cal RL), but rarely both. For example, hierarchical RL has been shown to increase the scalability of
learnt policies by using a divide-and-conquer approach. As a drawback, however, hierarchical algo-
rithms impose a rigid structure on the interaction with human users, leaving the user little flexibility
in taking an initiative in the interaction.

The authors in this article aim to achieve the best of both worlds and introduce hierarchical
reinforcement learning with flexible state transitions. The latter means that the learning agent is
allowed to transition to new states within a subtask as well as across subtasks. This breaks up the
pre-defined interaction structure and allows the user to converse flexibly. In addition, the authors
introduce function approximation to generalise to the unseen states that flexible transitions may
cause. The flexibly trained policy is compared against a conventional hierarchical RL policy in
an experiment with human users. Results show that the proposed technique leads to more flexible
interactions and is preferred by human users.

4. FUTURE DIRECTIONS

Machine Learning for Multimodal Interaction is still a young research area and many directions still
need to be explored. In particular,

— Most work in this field is grounded in practical systems, whose specific issues and characteris-
tics vary widely. Just in this special issue, the interactive tasks range from learning to label hand
gestures to understanding natural language instructions, to optimizing social behavior. As the com-
munity investigates more types of tasks related to multimodal interaction, we should be able to
understand better what issues are specific to multimodal systems, yet shared among different such
systems. Only then will we be able to develop truly general models and algorithms. The article
of Ngo et al. in this issue represents a nice attempt at developing a general ML paradigm that is
particularly suited to learning interactive behavior. Future work in that direction should address
questions specific to multimodality, such as: What are good models/model structures for integrat-
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ing different modalities? Are there general ML principles that exist or can be derived specifically
to address the issue of multimodal interaction?

— Machine Learning requires data. However, interaction data is more expensive to collect in large
amounts than traditional static data (e.g. text corpora). Resorting to virtual environments as Benotti
et al. did in their contribution can make it simpler to collect data through crowdsourcing. However,
it is not yet well known how this data compares to real world data, particularly when it comes to
multimodal interaction, since virtual environments necessarily have to simulate some or all of
the modalities. How can researchers obtain data of enough quality and quantity to develop new
models and algorithms of practical relevance?

— Last but not least, interactive learning systems need to be trained from real world environments.
The articles in this special issue still rely on lab-based experiments and recruited participants.
Training and evaluation from real environments (e.g. homes, shopping centers, assisted living
environments and public spaces) remains to be demonstrated in multiple domains. This is perhaps
the path to more advanced interactive learning systems that may target the optimization of multiple
modalities as a whole rather than independent systems. ACM TiiS welcomes this kind of research
[Jameson and Riedl 2011].
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